Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (376)

Search Parameters:
Keywords = creep element

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4169 KiB  
Article
An Anisotropic Failure Characteristic- and Damage-Coupled Constitutive Model
by Ruiqing Chen, Jieyu Dai, Shuning Gu, Lang Yang, Laohu Long and Jundong Wang
Modelling 2025, 6(3), 75; https://doi.org/10.3390/modelling6030075 (registering DOI) - 1 Aug 2025
Abstract
This study proposes a coupled constitutive model that captures the anisotropic failure characteristics and damage evolution of nickel-based single-crystal (SX) superalloys under various temperature conditions. The model accounts for both creep rate and material damage evolution, enabling accurate prediction of the typical three-stage [...] Read more.
This study proposes a coupled constitutive model that captures the anisotropic failure characteristics and damage evolution of nickel-based single-crystal (SX) superalloys under various temperature conditions. The model accounts for both creep rate and material damage evolution, enabling accurate prediction of the typical three-stage creep curves, macroscopic fracture morphologies, and microstructural features under uniaxial tensile creep for specimens with different crystallographic orientations. Creep behavior of SX superalloys was simulated under multiple orientations and various temperature-stress conditions using the proposed model. The resulting creep curves aligned well with experimental observations, thereby validating the model’s feasibility and accuracy. Furthermore, a finite element model of cylindrical specimens was established, and simulations of the macroscopic fracture morphology were performed using a user-defined material subroutine. By integrating the rafting theory governed by interfacial energy density, the model successfully predicts the rafting morphology of the microstructure at the fracture surface for different crystallographic orientations. The proposed model maintains low programming complexity and computational cost while effectively predicting the creep life and deformation behavior of anisotropic materials. The model accurately captures the three-stage creep deformation behavior of SX specimens and provides reliable predictions of stress fields and microstructural changes at critical cross-sections. The model demonstrates high accuracy in life prediction, with all predicted results falling within a ±1.5× error band and an average error of 14.6%. Full article
Show Figures

Graphical abstract

23 pages, 6098 KiB  
Article
Performance Optimization of Stacked Weld in Hydrogen Production Reactor Based on Response Surface Methodology–Genetic Algorithm
by Yu Liu, Hongtao Gu, Jincheng Zhang, Zhiyi Leng, Ziguang Wang and Shengfang Zhang
Coatings 2025, 15(8), 889; https://doi.org/10.3390/coatings15080889 (registering DOI) - 31 Jul 2025
Viewed by 67
Abstract
To address the issues of hydrogen embrittlement, creep, and fatigue that commonly occur in the welds of hydrogen production reactor operating under hydrogen exposure, high temperature and high pressure, this study proposes adding Si and Mo as reinforcing elements to the welding materials [...] Read more.
To address the issues of hydrogen embrittlement, creep, and fatigue that commonly occur in the welds of hydrogen production reactor operating under hydrogen exposure, high temperature and high pressure, this study proposes adding Si and Mo as reinforcing elements to the welding materials to enhance weld performance. Given the varying performance requirements of different weld layers in the stacked weld, a gradient performance optimization method for the stacked weld of hydrogen production reactors based on the response surface methodology (RSM)–genetic algorithm (GA) is proposed. Using tensile strength, the hydrogen embrittlement sensitivity index, fatigue strain strength, creep rate and weld performance evaluation indices, a high-precision regression model for Si and Mo contents and weld performance indices was established through RSM and analysis of variance (ANOVA). A multi-objective optimization mathematical model for gradient improvement of the stacked weld was also established. This model was solved using a GA to obtain the optimal element content combination added to the welding wire and the optimal weld thickness for each weld layer. Finally, submerged arc welding experiments of the stacked weld were conducted according to the optimization results. The results show that the tensile strength of the base layer, filling layer and cover layer of the stacked weld increased by 5.60%, 6.16% and 4.53%, respectively. Hydrogen embrittlement resistance increased by 70.56%, 52.40% and 45.16%, respectively. The fatigue and creep resistance were also improved. The experimental results validate the feasibility and accuracy of the proposed optimization method. Full article
Show Figures

Figure 1

29 pages, 14647 KiB  
Article
Precipitation Processes in Sanicro 25 Steel at 700–900 °C: Experimental Study and Digital Twin Simulation
by Grzegorz Cempura and Adam Kruk
Materials 2025, 18(15), 3594; https://doi.org/10.3390/ma18153594 (registering DOI) - 31 Jul 2025
Viewed by 145
Abstract
Sanicro 25 (X7NiCrWCuCoNb25-23-3-3-2) steel is specifically designed for use in superheater components within the latest generation of conventional power plants. These power plants operate under conditions often referred to as super-ultra-supercritical, with steam parameters that can reach up to 30 MPa and temperatures [...] Read more.
Sanicro 25 (X7NiCrWCuCoNb25-23-3-3-2) steel is specifically designed for use in superheater components within the latest generation of conventional power plants. These power plants operate under conditions often referred to as super-ultra-supercritical, with steam parameters that can reach up to 30 MPa and temperatures of 653 °C for fresh steam and 672 °C for reheated steam. While last-generation supercritical power plants still rely on fossil fuels, they represent a significant step forward in more sustainable energy production. The most sophisticated facilities of this kind can achieve thermodynamic efficiencies exceeding 47%. This study aimed to conduct a detailed analysis of the initial precipitation processes occurring in Sanicro 25 steel within the temperature range of 700–900 °C. The temperature of 700 °C corresponds to the operational conditions of this material, particularly in secondary steam superheaters in thermal power plants that operate under ultra-supercritical parameters. Understanding precipitation processes is crucial for optimizing mechanical performance, particularly in terms of long-term strength and creep resistance. To accurately assess the microstructural changes that occur during the early stages of service, a digital twin approach was employed, which included CALPHAD simulations and experimental heat treatments. Experimental annealing tests were conducted in air within the temperature range of 700–900 °C. Precipitation behavior was simulated using the Thermo-Calc 2025a with Dictra software package. The results from Prisma simulations correlated well with the experimental data related to the kinetics of phase transformations; however, it was noted that the predicted sizes of the precipitates were generally smaller than those observed in experiments. Additionally, computational limitations were encountered during some simulations due to the complexity arising from the numerous alloying elements present in Sanicro 25 steel. The microstructural evolution was investigated using various methods, including light microscopy (LM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Full article
Show Figures

Figure 1

18 pages, 4119 KiB  
Article
Structural Mechanics Calculations of SiC/Mo-Re Composites with Improved High Temperature Creep Properties
by Ke Li, Egor Kashkarov, Hailiang Ma, Ping Fan, Qiaoli Zhang, Andrey Lider and Daqing Yuan
Materials 2025, 18(15), 3459; https://doi.org/10.3390/ma18153459 - 23 Jul 2025
Viewed by 194
Abstract
In the present work, we design a laminated composite composed of molybdenum–rhenium alloy and silicon carbide ceramics for use in space reactors as a candidate structural material with neutron spectral shift properties. The influence of the internal microstructure on the mechanical properties is [...] Read more.
In the present work, we design a laminated composite composed of molybdenum–rhenium alloy and silicon carbide ceramics for use in space reactors as a candidate structural material with neutron spectral shift properties. The influence of the internal microstructure on the mechanical properties is investigated by finite element simulation based on scale separation. The results of the study showed that the incorporation of gradient transition layers between the metallic and ceramic phases effectively mitigates thermally induced local stresses arising from mismatches in coefficients of thermal expansion. By optimizing the composition of the gradient transition layers, the stress distribution within the composite under operating conditions has been adjusted. As a result, the stress experienced by the alloy phase is significantly reduced, potentially extending the high-temperature creep rupture life. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

24 pages, 6323 KiB  
Article
Study on Creep Characteristics of High-Volume Fly Ash-Cement Backfill Considering Initial Damage
by Shuokang Wang, Jingjing Yan, Zihui Dong, Hua Guo, Yuanzhong Yang and Naseer Muhammad Khan
Minerals 2025, 15(7), 759; https://doi.org/10.3390/min15070759 - 19 Jul 2025
Viewed by 332
Abstract
To reveal the long-term deformation behavior of high-volume fly ash-based backfill under continuous mining and backfilling, a fly ash–cement backfill material with 73.0% fly ash content was developed, and creep characteristic tests considering initial damage were conducted. The results demonstrate that: (1) A [...] Read more.
To reveal the long-term deformation behavior of high-volume fly ash-based backfill under continuous mining and backfilling, a fly ash–cement backfill material with 73.0% fly ash content was developed, and creep characteristic tests considering initial damage were conducted. The results demonstrate that: (1) A calculation method for the initial damage of backfill based on stress–strain hysteresis loop cycles is proposed, with cumulative characteristics of initial damage across mining phases analyzed; (2) Creep behaviors of backfill affected by initial damage are investigated, revealing the weakening effect of initial damage on long-term bearing capacity; (3) An enhanced, nonlinear plastic damage element is developed, enabling the construction of an HKBN constitutive model capable of characterizing the complete creep behavior of backfill materials. The research establishes a theoretical framework for engineering applications of backfill materials with early-age strength below 5 MPa, while significantly enhancing the utilization efficiency of coal-based solid wastes. Full article
Show Figures

Figure 1

24 pages, 7960 KiB  
Article
Creep Behavior and Deformation Mechanism of Aluminum Alloy: Integrating Multiscale Simulation and Experiments
by Weizheng Lu, Jianguo Wu, Jiajun Liu, Xiaoai Yi, Qiyue Zhang, Yang Chen, Jia Li and Qihong Fang
Symmetry 2025, 17(7), 1146; https://doi.org/10.3390/sym17071146 - 17 Jul 2025
Viewed by 223
Abstract
Aluminum (Al) alloys exhibit exceptional mechanical properties, seeing widespread use in various industrial fields. Here, we use a multiscale simulation method combining phase field method, dislocation dynamics, and crystal plasticity finite element method to reveal the evolution law of precipitates, the interaction mechanism [...] Read more.
Aluminum (Al) alloys exhibit exceptional mechanical properties, seeing widespread use in various industrial fields. Here, we use a multiscale simulation method combining phase field method, dislocation dynamics, and crystal plasticity finite element method to reveal the evolution law of precipitates, the interaction mechanism between dislocations and precipitates, and the grain-level creep deformation mechanism in 7A09 Al alloy under creep loading. The phase field method indicates that Al alloys tend to form fewer but larger precipitates during the creep process, under the dominant effect of stress-assisted Ostwald ripening. The dynamic equilibrium process of precipitate is not only controlled by classical diffusion mechanisms, but also closely related to the local strain field induced by dislocations and the elastic interaction between precipitates. Dislocation dynamics simulations indicate that the appearance of multiple dislocation loops around the precipitate during the creep process is the main dislocation creep deformation mechanism. A crystal plasticity finite element model is established based on experimental characterization to investigate the macroscopic creep mechanism. The dislocation climb is hindered by grain boundaries during creep, and high-density dislocation bands are formed around specific grains, promoting non-uniform plastic strain and leading to strong strain gradients. This work provides fundamental insights into understanding creep behavior and deformation mechanism of Al alloy for deep-sea environments. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

27 pages, 4124 KiB  
Article
Evaluating Binary Molybdenum Alloys as Strong and Ductile High-Temperature Materials
by Cheng Fu, Jiayi Yan, Jiang Yu, Yuhong Ren and Sha Li
Materials 2025, 18(14), 3329; https://doi.org/10.3390/ma18143329 - 15 Jul 2025
Viewed by 224
Abstract
Molybdenum alloys as refractory alloys can provide strength levels at operating temperatures higher than that of Ni-base superalloys, yet their ductility is usually inferior to Ni-base alloys. Currently, commercialized Mo alloys are much fewer than Ni alloys. The motivation of this work is [...] Read more.
Molybdenum alloys as refractory alloys can provide strength levels at operating temperatures higher than that of Ni-base superalloys, yet their ductility is usually inferior to Ni-base alloys. Currently, commercialized Mo alloys are much fewer than Ni alloys. The motivation of this work is to explore opportunities of discovering useful alloys from the usually less investigated binary Mo-X systems (X = alloying element). With computational thermodynamics (CALPHAD), first-principles calculation, and mechanistic modeling combined, in this work a large number of Mo-X binary systems are investigated in terms of thermodynamic features and mechanical properties (yield strength, ductility, ductile-brittle transition temperature, creep resistance, and stress-strain relationship). The applicability of the alloy systems as solution-strengthened or precipitation-strengthened alloys is investigated. Starting from 92 Mo-X systems, a down-selection process is implemented, the results of which include three candidate systems for precipitation strengthening (Mo-B, Mo-C, Mo-Si) and one system (Mo-Re) for solid-solution strengthened alloy. In a composition optimization of Mo alloys to reach the properties of Ni-base superalloys, improving ductility is of top priority, for which Re plays a unique role. The presented workflow is also applicable to other bcc refractory alloy systems. Full article
(This article belongs to the Topic Multi-scale Modeling and Optimisation of Materials)
Show Figures

Graphical abstract

33 pages, 20199 KiB  
Review
Composition Optimization in Alloy Design for Nickel-Based Single Crystal Superalloy: A Review
by Yu Zhou, Xinbao Zhao, Yunpeng Fan, Quanzhao Yue, Wanshun Xia, Qinghai Pan, Yuan Cheng, Weiqi Li, Yuefeng Gu and Ze Zhang
Metals 2025, 15(7), 793; https://doi.org/10.3390/met15070793 - 13 Jul 2025
Viewed by 364
Abstract
This article presents a review of the composition optimization progress of nickel-based single crystal (SC) superalloy design in recent years in order to obtain better high-temperature performance for the development of the aviation industry. The influence of alloying elements on the creep resistance, [...] Read more.
This article presents a review of the composition optimization progress of nickel-based single crystal (SC) superalloy design in recent years in order to obtain better high-temperature performance for the development of the aviation industry. The influence of alloying elements on the creep resistance, microstructure characteristics, oxidation resistance, castability, density, and cost of superalloys is analyzed and discussed. In order to obtain better high-temperature performance, the content of refractory elements (Ta + Re + W + Mo) and Co was increased gradually. The addition of Ru was added in the fourth-generation nickel-based SC superalloy to stabilize the microstructures and suppress the precipitation of the topologically close-packed (TCP) phase. However, the content of the antioxidant element Cr significantly decreased, while the synergistic effect of Al, Cr, and Ta received more attention. Therefore, synergistic effects should also receive more attention to meet the practical needs of reducing the content of refractory elements to reduce costs and density in future single crystal alloy designs without compromising critical performance. Full article
(This article belongs to the Special Issue Advances in Lightweight Alloys, 2nd Edition)
Show Figures

Graphical abstract

22 pages, 1654 KiB  
Review
A Review of Mechanical Performance Studies on Composite Concrete Beams and Slabs
by Xinhao Wang, Qiuwei Yang, Xi Peng, Kangshuo Xia and Bin Xu
Materials 2025, 18(14), 3259; https://doi.org/10.3390/ma18143259 - 10 Jul 2025
Viewed by 343
Abstract
This paper reviews the applications and performance advantages of ultra-high-performance concrete (UHPC), engineered cementitious composite (ECC), and recycled aggregate concrete (RAC) in composite flexural members. UHPC is characterized by its ultra-high strength, high toughness, excellent durability, and microcrack self-healing capability, albeit with high [...] Read more.
This paper reviews the applications and performance advantages of ultra-high-performance concrete (UHPC), engineered cementitious composite (ECC), and recycled aggregate concrete (RAC) in composite flexural members. UHPC is characterized by its ultra-high strength, high toughness, excellent durability, and microcrack self-healing capability, albeit with high costs and complex production processes. ECC demonstrates superior tensile, flexural, and compressive strength and durability, yet it exhibits a lower elastic modulus and greater drying shrinkage strain. RAC, as an eco-friendly concrete, offers cost-effectiveness and environmental benefits, although it poses certain performance challenges. The focus of this review is on how to enhance the load-bearing capacity of composite beams or slabs by modifying the interface roughness, adjusting the thickness of the ECC or UHPC layer, and altering the cross-sectional form. The integration of diverse concrete materials improves the performance of beam and slab elements while managing costs. For instance, increasing the thickness of the UHPC or ECC layer typically enhances the load-bearing capacity of composite beams or plates by approximately 10% to 40%. Increasing the roughness of the interface can significantly improve the interfacial bond strength and further augment the ultimate load-bearing capacity of composite components. Moreover, the optimized design of material mix proportions and cross-sectional shapes can also contribute to enhancing the load-bearing capacity, crack resistance, and ductility of composite components. Nevertheless, challenges persist in engineering applications, such as the scarcity of long-term monitoring data on durability, fatigue performance, and creep effects. Additionally, existing design codes inadequately address the nonlinear behavior of multi-material composite structures, necessitating further refinement of design theories. Full article
(This article belongs to the Special Issue Advances in Concrete and Binders for Sustainable Engineering)
Show Figures

Figure 1

14 pages, 12026 KiB  
Proceeding Paper
Numerical Modeling of Post-Tensioned Concrete Flat Slabs with Unbonded Tendons in Fire
by Ya Wei, Daoan Fan and Francis T. K. Au
Eng. Proc. 2025, 98(1), 31; https://doi.org/10.3390/engproc2025098031 - 4 Jul 2025
Viewed by 169
Abstract
The structural fire of post-tensioned concrete flat slabs with unbonded tendons has not been well investigated so far. An investigation based on experimental results was conducted in this study using a numerical model. Three-dimensional nonlinear finite element models of the flat slabs were [...] Read more.
The structural fire of post-tensioned concrete flat slabs with unbonded tendons has not been well investigated so far. An investigation based on experimental results was conducted in this study using a numerical model. Three-dimensional nonlinear finite element models of the flat slabs were established by employing the software ABAQUS, where nonlinear material models of concrete and prestressing steel tendons at elevated temperatures were incorporated. Meanwhile, both the transient creep strain of concrete and thermal creep strain of prestressing steel were explicitly considered, based on which the numerical results obtained agreed well with those of the tests for vertical displacements and crack patterns of slabs. The variations in the tendon stresses were examined as well. The effects of tendon distribution, level of prestressing, and slab soffit area exposed to fire were investigated in relation to the structural responses of the slabs. Tendon distribution had a minor effect, while the level of prestressing and area exposed to fire had significant effects. Full article
Show Figures

Figure 1

16 pages, 2504 KiB  
Article
Thermal Field and High-Temperature Performance of Epoxy Resin System Steel Bridge Deck Pavement
by Rui Mao, Xingyu Gu, Jiwang Jiang, Zhu Zhang and Kaiwen Lei
Materials 2025, 18(13), 3109; https://doi.org/10.3390/ma18133109 - 1 Jul 2025
Viewed by 324
Abstract
Epoxy Resin System (ERS) steel bridge pavement, which comprises a resin asphalt (RA) base layer and a modified asphalt wearing course, offers cost efficiency and rapid installation. However, the combined effects of traffic loads and environmental conditions pose significant challenges, requiring greater high-temperature [...] Read more.
Epoxy Resin System (ERS) steel bridge pavement, which comprises a resin asphalt (RA) base layer and a modified asphalt wearing course, offers cost efficiency and rapid installation. However, the combined effects of traffic loads and environmental conditions pose significant challenges, requiring greater high-temperature stability than conventional pavements. The thermal sensitivity of resin materials and the use of conventional asphalt mixtures may weaken deformation resistance under elevated temperature conditions. This study investigates the thermal field distribution and high-temperature performance of ERS pavements under extreme conditions and explores temperature reduction strategies. A three-dimensional thermal field model developed using finite element analysis software analyzes interactions between the steel box girder and pavement layers. Based on simulation results, wheel tracking and dynamic creep tests confirm the superior performance of the RA05 mixture, with dynamic stability reaching 23,318 cycles/mm at 70 °C and a 2.1-fold improvement in rutting resistance in Stone Mastic Asphalt (SMA)-13 + RA05 composites. Model-driven optimization identifies that enhancing internal airflow within the steel box girder is possible without compromising its structural integrity. The cooling effect is particularly significant when the internal airflow aligns with ambient wind speeds (open-girder configuration). Surface peak temperatures can be reduced by up to 20 °C and high-temperature durations can be shortened by 3–7 h. Full article
Show Figures

Figure 1

22 pages, 9006 KiB  
Article
Stability Assessment of Rock Slopes in the Former Quarry of Wojciech Bednarski Park in Kraków—A Case Study
by Malwina Kolano, Marek Cała, Agnieszka Stopkowicz, Piotr Olchowy and Marek Wendorff
Appl. Sci. 2025, 15(13), 7197; https://doi.org/10.3390/app15137197 - 26 Jun 2025
Viewed by 234
Abstract
This study presents a stability assessment of rock slopes, considering the joint systems of the rock walls of Wojciech Bednarski Park. Special emphasis was placed on analysing the orientation and infill characteristics of the identified joint sets. Based on archival data and newly [...] Read more.
This study presents a stability assessment of rock slopes, considering the joint systems of the rock walls of Wojciech Bednarski Park. Special emphasis was placed on analysing the orientation and infill characteristics of the identified joint sets. Based on archival data and newly conducted geological surveys, stability calculations were performed for eight representative cross-sections corresponding to designated sectors. Numerical analyses were conducted using a finite element method (FEM) programme, based on the actual structure of the rock mass, specifically its discontinuities. This ensured a reliable reflection of the real conditions governing the slope instability mechanisms. Factors of safety were estimated with the Shear Strength Reduction Technique. The results indicate that slope failure is highly unlikely in Sectors 1 and 2 (FS > 1.50), unlikely but not fully meeting the safety criteria in Sector 3 (FS < 1.50), and highly probable in Sectors 4 and 6 (FS << 1.00), where unstable rock blocks and deeper structural slides are anticipated. In Sector 5, failure is considered probable (FS < 1.30) due to rockfalls, unstable blocks, and creeping weathered cover. For Sectors 7 and 8, assuming debris cover above the rock walls, failure is unlikely (FS > 1.50). In contrast, under the assumption of weathered material, it becomes probable in Sector 7 (FS < 1.30), and remains unlikely in Sector 8 (FS > 1.50). Due to the necessity of adopting several modelling assumptions, the results should be interpreted primarily in qualitative terms. The outcomes of this research provide a critical basis for assessing the stability of rock slopes within Wojciech Bednarski Park and support decision-making processes related to its planned revitalisation. Full article
Show Figures

Figure 1

22 pages, 5617 KiB  
Article
Numerical Modeling of Micro-Mechanical Residual Stresses in Carbon–Epoxy Composites During the Curing Process
by Raffaele Verde, Alberto D’Amore and Luigi Grassia
Polymers 2025, 17(12), 1674; https://doi.org/10.3390/polym17121674 - 17 Jun 2025
Viewed by 356
Abstract
This article analyzes the residual stresses generated during the curing process of thermoset composites. Specifically, a numerical procedure is developed and implemented in Ansys 18.0 to evaluate, at the micromechanical level, the residual stresses in a carbon epoxy composite that undergoes the process [...] Read more.
This article analyzes the residual stresses generated during the curing process of thermoset composites. Specifically, a numerical procedure is developed and implemented in Ansys 18.0 to evaluate, at the micromechanical level, the residual stresses in a carbon epoxy composite that undergoes the process of curing. The viscoelastic behavior of the epoxy material is modeled using a formulation recently published by the same authors. It accounts for the concurrent effect of curing and structural relaxation on epoxy’s relaxation times, assuming thermo-rheological and thermo-chemical simplicities. The model validated for the neat epoxy matrix is now tested against the composite application. Various representative volume element (RVE) arrangements and fiber fractions are examined. The proposed procedure can predict the evolution of mechanical properties (apparent stiffness and creep compliance) and the residual stresses that develop in each composite constituent during the cure. It demonstrates that the residual stresses in the matrix are a consistent fraction of an epoxy’s nominal strength and significantly influence the transverse mechanical properties of the composite. Full article
(This article belongs to the Special Issue Epoxy Polymers and Composites)
Show Figures

Figure 1

15 pages, 2651 KiB  
Article
Creep Behavior and Quantitative Prediction of Marine Soft Clay Based on a Nonlinear Elasto-Plastic–Viscous Element Assembly Model
by Yajun Liu, Ning Fang, Yang Zheng, Ke Wu, Rong Chen, Haijun Lu and Vu Quoc Vuong
J. Mar. Sci. Eng. 2025, 13(6), 1142; https://doi.org/10.3390/jmse13061142 - 8 Jun 2025
Viewed by 431
Abstract
Marine soft clay is characterized by a high water content and low strength, exhibiting pronounced creep deformation under long-term loading that threatens the serviceability and durability of coastal infrastructure. Accordingly, this study develops a creep constitutive model that combines elastic, plastic, and viscous [...] Read more.
Marine soft clay is characterized by a high water content and low strength, exhibiting pronounced creep deformation under long-term loading that threatens the serviceability and durability of coastal infrastructure. Accordingly, this study develops a creep constitutive model that combines elastic, plastic, and viscous effects and quantitatively evaluates time-dependent deformation under varying water contents and stress levels to provide reliable prediction tools for tunnel, excavation, and pile-foundation design. Cyclic creep tests were carried out on reconstituted marine soft clay with water contents of 40–60% and stress ratios of 0.4–1.2 using a pneumatic, fully digital, closed-loop triaxial apparatus. A “nonlinear spring–Bingham slider–dual viscous dashpot in parallel with a standard Kelvin dashpot” element assembly was proposed, and the complete stress–strain relationship was derived. Experimental data were fitted with Python to generate a creep-strain polynomial and verify the model accuracy. The predicted–measured creep difference remained within 10%, and the surface-fit coefficient of determination reached R2 = 0.97, enabling rapid estimation of deformation for the given stress and time conditions. The findings offer an effective method for the precise long-term settlement prediction of marine soft clay and significantly enhance the reliability of the deformation assessments in coastal civil-engineering projects. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

20 pages, 16550 KiB  
Article
Non-Negligible Influence of Gravel Content in Slip Zone Soil: From Creep Characteristics to Landslide Response Patterns
by Bo Xu, Xinhai Zhao, Jin Yuan, Shun Dong, Xuhuang Du, Longwei Yang, Bo Peng and Qinwen Tan
Water 2025, 17(12), 1726; https://doi.org/10.3390/w17121726 - 7 Jun 2025
Viewed by 443
Abstract
The creep mechanical behavior of the slip zone soil is distinctive and assumes a vital role in the identification and prediction of landslide evolution, but the rock content and structure dictate its creep properties. This study examines the Outang landslide in the reservoir [...] Read more.
The creep mechanical behavior of the slip zone soil is distinctive and assumes a vital role in the identification and prediction of landslide evolution, but the rock content and structure dictate its creep properties. This study examines the Outang landslide in the reservoir region of middle Yangtze River, where the slip zone soil shows considerable variability in particle size distribution, with gravel content varying between 35% and 55%. To investigate the creep characteristics of the slip zone soil, large-scale direct shear creep tests were conducted, focusing on the variations in peak strength and long-term strength under different gravel content conditions. PFC3D numerical simulations were subsequently performed to elucidate the internal mechanisms connecting gravel content, microstructure, and macroscopic mechanical strength. A three-dimensional continuous-discrete coupled model was built to investigate the influence of gravel content on landslide deformation features, accounting for fluctuations in gravel content. The numerical findings indicate that gravel content markedly affects the displacement and deformation characteristics of the landslide. As the gravel concentration rises, landslide displacement progressively diminishes, with elevated gravel content enhancing the structural integrity of the landslide mass. This study underscores gravel content as a pivotal element in landslide deformation and reinforces its significance in assessing landslide stability and forecasting. Full article
Show Figures

Figure 1

Back to TopTop