Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = cracked beam theory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1914 KiB  
Article
Fracture Behavior Assessment of Rubberized Concrete Using Non-Standard Specimens: Experimental Investigation and Model Optimization
by Shuang Gao, Zhenyu Wang, Jiayi Sun, Juan Wang, Yu Hu and Hongyin Xu
Technologies 2025, 13(7), 307; https://doi.org/10.3390/technologies13070307 - 17 Jul 2025
Viewed by 253
Abstract
With the advancement of modern engineering structures, traditional cement concrete is increasingly unable to meet the mechanical performance requirements under complex conditions. To overcome the performance limitations of materials, modified concrete has become a focal point of research. By incorporating modifying materials such [...] Read more.
With the advancement of modern engineering structures, traditional cement concrete is increasingly unable to meet the mechanical performance requirements under complex conditions. To overcome the performance limitations of materials, modified concrete has become a focal point of research. By incorporating modifying materials such as fibers, polymers, or mineral admixtures, the properties of concrete can be significantly enhanced. Among these, rubberized concrete has attracted considerable attention due to its unique performance advantages. This study conducted fracture tests on rubberized concrete using non-standard concrete three-point bending beam specimens of varying dimensions to evaluate its fracture performance. Employing conventional concrete fracture theoretical models, the fracture toughness parameters of rubberized concrete were calculated, and a comparative analysis was performed regarding the applicability of various theoretical calculation formulas to rubberized concrete. The results indicated that the fracture performance of rubberized concrete varied significantly with changes in specimen size. The initial toughness exhibited a consistent size-dependent variation across different theoretical models. The fracture toughness corresponding to crack height ratios between 0.05 and 0.25 showed contradictory trends; however, for crack height ratios between 0.3 and 0.5, the fracture toughness became consistent. This study integrated boundary effect theory and employed Guinea’s theory to propose an optimization coefficient γ for the double-K fracture toughness formula, yielding favorable optimization results. Full article
Show Figures

Figure 1

22 pages, 1654 KiB  
Review
A Review of Mechanical Performance Studies on Composite Concrete Beams and Slabs
by Xinhao Wang, Qiuwei Yang, Xi Peng, Kangshuo Xia and Bin Xu
Materials 2025, 18(14), 3259; https://doi.org/10.3390/ma18143259 - 10 Jul 2025
Viewed by 365
Abstract
This paper reviews the applications and performance advantages of ultra-high-performance concrete (UHPC), engineered cementitious composite (ECC), and recycled aggregate concrete (RAC) in composite flexural members. UHPC is characterized by its ultra-high strength, high toughness, excellent durability, and microcrack self-healing capability, albeit with high [...] Read more.
This paper reviews the applications and performance advantages of ultra-high-performance concrete (UHPC), engineered cementitious composite (ECC), and recycled aggregate concrete (RAC) in composite flexural members. UHPC is characterized by its ultra-high strength, high toughness, excellent durability, and microcrack self-healing capability, albeit with high costs and complex production processes. ECC demonstrates superior tensile, flexural, and compressive strength and durability, yet it exhibits a lower elastic modulus and greater drying shrinkage strain. RAC, as an eco-friendly concrete, offers cost-effectiveness and environmental benefits, although it poses certain performance challenges. The focus of this review is on how to enhance the load-bearing capacity of composite beams or slabs by modifying the interface roughness, adjusting the thickness of the ECC or UHPC layer, and altering the cross-sectional form. The integration of diverse concrete materials improves the performance of beam and slab elements while managing costs. For instance, increasing the thickness of the UHPC or ECC layer typically enhances the load-bearing capacity of composite beams or plates by approximately 10% to 40%. Increasing the roughness of the interface can significantly improve the interfacial bond strength and further augment the ultimate load-bearing capacity of composite components. Moreover, the optimized design of material mix proportions and cross-sectional shapes can also contribute to enhancing the load-bearing capacity, crack resistance, and ductility of composite components. Nevertheless, challenges persist in engineering applications, such as the scarcity of long-term monitoring data on durability, fatigue performance, and creep effects. Additionally, existing design codes inadequately address the nonlinear behavior of multi-material composite structures, necessitating further refinement of design theories. Full article
(This article belongs to the Special Issue Advances in Concrete and Binders for Sustainable Engineering)
Show Figures

Figure 1

23 pages, 6434 KiB  
Article
A Study of the Flexural Performance of Fiber-Reinforced Anchored Shotcrete Single-Layer Lining in a Hard Rock Tunnel Based on the Thickness Ratio
by Mengjun Wu, Zuliang Zhong, Miao Xu, Xuebing Hu, Kaixin Zhu and Peng Cao
Appl. Sci. 2025, 15(13), 7473; https://doi.org/10.3390/app15137473 - 3 Jul 2025
Viewed by 331
Abstract
Aiming at the unclear bearing mechanism of the single-layer lining structure of high-performance fiber shotcrete under layered construction in the hard rock section of a highway tunnel, this paper studies the effect of different thickness ratios under layered construction on the flexural performance [...] Read more.
Aiming at the unclear bearing mechanism of the single-layer lining structure of high-performance fiber shotcrete under layered construction in the hard rock section of a highway tunnel, this paper studies the effect of different thickness ratios under layered construction on the flexural performance of the single-layer lining structure. Six types of thickness ratio specimens were subjected to a four-point bending test. The tests employed 3D digital image correlation technology to record and analyze the deformation and failure process of the specimens, and the calculation method of single-layer lining flexural stiffness was modified. The results indicate that the flexural ultimate load of the specimens is achieved at a thickness ratio of 2, which is 20.9% higher compared to a thickness ratio of 0. Layered construction affects the failure mode of the specimens. All specimens exhibit mixed-mode failure. However, with the increase in the thickness ratio, the percentage of flexural failure cracks gradually increases. Under layered construction, the reduction in the effective bending stiffness of fiber shotcrete beams becomes more pronounced as the thickness ratio increases. Based on these findings, the interface influence factor is proposed, and the flexural stiffness is corrected using composite beam theory. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

19 pages, 2327 KiB  
Article
Analytical Investigation of Dynamic Response in Cracked Structure Subjected to Moving Load
by Shuirong Gui, Hongwei Zeng, Zhisheng Gui, Mingjun Tan, Zhongzhao Guo, Kai Zhong, Yongming Xiong and Wangwang Fang
Buildings 2025, 15(12), 2119; https://doi.org/10.3390/buildings15122119 - 18 Jun 2025
Viewed by 305
Abstract
Under cyclic moving load action, tensile-dominant structures are prone to crack initiation due to cumulative damage effects. The presence of cracks leads to structural stiffness degradation and nonlinear redistribution of dynamic characteristics, thereby compromising str18uctural integrity and service performance. The current research on [...] Read more.
Under cyclic moving load action, tensile-dominant structures are prone to crack initiation due to cumulative damage effects. The presence of cracks leads to structural stiffness degradation and nonlinear redistribution of dynamic characteristics, thereby compromising str18uctural integrity and service performance. The current research on the dynamic behavior of cracked structures predominantly focuses on transient analysis through high-fidelity finite element models. However, the existing methodologies encounter two critical limitations: computational inefficiency and a trade-off between model fidelity and practicality. Thus, this study presents an innovative analytical framework to investigate the dynamic response of cracked simply supported beams subjected to moving loads. The proposed methodology conceptualizes the cracked beam as a system composed of multiple interconnected sub-beams, each governed by the Euler–Bernoulli beam theory. At crack locations, massless rotational springs are employed to accurately capture the local flexibility induced by these defects. The transfer matrix method is utilized to derive explicit eigenfunctions for the cracked beam system, thereby facilitating the formulation of coupled vehicle–bridge vibration equations through modal superposition. Subsequently, dynamic response analysis is conducted using the Runge–Kutta numerical integration scheme. Extensive numerical simulations reveal the influence of critical parameters—particularly crack depth and location—on the coupled dynamic behavior of the structure subjected to moving loads. The results indicate that at a constant speed, neither crack depth nor position alters the shape of the beam’s vibration curve. The maximum deflection of beams with a 30% crack in the middle span increases by 14.96% compared to those without cracks. Furthermore, crack migration toward the mid-span results in increased mid-span displacement without changing vibration curve topology. For a constant crack depth ratio (γi = 0.3), the progressive migration of the crack position from 0.05 L to 0.5 L leads to a 26.4% increase in the mid-span displacement (from 5.3 mm to 6.7 mm). These findings highlight the efficacy of the proposed method in capturing the complex interactions between moving loads and cracked concrete structures, offering valuable insights for structural health monitoring and assessment. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

29 pages, 7892 KiB  
Article
Analytical Model of Crack Opening in Reinforced Concrete Structures Based on DCE
by Vladimir I. Kolchunov, Natalia V. Fedorova, Sergei Y. Savin and Violetta S. Moskovtseva
Buildings 2025, 15(12), 2096; https://doi.org/10.3390/buildings15122096 - 17 Jun 2025
Viewed by 301
Abstract
This study focused on the advanced analysis of the crack resistance of reinforced concrete structures and provides proposals for improvement of the theory of calculation of reinforced concrete structures for serviceability and ultimate limit state. Despite the fact that the crack opening is [...] Read more.
This study focused on the advanced analysis of the crack resistance of reinforced concrete structures and provides proposals for improvement of the theory of calculation of reinforced concrete structures for serviceability and ultimate limit state. Despite the fact that the crack opening is a key parameter of reinforced concrete structures that frequently determines the reinforcement area, the design models and theory of calculation of this parameter are still not sufficiently perfect. The recent studies performed worldwide with the use of more advanced instrumentation have shown that the accuracy of theoretical prediction of crack opening in structures experiencing a complex stress–strain state, and especially structures made of high-strength concrete, fiber-reinforced concrete, lightweight concrete, and etc., remains unsatisfactory. This study analyzed and summarizes experimental studies of crack resistance of reinforced concrete structures and reveals new physical regularities in the deformation of concrete and steel reinforcement in zones adjacent to the crack. It introduces hypotheses that account for these regularities and proposes a general block model for calculating the width of irregular and single cracks in reinforced concrete structures under different stress states. In this model, crack opening is modeled by the double-cantilever element (DCE), which allows incorporation of the corresponding experimentally revealed effects and at the same time combines deformation parameters of both the theory of reinforced concrete and fracture mechanics. The DCE is two conventionally separated rigid cantilevers that include the crack surfaces, and are embedded on one side in the concrete at the neutral axis. On the other side, they are connected with reinforced steel bars crossing the crack. Using this model, a method for calculating the crack opening width in reinforced concrete structures with different types of cracks is proposed. The paper demonstrates the results of experimental investigations of crack resistance of simply supported and cantilever beams made of ordinary, light, and high-strength concrete. These results confirm the effects considered in the calculation model and the hypotheses accepted in the theory. The study also provides a physical explanation of the phenomena under consideration and shows acceptable agreement between theoretical and experimental values of crack opening calculated according to the proposed theory. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 1145 KiB  
Article
Time Domain Vibration Analysis of Cracked Ice Shelf
by Alyah Alshammari and Michael H. Meylan
Glacies 2025, 2(2), 5; https://doi.org/10.3390/glacies2020005 - 2 Apr 2025
Viewed by 867
Abstract
Understanding the effect of cracks on ice shelf vibrations is crucial for assessing their structural integrity, predicting possible breakup events, and understanding their interactions with the surrounding environment. In this work, a novel approach to modelling the simulation of cracked ice shelf vibrations [...] Read more.
Understanding the effect of cracks on ice shelf vibrations is crucial for assessing their structural integrity, predicting possible breakup events, and understanding their interactions with the surrounding environment. In this work, a novel approach to modelling the simulation of cracked ice shelf vibrations using thin beam approximation along with cracked beam boundary conditions is proposed. A simplified model was used in which the ice shelf was modelled as a thin elastic plate floating on water of a constant depth. The crack was modelled as a connected spring condition, a model which is standard in other fields but which has not been applied to ice shelves. The boundary conditions assumed that there was no flow of energy into the open water, and two possible boundary conditions were considered: no pressure and no flux. The focus of this work is to show how we can simulate the motion of an ice shelf with a crack, and this is the first step towards modelling the effect of crack and crack propagation on ice shelf breakup. Full article
Show Figures

Figure 1

30 pages, 8009 KiB  
Article
Improving Shear Performance of Precast Concrete Segmental Beams Through Continuous Longitudinal Reinforcements Across Joints
by Yu Zou and Dong Xu
Materials 2025, 18(7), 1410; https://doi.org/10.3390/ma18071410 - 22 Mar 2025
Cited by 1 | Viewed by 366
Abstract
Despite the widespread use of precast concrete segmental bridges (PCSBs), concerns persist regarding their structural reliability, particularly due to the interruption of longitudinal reinforcement at joints. To address this, a novel approach based on the Grid Shear Reinforcement Theory is proposed, featuring precast [...] Read more.
Despite the widespread use of precast concrete segmental bridges (PCSBs), concerns persist regarding their structural reliability, particularly due to the interruption of longitudinal reinforcement at joints. To address this, a novel approach based on the Grid Shear Reinforcement Theory is proposed, featuring precast segmental beams with continuous longitudinal reinforcements across joints. Experimental tests were conducted on one monolithic beam and two segmental beams under combined bending and shear with joint types as the primary variable. Key performance metrics included crack propagation, reinforcement strain, failure modes, stiffness, and load-bearing capacity. Results show that continuous longitudinal reinforcement effectively resists axial tension from shear forces, contributing to shear resistance comparable to stirrups. It also restrains diagonal crack propagation and limits main crack widths, significantly improving shear stiffness. Reinforced joints adhered to the plane section assumption and exhibited monolithic beam behavior throughout loading. These findings highlight the critical role of continuous longitudinal reinforcement in segmental beam joints. The study further compares shear reinforcement design approaches in European Codes, ACI, AASHTO, GB, JTC, and the Grid Shear Reinforcement Theory. Practical construction methods for implementing continuous longitudinal reinforcements are also proposed, offering valuable insights for engineering applications. Full article
Show Figures

Figure 1

13 pages, 525 KiB  
Article
The Influence of Mass on Dynamic Response of Cracked Timoshenko Beam with Restrained End Conditions: The Truncated Theory
by Maria Anna De Rosa, Carla Ceraldi, Hector D. Martin, Antonella Onorato, Marcelo Tulio Piovan and Maria Lippiello
Appl. Mech. 2025, 6(1), 11; https://doi.org/10.3390/applmech6010011 - 7 Feb 2025
Viewed by 669
Abstract
In this paper, the dynamic response of the Timoshenko cracked beam subjected to a mass is investigated. In turn, it is assumed that the beam has its ends restrained with both transverse and rotational elastic springs. Based on an alternative beam theory, truncated [...] Read more.
In this paper, the dynamic response of the Timoshenko cracked beam subjected to a mass is investigated. In turn, it is assumed that the beam has its ends restrained with both transverse and rotational elastic springs. Based on an alternative beam theory, truncated Timoshenko theory (TTT), the governing equations of motion of the cracked beam are derived and the influence of a mass on the behavior of free vibrations is investigated. The novelty of the proposed approach lies in the fact that the variational method used in the truncated theory simplifies the derivation of the equation of motion via the classical theory, and the perfect analogy between the two theories is shown. The objective of the present formulation lies in finding the equations of the truncated Timoshenko model with their corresponding boundary conditions and establishing their mathematical similarity with the geometric approach. It is shown that the differential equations with their corresponding boundary conditions, used to solve the dynamic problem of Timoshenko truncated beams through variational formulations, have the same form as those obtained through the direct method. Finally, some numerical examples are carried out to evaluate the influence of a mass and its position on the vibration performances of the cracked Timoshenko model. Additionally, the effects of the crack positions, the shear deformation and rotational inertia, and the yielding constraints on the natural frequencies are also discussed in some numerical examples. Full article
Show Figures

Figure 1

17 pages, 11316 KiB  
Article
Experimental Study on the Flexural Performance of the Corrosion-Affected Simply Supported Prestressed Concrete Box Girder in a High-Speed Railway
by Hai Li, Yuanguang Qiu, Zhicheng Pan, Yiming Yang, Huang Tang and Fanjun Ma
Buildings 2024, 14(10), 3322; https://doi.org/10.3390/buildings14103322 - 21 Oct 2024
Cited by 1 | Viewed by 1065
Abstract
Prestressed concrete box girders are commonly employed in the development of high-speed railway bridge constructions. The prestressed strands in the girder may corrode due to long-term chloride erosion, leading to the degradation of its flexural performance. To examine the flexural performance of corrosion-affected [...] Read more.
Prestressed concrete box girders are commonly employed in the development of high-speed railway bridge constructions. The prestressed strands in the girder may corrode due to long-term chloride erosion, leading to the degradation of its flexural performance. To examine the flexural performance of corrosion-affected simply supported prestressed concrete box girders, eight T-shaped mock-up beams related to the girders used in the construction of high-speed railway bridges were manufactured utilizing similarity theory. Seven of the beams underwent electrochemical accelerated corrosion, and then each beam was subjected to failure under the four-point load test method. Measurements recorded and analyzed in detail during the loading process included the following: crack propagation, crack width at various loads, crack load, ultimate load, deflection, and concrete strain of the mid-span section. The results demonstrate that a corrosion rate of just 8.31% has a considerable impact on the structural integrity of the beams, as evidenced by a pronounced reduction in flexural cracks and a tendency towards reduced reinforcement failure. Furthermore, the corrosive process has a detrimental effect on mid-span deflection, ductility, and ultimate flexural bearing capacity, which could have significant implications for bridge safety. This study provides valuable insights for the assessment of flexural performance and the development of appropriate maintenance strategies for corroded simply supported box girders in high-speed railways. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

27 pages, 21355 KiB  
Article
Dynamic Response Characteristics and Pile Damage Identification of High-Piled Wharves under Dynamic Loading
by Xubing Xu, Xiaole Di, Yonglai Zheng, Anni Liu, Chenyu Hou and Xin Lan
Appl. Sci. 2024, 14(20), 9250; https://doi.org/10.3390/app14209250 - 11 Oct 2024
Cited by 3 | Viewed by 1708
Abstract
In port dock engineering, high-piled wharves represent one of the primary structural forms. Damage to the foundation piles is a common issue, influenced by external loads such as impact forces during vessel berthing, slope deformations, and operational loads. This study focuses on the [...] Read more.
In port dock engineering, high-piled wharves represent one of the primary structural forms. Damage to the foundation piles is a common issue, influenced by external loads such as impact forces during vessel berthing, slope deformations, and operational loads. This study focuses on the Jungong Road Wharf in Shanghai, utilizing FLAC 3D version 6.0 to conduct dynamic calculations under ship impact loading. The dynamic responses of the structure were analyzed, and various internal forces were extracted during the impact event. By combining concrete cracking failure criteria and fatigue damage theories, the effects of ship collisions on the cracking damage of high-piled wharf structures under different scenarios were assessed. Additionally, the applicability of modal flexibility in high-piled wharf scenarios was evaluated through finite element simulations. The results indicate that the dynamic amplification factor caused by dynamic loading is approximately 1.5, underscoring the necessity of considering this effect in the design and impact analysis of high-piled wharves. The impact loading significantly influences the bending moments of the piles, with inclined piles showing the greatest sensitivity. When a designed ship model collides with the high-piled wharf structure at a speed of 0.2 m/s, the tensile stress in the inclined piles reaches 87% of the ultimate tensile strength of the reinforcement. The impact loading has a relatively minor effect on the axial forces of the piles, a limited influence on the bending moments of the beams, but a considerable impact on the axial forces of the beams. Berthing by oversized vessels and unexpected incidents can lead to more severe damage to high-piled wharf structures. In the finite element simulations, modal flexibility effectively identified the locations of damage, with greater changes in modal flexibility correlating with increased damage severity. Full article
Show Figures

Figure 1

18 pages, 2175 KiB  
Article
Assessment of Vertical Dynamic Responses in a Cracked Bridge under a Pedestrian-Induced Load
by Bin Zhen, Sifan Lu, Lijun Ouyang and Weixin Yuan
Buildings 2024, 14(9), 2997; https://doi.org/10.3390/buildings14092997 - 21 Sep 2024
Cited by 1 | Viewed by 734
Abstract
Cracks, common indicators of deterioration in bridge frameworks, frequently stem from wear and rust, leading to increased local flexibility and changes in the structure’s dynamic behavior. This study examines how these cracks affect the dynamics of footbridges when subjected to loads generated by [...] Read more.
Cracks, common indicators of deterioration in bridge frameworks, frequently stem from wear and rust, leading to increased local flexibility and changes in the structure’s dynamic behavior. This study examines how these cracks affect the dynamics of footbridges when subjected to loads generated by walking individuals. The pedestrian is modeled as a linear oscillator, while the cracked bridge is represented by a simply supported beam following Euler–Bernoulli’s theory. The use of the Dirac delta function allows for the precise representation of the localized stiffness reduction at the crack location, facilitating the calculation of analytical expressions for the beam’s vibration modes. The research suggests that the presence of cracks minimally affects the bridge’s mid-span displacement. However, with a limited depth of cracks, the appearance of cracks notably amplifies the mid-span acceleration amplitude of the bridge, leading to a pronounced concentration of energy at the third natural frequency of the bridge in the acceleration spectrum. As the depth and number of cracks increase, the acceleration amplitude continues to decrease, but the corresponding spectrum remains almost unchanged. The study’s outcomes enhance the comprehension of how cracks affect the performance of bridge structures when subjected to loads from pedestrians, offering insights for the monitoring and evaluation of the condition of cracked footbridges. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 8150 KiB  
Article
Flexural Fatigue Behavior of Prestressed High-Performance Concrete Bridges with Double Mineral Fine Powder Admixture: An Experimental Study
by Zhiguo Zhang and Haoran Li
Appl. Sci. 2024, 14(17), 7511; https://doi.org/10.3390/app14177511 - 25 Aug 2024
Cited by 2 | Viewed by 1067
Abstract
High-performance concrete (HPC) is commonly used in the main structures of bridges. HPC is widely applied in the main structures of bridges, yet some skepticism remains with integrating fly ash and mineral powder as admixtures into prestressed HPC bridges. To address this, this [...] Read more.
High-performance concrete (HPC) is commonly used in the main structures of bridges. HPC is widely applied in the main structures of bridges, yet some skepticism remains with integrating fly ash and mineral powder as admixtures into prestressed HPC bridges. To address this, this study conducted scaled-model experiments to analyze the flexural fatigue behavior of prestressed HPC bridges with double-mineral fine powder admixtures (PB-DA). This study derives the similarity criteria for a simply supported beam bridge under a concentrated load based on similarity theory. Subsequently, in following these criteria, a 30 m long actual bridge is scaled down to a 6 m PB-DA at a 1:5 scale. For this scaled PB-DA, the concentrated load is reduced to 1/25 of the actual bridge, while the strain remains the same as in the actual bridge. The double-mineral fine powder admixture (D-A) was produced and used to fabricate PB-DA by mixing fly ash and mineral powder. Five PB-DAs were constructed, with C50 and C80 concrete strength grades, and admixture ranges from 10% to 32%. Sinusoidal half-wave constant stress amplitude loading at 5 Hz frequency was applied, with 2 million fatigue loading cycles. After fatigue loading, a continuously increasing static load was applied until the PB-DA failed. The experimental results show that the upper part of the PB-DA is compressed, and the lower part is in tension. The PB-DA strain distribution from top to bottom generally conforms to the plane section assumption. During 2 million fatigue loading cycles, 200,000 cycles mark the beam strain and stiffness evolution boundary. Below 200,000 cycles, the PB-DA strain rapidly increases, and flexural stiffness quickly decreases. Beyond 200,000 cycles, the rate of increase in strain and the rate of decrease in flexural stiffness significantly slow down. After fatigue loading, the PB-DA displacement increases exponentially under a continuously increasing static load. The crack distribution is uniform across all PB-DA, with the cracks being sparsest at a 30% admixture. A comprehensive analysis shows that all PB-DAs demonstrate good flexural fatigue behavior. Notably, when D-A content reaches 30%, strain increases, but reductions in flexural stiffness and damage in PB-DA significantly decrease. This paper’s conclusions provide a reference for applying D-A at PB-DA. Full article
Show Figures

Figure 1

16 pages, 6257 KiB  
Article
The Stiffness Change in Pre-Stressed Concrete T-Beams during Their Life-Cycle Based on a Full-Scale Destructive Test
by Bin Hu, Yingchun Cai, Heng Liu, Wenqi Wu and Baixue He
Appl. Sci. 2024, 14(12), 5200; https://doi.org/10.3390/app14125200 - 14 Jun 2024
Cited by 1 | Viewed by 1166
Abstract
In order to study the stiffness degradation of pre-stressed concrete T-beams throughout their entire service life, full-scale destructive tests were conducted on newly constructed T-beams. The test process characterized the relationship between load and deflection at different load levels. Meanwhile, the equivalent stiffness [...] Read more.
In order to study the stiffness degradation of pre-stressed concrete T-beams throughout their entire service life, full-scale destructive tests were conducted on newly constructed T-beams. The test process characterized the relationship between load and deflection at different load levels. Meanwhile, the equivalent stiffness and short-term stiffness of the T-beams at different load levels were calculated based on formulas from the code, and a segmental stiffness back-calculation method for pre-stressed concrete T-beam bridges was proposed based on system identification theory. The results show that, during the destructive test process, the T-beams experienced complete, partial linear, and non-linear stages. By using the equivalent stiffness and short-term stiffness to predict the stiffness changes during the overall failure process of the T-beams, it was found that, when cracks appeared, the stiffness of the T-beams decreased by 31% compared to the initial value, and the stiffness continued to decrease as the cracks extended further. The segmental stiffness system identification back-calculation method more accurately described the destructive test process of each section of the T-beams. This method can help to evaluate the extent of damage in each section of the beams during the overall destructive test process and further assess the overall structural integrity of the beams. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

19 pages, 17461 KiB  
Article
Shear Performance and Damage Characterization of Prefabricated Basalt Fiber Reactive Powder Concrete Capping Beam Formwork Structure
by Yafeng Gong, Shuzheng Wu, Changyuan Ning, Xinpeng Hu, Zhongqiang Yi and Hongchi Du
Buildings 2024, 14(6), 1701; https://doi.org/10.3390/buildings14061701 - 7 Jun 2024
Cited by 1 | Viewed by 982
Abstract
Basalt Fiber Reactive Powder Concrete (BFRPC) semi-prefabricated composite capping beam structures can effectively improve the shortcomings of ordinary concrete capping beams' construction difficulties and insufficient bearing capacity. In this study, with the objective of analyzing the shear damage and damage characteristics of a [...] Read more.
Basalt Fiber Reactive Powder Concrete (BFRPC) semi-prefabricated composite capping beam structures can effectively improve the shortcomings of ordinary concrete capping beams' construction difficulties and insufficient bearing capacity. In this study, with the objective of analyzing the shear damage and damage characteristics of a prefabricated BFRPC capping beam formwork, structural damage tests under different levels of loading were carried out to obtain the mechanical parameters of key nodes. Acoustic emission (AE) and Digital Image Correlation (DIC) techniques were used to acoustically and visually characterize the formwork damage. The research results showed that the damage stage of the capping beam formwork was divided, and an early damage warning method was proposed based on the acoustic parameters. Using the DIC technique to identify the crack width evolution pattern during the shear process, it was found that the cracks expanded steadily as the load increased. Combining the experimental and simulation results as well as the Subdivision Superposition Theory, a half-open stirrup strength discount factor β was introduced and suggested to take a value of 0.79. The formula for calculating the shear capacity of BFRPC capping beam formwork is proposed to provide a theoretical basis for its application in prefabricated assembled structures. Full article
(This article belongs to the Special Issue Recent Research Progress of UHPC in Structural Engineering)
Show Figures

Figure 1

20 pages, 1669 KiB  
Article
Three-Dimensional Probabilistic Semi-Explicit Cracking Model for Concrete Structures
by Mariane Rodrigues Rita, Pierre Rossi, Eduardo de Moraes Rego Fairbairn, Fernando Luiz Bastos Ribeiro, Jean-Louis Tailhan, Henrique Conde Carvalho de Andrade and Magno Teixeira Mota
Appl. Sci. 2024, 14(6), 2298; https://doi.org/10.3390/app14062298 - 8 Mar 2024
Cited by 4 | Viewed by 1395
Abstract
This paper introduces a three-dimensional (3D) semi-explicit probabilistic numerical model for simulating crack propagation within the framework of the finite element method. The model specifically addresses macrocrack propagation using linear volume elements. The criteria governing the macrocrack propagation is based on the softening [...] Read more.
This paper introduces a three-dimensional (3D) semi-explicit probabilistic numerical model for simulating crack propagation within the framework of the finite element method. The model specifically addresses macrocrack propagation using linear volume elements. The criteria governing the macrocrack propagation is based on the softening behavior observed in concrete under uniaxial tension. This softening behavior corresponds to a dissipated cracking energy that is equal to the mode I critical fracture energy (GIC) used in the Linear Elastic Fracture Mechanics theory (LEFM). The probabilistic nature of this model revolves around the random distribution of two mechanical properties: tensile strength (ft) and fracture energy, which varies based on the volume of finite elements. The scattering of the fracture energy increases as the volume of finite elements decreases in order to consider the strong heterogeneity of the material. This work primarily aims to estimate the relationship between the standard deviation of GIC and the volume of finite elements through the development of the numerical model. For this purpose, an inverse analysis is conducted based on a fracture mechanical test simulation. This test involves macrocrack propagation in a large Double Cantilever Beam (DCB) specimen with a crack length exceeding two meters. The proposed inverse analysis procedure yields highly significant results, indicating that the numerical model effectively evaluates both crack length and crack opening during propagation. Full article
Show Figures

Figure 1

Back to TopTop