A Highly Efficient Plasmonic Polarization Conversion Metasurface Supporting a Large Angle of Incidence
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Optical Mode Analysis
3.2. Phase Difference
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cronin, T.W.; Shashar, N.; Caldwell, R.L.; Marshall, J.; Cheroske, A.G.; Chiou, T.-H. Polarization Vision and Its Role in Biological Signaling. Integr. Comp. Biol. 2003, 43, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.; He, Y.; Li, W.; Ma, H. Polarization-degree imaging contrast in turbid media: A quantitative study. Appl. Opt. 2006, 45, 4491–4496. [Google Scholar] [CrossRef] [PubMed]
- Loksztejn, A.; Dzwolak, W. Vortex-Induced Formation of Insulin Amyloid Superstructures Probed by Time-Lapse Atomic Force Microscopy and Circular Dichroism Spectroscopy. J. Mol. Biol. 2010, 395, 643–655. [Google Scholar] [CrossRef] [PubMed]
- Kildishev, A.V.; Boltasseva, A.; Shalaev, V.M. Planar Photonics with Metasurfaces. Science 2013, 339, 1232009. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Ou, J.-Y.; MacDonald, K.F.; Zheludev, N.I. Photonic metamaterial analogue of a continuous time crystal. Nat. Phys. 2023, 19, 986–991. [Google Scholar] [CrossRef]
- Khaliq, H.S.; Nauman, A.; Lee, J.; Kim, H. Recent Progress on Plasmonic and Dielectric Chiral Metasurfaces: Fundamentals, Design Strategies, and Implementation. Adv. Opt. Mater. 2023, 11, 2300644. [Google Scholar] [CrossRef]
- Cordaro, A.; Edwards, B.; Nikkhah, V.; Alù, A.; Engheta, N.; Polman, A. Solving integral equations in free space with inverse-designed ultrathin optical metagratings. Nat. Nanotechnol. 2023, 18, 365–372. [Google Scholar] [CrossRef]
- Kim, J.; Kim, W.; Oh, D.K.; Kang, H.; Kim, H.; Badloe, T.; Kim, S.; Park, C.; Choi, H.; Lee, H.; et al. One-step printable platform for high-efficiency metasurfaces down to the deep-ultraviolet region. Light. Sci. Appl. 2023, 12, 68. [Google Scholar] [CrossRef]
- Kang, M.; Ra’Di, Y.; Farfan, D.; Alù, A. Efficient Focusing with Large Numerical Aperture Using a Hybrid Metalens. Phys. Rev. Appl. 2020, 13, 044016. [Google Scholar] [CrossRef]
- Arbabi, A.; Horie, Y.; Bagheri, M.; Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 2015, 10, 937–943. [Google Scholar] [CrossRef]
- Arbabi, A.; Horie, Y.; Ball, A.J.; Bagheri, M.; Faraon, A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun. 2015, 6, 7069. [Google Scholar] [CrossRef] [PubMed]
- Warren, M.E.; Smith, R.E.; Vawter, G.A.; Wendt, J.R. High-efficiency subwavelength diffractive optical element in GaAs for 975 nm. Opt. Lett. 1995, 20, 1441–1443. [Google Scholar] [CrossRef] [PubMed]
- West, P.R.; Stewart, J.L.; Kildishev, A.V.; Shalaev, V.M.; Shkunov, V.V.; Strohkendl, F.; Zakharenkov, Y.A.; Dodds, R.K.; Byren, R. All-dielectric subwavelength metasurface focusing lens. Opt. Express 2014, 22, 26212–26221. [Google Scholar] [CrossRef] [PubMed]
- Mutlu, M.; Akosman, A.E.; Kurt, G.; Gokkavas, M.; Ozbay, E. Experimental realization of a high-contrast grating based broadband quarter-wave plate. Opt. Express 2012, 20, 27966–27973. [Google Scholar] [CrossRef] [PubMed]
- Ding, F.; Pors, A.; Bozhevolnyi, S.I. Gradient metasurfaces: A review of fundamentals and applications. Rep. Prog. Phys. 2018, 81, 026401. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, A.I.; Brongersma, M.L.; Yao, J.; Chen, M.K.; Levy, U.; Tsai, D.P.; Zheludev, N.I.; Faraon, A.; Arbabi, A.; Yu, N.; et al. Roadmap for Optical Metasurfaces. ACS Photonics 2024, 11, 816–865. [Google Scholar] [CrossRef] [PubMed]
- Politano, G.G.; Cazzanelli, E.; Versace, C.; Castriota, M.; Desiderio, G.; Davoli, M.; Vena, C.; Bartolino, R. Micro-Raman investigation of Ag/graphene oxide/Au sandwich structure. Mater. Res. Express 2019, 6, 075605. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, J.; Khan, S.A.; Li, F.; Shen, J.; Duan, Q.; Liu, X.; Zhu, J. Plasmonic Metasurfaces for Medical Diagnosis Applications: A Review. Sensors 2021, 22, 133. [Google Scholar] [CrossRef] [PubMed]
- Moitra, P.; Wang, Y.; Liang, X.; Lu, L.; Poh, A.; Mass, T.W.; Simpson, R.E.; Kuznetsov, A.I.; Paniagua Dominguez, R. Programmable Wavefront Control in the Visible Spectrum Using Low Loss Chalcogenide Phase Change Metasurfaces. Adv. Mater. 2022, 35, e2205367. [Google Scholar] [CrossRef]
- Kowerdziej, R.; Ferraro, A.; Zografopoulos, D.C.; Caputo, R. Soft Matter Based Hybrid and Active Metamaterials. Adv. Opt. Mater. 2022, 10, 2200750. [Google Scholar] [CrossRef]
- Kumar, N.S.; Naidu, K.C.B.; Banerjee, P.; Babu, T.A.; Reddy, B.V.S. A Review on Metamaterials for Device Applications. Crystals 2021, 11, 518. [Google Scholar] [CrossRef]
- Pors, A.; Bozhevolnyi, S.I. Efficient and broadband quarter-wave plates by gap-plasmon resonators. Opt. Express 2013, 21, 2942–2952. [Google Scholar] [CrossRef] [PubMed]
- Heiden, J.T.; Ding, F.; Linnet, J.; Yang, Y.; Beermann, J.; Bozhevolnyi, S.I. Gap-Surface Plasmon Metasurfaces for Broadband Circular-to-Linear Polarization Conversion and Vector Vortex Beam Generation. Adv. Opt. Mater. 2019, 7, 1801414. [Google Scholar] [CrossRef]
- Kan, Y.; Andersen, S.K.H.; Ding, F.; Kumar, S.; Zhao, C.; Bozhevolnyi, S.I. Metasurface Enabled Generation of Circularly Polarized Single Photons. Adv. Mater. 2020, 32, e1907832. [Google Scholar] [CrossRef] [PubMed]
- Ding, F.; Deshpande, R.; Meng, C.; Bozhevolnyi, S.I. Metasurface-enabled broadband beam splitters integrated with quarter-wave plate functionality. Nanoscale 2020, 12, 14106–14111. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.H.; Lin, L.; Ma, D.; Yun, S.; Werner, D.H.; Liu, Z.; Mayer, T.S. Broadband and Wide Field-of-view Plasmonic Metasurface-enabled Waveplates. Sci. Rep. 2014, 4, 7511. [Google Scholar] [CrossRef]
- Yu, N.; Aieta, F.; Genevet, P.; Kats, M.A.; Gaburro, Z.; Capasso, F. A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces. Nano Lett. 2012, 12, 6328–6333. [Google Scholar] [CrossRef]
- Yang, B.; Ye, W.-M.; Yuan, X.-D.; Zhu, Z.-H.; Zeng, C. Design of ultrathin plasmonic quarter-wave plate based on period coupling. Opt. Lett. 2013, 38, 679–681. [Google Scholar] [CrossRef]
- Zhao, Y.; Alù, A. Tailoring the Dispersion of Plasmonic Nanorods to Realize Broadband Optical Meta-Waveplates. Nano Lett. 2013, 13, 1086–1091. [Google Scholar] [CrossRef]
- Li, Z.; Liu, W.; Cheng, H.; Chen, S.; Tian, J. Realizing Broadband and Invertible Linear-to-circular Polarization Converter with Ultrathin Single-layer Metasurface. Sci. Rep. 2015, 5, 18106. [Google Scholar] [CrossRef]
- Zhu, A.; Qian, Q.; Yan, Y.; Hu, J.; Zhao, X.; Wang, C. Ultrathin plasmonic quarter waveplate using broken rectangular annular metasurface. Opt. Laser Technol. 2017, 92, 120–125. [Google Scholar] [CrossRef]
- Hu, X.; Li, J.; Wei, X. Resonant cavity enhanced waveguide transmission for broadband and high efficiency quarter-wave plate. Opt. Express 2017, 25, 29617–29626. [Google Scholar] [CrossRef]
- Zhang, J.; ElKabbash, M.; Wei, R.; Singh, S.C.; Lam, B.; Guo, C. Plasmonic metasurfaces with 42.3% transmission efficiency in the visible. Light. Sci. Appl. 2019, 8, 53. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Li, J.; Liu, C.; Yu, Z.; Ye, H.; Yu, L. Broadband Ultrathin Transmission Quarter Waveplate with Rectangular Hole Array Based on Plasmonic Resonances. Nanoscale Res. Lett. 2019, 14, 384. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.; Wang, L.; Zou, Y.; Lv, L.; Li, C.; Xu, Y.; Song, G. Large bandwidth and high-efficiency plasmonic quarter-wave plate. Opt. Express 2021, 29, 16939–16949. [Google Scholar] [CrossRef]
- Alaee, R.; Farhat, M.; Rockstuhl, C.; Lederer, F. A perfect absorber made of a graphene micro-ribbon metamaterial. Opt. Express 2012, 20, 28017–28024. [Google Scholar] [CrossRef] [PubMed]
- Grady, N.K.; Heyes, J.E.; Chowdhury, D.R.; Zeng, Y.; Reiten, M.T.; Azad, A.K.; Taylor, A.J.; Dalvit, D.A.R.; Chen, H.-T. Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction. Science 2013, 340, 1304–1307. [Google Scholar] [CrossRef]
- Cheng, B.; Zou, Y.; Shao, H.; Li, T.; Song, G. Full-Stokes imaging polarimetry based on a metallic metasurface. Opt. Express 2020, 28, 27324–27336. [Google Scholar] [CrossRef]
- Chen, H.-T. Interference theory of metamaterial perfect absorbers. Opt. Express 2011, 20, 7165–7172. [Google Scholar] [CrossRef]
- Rodrigo, S.G.; Mahboub, O.; Degiron, A.; Genet, C.; García-Vidal, F.J.; Martín-Moreno, L.; Ebbesen, T.W. Holes with very acute angles: A new paradigm of extraordinary optical transmission through strongly localized modes. Opt. Express 2010, 18, 23691–23697. [Google Scholar] [CrossRef]
- Babar, S.; Weaver, J.H. Optical constants of Cu, Ag, and Au revisited. Appl. Opt. 2015, 54, 477–481. [Google Scholar] [CrossRef]
- Arbabi, A.; Faraon, A. Fundamental limits of ultrathin metasurfaces. Sci. Rep. 2017, 7, srep43722. [Google Scholar] [CrossRef] [PubMed]
- Arbabi, E.; Kamali, S.M.; Arbabi, A.; Faraon, A. Full-Stokes Imaging Polarimetry Using Dielectric Metasurfaces. ACS Photonics 2018, 5, 3132–3140. [Google Scholar] [CrossRef]
- Kretschmann, E.; Raether, H. Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light. Z. Naturforsch. A 1968, 23, 2135–2136. [Google Scholar] [CrossRef]
- Turbadar, T. Complete Absorption of Light by Thin Metal Films. Proc. Phys. Soc. 1959, 73, 40–44. [Google Scholar] [CrossRef]
- Veronis, G.; Fan, S. Guided subwavelength plasmonic mode supported by a slot in a thin metal film. Opt. Lett. 2005, 30, 3359–3361. [Google Scholar] [CrossRef]
- Li, T.; Hu, X.; Chen, H.; Zhao, C.; Xu, Y.; Wei, X.; Song, G. Metallic metasurfaces for high efficient polarization conversion control in transmission mode. Opt. Express 2017, 25, 23597–23604. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, B.; Jiang, Z.; Zou, Y.; Song, G. A Highly Efficient Plasmonic Polarization Conversion Metasurface Supporting a Large Angle of Incidence. Crystals 2024, 14, 694. https://doi.org/10.3390/cryst14080694
Cheng B, Jiang Z, Zou Y, Song G. A Highly Efficient Plasmonic Polarization Conversion Metasurface Supporting a Large Angle of Incidence. Crystals. 2024; 14(8):694. https://doi.org/10.3390/cryst14080694
Chicago/Turabian StyleCheng, Bo, Zengxuan Jiang, Yuxiao Zou, and Guofeng Song. 2024. "A Highly Efficient Plasmonic Polarization Conversion Metasurface Supporting a Large Angle of Incidence" Crystals 14, no. 8: 694. https://doi.org/10.3390/cryst14080694
APA StyleCheng, B., Jiang, Z., Zou, Y., & Song, G. (2024). A Highly Efficient Plasmonic Polarization Conversion Metasurface Supporting a Large Angle of Incidence. Crystals, 14(8), 694. https://doi.org/10.3390/cryst14080694