Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,995)

Search Parameters:
Keywords = crack characterization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3929 KB  
Article
Investigation of Fracture Process of Q245R During Single Edge Notched Tension Test with Acoustic Emission
by Chao Xu, Yanqi Liu, Le Xing, Siyu Meng and Yuan Meng
Appl. Sci. 2026, 16(3), 1359; https://doi.org/10.3390/app16031359 - 29 Jan 2026
Abstract
Acoustic emission (AE) technology, a kind of non-destructive testing method, was used in this study to monitor the fracture process of Q245R steel in the single edge notched tension (SENT) test. The obtained AE signals were first processed by the sensor gauge method [...] Read more.
Acoustic emission (AE) technology, a kind of non-destructive testing method, was used in this study to monitor the fracture process of Q245R steel in the single edge notched tension (SENT) test. The obtained AE signals were first processed by the sensor gauge method to distinguish the noise and signals related to a fracture. Based on the filtered data, it was found that the load-displacement curve and load–Crack Mouth Opening Distance (CMOD) curve of the fracture development were correlated with the characteristics of signals. In addition, an AE crack development index (CDI) was proposed to characterize different stages in the crack propagation process, and the results were verified by unloading compliance experiments. The results showed that the condition of structure can be well characterized by trends of cumulative counts and peak amplitudes of AE signals. In addition, stable cracks were found to occur when the load reached 92% of the ultimate load which produced AE signals with high counts, duration, and more high-amplitude signals. The proposed AE CDI of 40%max(CDI), 50%max(CDI), and 60%max(CDI) reflects the elastic, plastic, and stable crack propagation stages under monotonic tension, respectively, and remains stable even when the tensile loading method changes. Full article
(This article belongs to the Special Issue Advances in Structural Integrity and Failure Analysis)
Show Figures

Figure 1

19 pages, 5377 KB  
Article
Investigation of Toughening Mechanism of Virgin Asphalt by Blending with Waste Battery Powder
by Chenze Fang, Xu Guo, Yuanzhao Chen, Hui Li, Naisheng Guo, Zhenxia Li, Zongyuan Wu, Jingyu Yang and Tengteng Guo
Gels 2026, 12(2), 117; https://doi.org/10.3390/gels12020117 - 28 Jan 2026
Abstract
Waste battery powder (WBP) can effectively enhance the service performance of virgin asphalt with sol–gel structures; however, its toughening mechanism for sol–gel virgin asphalt still lacks rigorous mechanical characterization. Therefore, the objective of this study is to investigate the toughening of WBP-modified asphalt [...] Read more.
Waste battery powder (WBP) can effectively enhance the service performance of virgin asphalt with sol–gel structures; however, its toughening mechanism for sol–gel virgin asphalt still lacks rigorous mechanical characterization. Therefore, the objective of this study is to investigate the toughening of WBP-modified asphalt based on the mechanical parameter of cracking area. First, a 12% content of WBP was incorporated into the sol–gel 70# virgin asphalt to prepare WBP-modified asphalt and its fatigue performance was evaluated through linear amplitude, non-damage, and damage time sweep tests. Then, energy–mechanics balance equations were used to establish a cracking area model. Furthermore, the asphalt cracking area was employed to quantify its induced damage and determine the representative rate for the cracking damage process (kcd). Finally, the activation energy for cracking damage (Eacd) was used to quantify the difficulty of the cracking damage process. The scanning electron microscope test was employed to examine the microstructure of WBP-modified asphalt and the Eacd and microscopic morphology of WBP-modified asphalt were analyzed to reveal the toughening effect of WBP on virgin asphalt. The results showed that WBP-modified asphalt exhibits three nonlinear cracking stages, with a lower cracking rate than virgin asphalt. Its cracking damage generally increases over time, and the damage evolution parameter β serves as kcd. The micro-grooves and wrinkles of WBP improve bonding to asphalt, increasing the Eacd of sol–gel 70# virgin asphalt from 10.6 to 23.88 kJ·mol−1, thus achieving toughening. In summary, the fatigue damage process of WBP-modified asphalt can be characterized by the kinetic parameters β and Eacd. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Figure 1

24 pages, 1668 KB  
Article
Experimental and Analytical Investigation of the Flexural Performance of UHPC Beams Reinforced with Hybrid GFRP and Steel Bars
by Tianyu Shi, Kangsheng Huang, Ruochen Wang, Changming Dai and Kun Wang
Buildings 2026, 16(3), 535; https://doi.org/10.3390/buildings16030535 - 28 Jan 2026
Abstract
To investigate the bending response of ultra-high-performance concrete (UHPC) beams reinforced with hybrid glass-fiber-reinforced polymer (GFRP) and steel bars, five specimens were tested in four-point bending in the present experimental study. The effect of varying reinforcement ratios on the flexural behavior was evaluated. [...] Read more.
To investigate the bending response of ultra-high-performance concrete (UHPC) beams reinforced with hybrid glass-fiber-reinforced polymer (GFRP) and steel bars, five specimens were tested in four-point bending in the present experimental study. The effect of varying reinforcement ratios on the flexural behavior was evaluated. It was observed that all tested beams failed due to reinforcement yielding while maintaining satisfactory ductility; the failure mode was characterized by yielding of the bottom tensile reinforcement followed by crushing of the UHPC in the compression zone. When the steel reinforcement ratio increased from 2.03% to 2.42% and 3.08%, the beam load-carrying capacity increased by 6.27% and 14.34%, respectively. When the GFRP reinforcement ratio increased from 0.91% to 1.19% and 1.51%, the peak load-carrying capacity increased by 9.58% and 15.55%, respectively. Based on reasonable assumptions, analytical formulas were proposed to predict the cracking moment and the flexural capacity of the UHPC beams reinforced with hybrid GFRP and steel bars, with errors within ±5%. By fully accounting for the bridging effect of steel fibers, modified coefficients were introduced to estimate beam deformation and crack width, along with corresponding calculation methods. The proposed formulas accurately predicted cracking moment, ultimate moment, deflection and crack width for the beam. The findings propose a theoretical basis for the design and application of UHPC beams reinforced with hybrid GFRP and steel bars. Full article
(This article belongs to the Section Building Structures)
14 pages, 51481 KB  
Article
Effect of Film Thickness and Defects on the Corrosion Behavior of Anodic Oxide Films on Aluminum Alloys
by Song Wang, Huwei Tao, Xianqin Zhuo, Linyue He, Pengfei Liu, Kai Dong, Bowei Zhang, Kui Xiao and Junsheng Wu
Materials 2026, 19(3), 515; https://doi.org/10.3390/ma19030515 - 28 Jan 2026
Abstract
This study focuses on sulfuric acid-anodized films formed on 2A12 and 6061 aluminum alloys, in which the corrosion behavior of the oxide films under different film thicknesses, sealing methods, and defect states was investigated through neutral salt spray testing combined with surface morphology [...] Read more.
This study focuses on sulfuric acid-anodized films formed on 2A12 and 6061 aluminum alloys, in which the corrosion behavior of the oxide films under different film thicknesses, sealing methods, and defect states was investigated through neutral salt spray testing combined with surface morphology characterization and XRD analysis. The results indicate that the corrosion resistance of anodic oxide films is positively correlated with film thickness, while the anodized film on 2A12 aluminum alloy contains more cracks than that on 6061, which can readily serve as long-term corrosion initiation sites. Although the corrosion products of both alloys are identified as Al2O3 and AlO(OH), the oxide films on 6061 aluminum alloy exhibit higher compactness than those on 2A12 at all investigated thicknesses, resulting in superior resistance to neutral salt spray corrosion, and both sealing methods provide effective protection for the 6061 aluminum alloy substrate. This study provides experimental and theoretical references for the development and application of anodizing processes for aluminum alloys in chloride-containing marine environments. Full article
Show Figures

Graphical abstract

16 pages, 24835 KB  
Article
Linking Microstructural Evolution to Magnetic Response for Damage Assessment in In-Service 321 Stainless Steel
by Shengzhong Hu, Yunrong Lyu, Weiming Li and Fuping Guo
Metals 2026, 16(2), 134; https://doi.org/10.3390/met16020134 - 23 Jan 2026
Viewed by 125
Abstract
This study evaluated the damage behavior of 321 austenitic stainless steel under tensile loading by measuring its magnetic properties. The results indicate that, at room temperature, the magnetic properties of 321 stainless steel respond distinctly to mechanical loading. Changes under external stress are [...] Read more.
This study evaluated the damage behavior of 321 austenitic stainless steel under tensile loading by measuring its magnetic properties. The results indicate that, at room temperature, the magnetic properties of 321 stainless steel respond distinctly to mechanical loading. Changes under external stress are primarily attributed to the phase transformation from austenite to martensite. Both coercive force and magnetic Barkhausen noise effectively characterize this material’s deformation and phase transformation processes: the coercive force dynamics curve exhibits an initial rise, followed by a decline with a decrease during the specimen’s necking stage. Magnetic Barkhausen noise is highly sensitive to stress changes, especially during the elastic stage. In situ measurements show that, at a stress of 300 MPa, the magnetic Barkhausen noise peak voltage signal reaches 0.060 V, which is a 100.0% increase compared to the original specimen (0.030 V). Therefore, when assessing the stress state and damage of stainless steel using coercive force and magnetic Barkhausen noise techniques, attention should be paid to the inflection characteristics of the coercive force dynamic curve and the inflection points in the peak values of the magnetic Barkhausen noise voltage signal. These features can be used to effectively monitor crack initiation and propagation in austenitic stainless steel. Full article
Show Figures

Figure 1

26 pages, 3094 KB  
Article
Improved Dual-Module YOLOv8 Algorithm for Building Crack Detection
by Xinyu Zuo, Ahmed D. Almutairi, Muneer K. Saeed and Yiqing Dai
Buildings 2026, 16(2), 461; https://doi.org/10.3390/buildings16020461 - 22 Jan 2026
Viewed by 90
Abstract
Building cracks are significant indicators of structural integrity. Conventional fracture detection methodologies, however, are characterized by extended durations, significant labor requirements, and limitations in both precision and operational effectiveness. Findings are also subject to subjective and technical constraints inherent in manual assessments. To [...] Read more.
Building cracks are significant indicators of structural integrity. Conventional fracture detection methodologies, however, are characterized by extended durations, significant labor requirements, and limitations in both precision and operational effectiveness. Findings are also subject to subjective and technical constraints inherent in manual assessments. To overcome these challenges, this paper introduces an enhanced YOLOv8-based methodology for developing a building crack detection system, thereby achieving high precision, operational efficiency, and cost-effectiveness. Initially, classified and segmented datasets of building fractures were obtained from field photography, online image aggregation, and open-source databases, thereby providing the basis for training the experimental model. Subsequently, the Swin Transformer window multi-head self-attention mechanism was implemented to augment small-object recognition capabilities and reduce computational demands, thereby enabling the development of an enhanced image segmentation module. Utilizing the U-Net’s segmentation capabilities, a rotated split method was implemented to quantify fracture width and derive geometric parameters from the segmented crack regions. In order to evaluate the effectiveness of the model, two experiments were conducted: one to demonstrate the performance of the classification category and the other to show the capabilities of the segmentation category. The result is that the proposed model has high accuracy and efficiency in the frac detection task. This approach effectively enhances fracture detection in structural safety evaluations of these buildings, providing technical support for relevant management decisions. Full article
(This article belongs to the Special Issue Automation and Intelligence in the Construction Industry)
Show Figures

Figure 1

14 pages, 2797 KB  
Article
Research on Stress Variations During the 4H-SiC Indentation Process
by Wenshan Wang, Shuixing Lin, Yiqing Yu and Nian Duan
Micromachines 2026, 17(1), 138; https://doi.org/10.3390/mi17010138 - 22 Jan 2026
Viewed by 41
Abstract
In order to explore the effect of stress on the damage of 4H-SiC materials, this paper employed single abrasive grain indentation simulation based on the Smoothed-Particle Hydrodynamics (SPH) method, and verified the accuracy of the indentation model through an indentation experiment on a [...] Read more.
In order to explore the effect of stress on the damage of 4H-SiC materials, this paper employed single abrasive grain indentation simulation based on the Smoothed-Particle Hydrodynamics (SPH) method, and verified the accuracy of the indentation model through an indentation experiment on a single abrasive grain. The research examined the consequences of varying pressures on the processing of 4H-SiC, including parameters such as the depth of abrasive grain penetration, the stress-affected region, and the initiation and propagation of cracks. Subsequently, mathematical models were developed to characterize stress variations under different pressure conditions. The findings reveal several vital insights: First, a discernible linear relationship exists between the depth of abrasive grain penetration into 4H-SiC and the applied pressure. Second, within a specific pressure range, the stress-affected zone within the workpiece enlarges as the applied pressure increases. However, when cracks form within the workpiece, the dimensions of the stress-affected zone exhibit fluctuations. During the abrasive grain indentation phase, a discernible pattern emerges in the stress distribution within the workpiece. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

15 pages, 13801 KB  
Article
Multiscale Interlaminar Enhancement of CNT Network/CF Hybrid Composites and In Situ Monitoring of Crack Propagation Behavior
by Tianshu Li, Fenghui Shi, Hongchen Yan, Min Li, Shaokai Wang, Yizhuo Gu and Baoyan Zhang
Polymers 2026, 18(2), 293; https://doi.org/10.3390/polym18020293 - 21 Jan 2026
Viewed by 151
Abstract
It has long been desired to achieve mechanical enhancement and structural health monitoring by introducing carbon nanotubes (CNTs) into traditional carbon fiber (CF) composites. Herein, the initiation of micro-damage and crack propagation has been investigated by utilizing in situ electrical resistance changes in [...] Read more.
It has long been desired to achieve mechanical enhancement and structural health monitoring by introducing carbon nanotubes (CNTs) into traditional carbon fiber (CF) composites. Herein, the initiation of micro-damage and crack propagation has been investigated by utilizing in situ electrical resistance changes in interlaminar hybrid CNT network/CF composites during the shear loading process. The results show a clear relationship between the crack propagation and the electrical resistance response particularly when approaching the failure of the single-layer CNT network hybrid composites. Furthermore, the chemically modified CNT network exhibits evident enhancement on main mechanical properties of the CF composites, superior to the thermoplastic toughening method. The characterizations manifest that the multiscale interlayered CNT/CF structure can simultaneously resist the crack propagation along both the in-plane direction and the cross-plane direction, which consequently enhances the flexural and compressive strengths of the composite material. This discovery provides a novel idea for the potential application of CNT network/CF hybrid composites in the integration of mechanical reinforcement and structural health monitoring, namely, that the CNT network acts not only as a reinforcing phase but also as a sensor for the structural health monitoring of the composites. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

41 pages, 5074 KB  
Article
Advanced Characterization of Asphalt Concrete Mixtures Towards Implementation of MEPDG in the UAE
by Soughah Al-Samahi, Waleed Zeiada, Ghazi G. Al-Khateeb, Anas Cherkaoui and Helal Ezzat
Infrastructures 2026, 11(1), 33; https://doi.org/10.3390/infrastructures11010033 - 20 Jan 2026
Viewed by 261
Abstract
This study presents a comprehensive material characterization program to develop the database inputs required for implementing the Mechanistic–Empirical Pavement Design Guide (MEPDG) in the United Arab Emirates (UAE). Five asphalt concrete (AC) mixtures were evaluated, including two conventional penetration-grade binders (PEN 40/50 and [...] Read more.
This study presents a comprehensive material characterization program to develop the database inputs required for implementing the Mechanistic–Empirical Pavement Design Guide (MEPDG) in the United Arab Emirates (UAE). Five asphalt concrete (AC) mixtures were evaluated, including two conventional penetration-grade binders (PEN 40/50 and PEN 60/70) and three SBS-modified binders (PG70E–0, PG76E–10, and PG82E–22). The experimental program followed AASHTOWare Pavement ME Design requirements and included asphalt binder testing (penetration, softening point, rotational viscosity, DSR, and BBR) and AC mixture testing (dynamic modulus, flow number, axial fatigue, and indirect tensile strength). The results showed that SBS-modified binders and mixtures, particularly PG70E–10 and PG82E–22, exhibited improved rheological behavior, reduced permanent deformation, and enhanced fatigue resistance, while PG76E–10 demonstrated intermediate performance, highlighting the influence of polymer formulation and mixture structure. Pavement ME simulations indicated that Level 1 material inputs preserved laboratory-observed performance trends, resulting in lower predicted rutting, fatigue cracking, and International Roughness Index (IRI). In contrast, Level 3 inputs masked material-specific behavior and, in some cases, altered mixture performance rankings. These findings emphasize the necessity of mixture-level testing and Level 1 inputs for reliable mechanistic–empirical pavement design under UAE climatic and traffic conditions. Full article
Show Figures

Figure 1

16 pages, 8025 KB  
Article
Analysis of Flexural Performance and Crack Width Prediction Models of UHPC Composite Slabs
by Chao Liu, Yuexia Li, Jiwang Zhang and Dongwei Wan
Buildings 2026, 16(2), 411; https://doi.org/10.3390/buildings16020411 - 19 Jan 2026
Viewed by 181
Abstract
To study the crack resistance of UHPC precast composite slabs, this paper conducts flexural performance tests on one UHPC monolithic slab and four UHPC precast composite slabs, investigating the influence of structural form, loading method, and shear reinforcement on the failure mode and [...] Read more.
To study the crack resistance of UHPC precast composite slabs, this paper conducts flexural performance tests on one UHPC monolithic slab and four UHPC precast composite slabs, investigating the influence of structural form, loading method, and shear reinforcement on the failure mode and crack resistance of UHPC precast composite slabs. The test results showed that UHPC precast composite slabs do not experience shear failure along the composite interface. They exhibit extensive microcracks and do not fail due to the immediate appearance of a single wide crack, demonstrating good plasticity and toughness. The cracking load of the monolithic slab is 6.6% to 12.5% higher than that of the composite slabs. However, the yield load and ultimate load of composite slabs equipped with shear reinforcement are 19.5% to 26.5% and 24.5% to 29.5% higher than those of the monolithic slab, respectively. These composite slabs are also characterized by extensive, dense microcracks with high quantity, small width, small spacing, short length, and dense distribution. Shear reinforcement can effectively improve the bearing capacity and crack resistance of UHPC precast composite slabs, with truss reinforcement showing a better effect in enhancing bearing capacity and inhibiting cracks. The comparison between positive and reverse loading methods better explains the “strain lag” of concrete and “stress advance” of reinforcement in composite slabs. Based on the section internal force equilibrium and the bond stress transfer principle between reinforcement and concrete, considering the enhancement effect of UHPC on bond stress, the calculation formulas for average crack spacing and maximum crack width in existing codes are modified. The calculated values are in good agreement with the test results. Full article
(This article belongs to the Special Issue High-Performance Steel–Concrete Composite/Hybrid Structures)
Show Figures

Figure 1

31 pages, 38692 KB  
Article
Stability and Dynamics Analysis of Rainfall-Induced Rock Mass Blocks in the Three Gorges Reservoir Area: A Multidimensional Approach for the Bijiashan WD1 Cliff Belt
by Hao Zhou, Longgang Chen, Yigen Qin, Zhihua Zhang, Changming Yang and Jin Xie
Water 2026, 18(2), 257; https://doi.org/10.3390/w18020257 - 18 Jan 2026
Viewed by 219
Abstract
Accurately assessing collapse risks of high-elevation, concealed rock mass blocks within the steep cliffs of Bijiashan, Three Gorges Reservoir Area, is challenging. This study employed a multidimensional approach—integrating airborne Light Detection and Ranging (LiDAR), the transient electromagnetic method (TEM), close-range photogrammetry, horizontal drilling, [...] Read more.
Accurately assessing collapse risks of high-elevation, concealed rock mass blocks within the steep cliffs of Bijiashan, Three Gorges Reservoir Area, is challenging. This study employed a multidimensional approach—integrating airborne Light Detection and Ranging (LiDAR), the transient electromagnetic method (TEM), close-range photogrammetry, horizontal drilling, and borehole optical imaging—to characterize the rock mass structure of the WD1 cliff belt and delineate 52 individual blocks. Stability analysis incorporated stereographic projection for macro-scale assessment and employed mechanical models specific to three primary failure modes (toppling, sliding, falling). Finite element strength reduction quantified the stress–strain response of a representative block under natural and rainstorm conditions. Particle Flow Code (PFC) simulated dynamic instability of the exceptionally large block W1-37. Results indicate the WD1 rock mass is highly fractured, with base sections prone to weakness. Toppling failure dominates (90.4%). Under rainstorm conditions, the average Factor of Safety (FOS) decreased by 14.7%, and 73.1% of the blocks that were stable under natural conditions were destabilized—specifically transitioning to marginally stable or substable states—often triggering chain-reaction instability characterized by “crack propagation—base buckling”. W1-37 exhibited staged failure under rainstorm: “strain localization at fissure tips—penetration of basal cracks—overturning of the upper rock mass”. Its frontal rock reached a peak sliding velocity of 15.17 m/s, indicative of base-breaking toppling. The integrated “multi-technology survey—multi-method evaluation—multi-scale simulation” framework provides a quantitative basis for risk assessment of rock mass disasters in the Three Gorges Reservoir Area and offers a technical paradigm for similar high-steep canyon regions. Full article
Show Figures

Figure 1

18 pages, 6257 KB  
Article
Load Transfer Theoretical Analysis of a Rigid Aircraft Pavement Contraction Joint Using a Novel Approach for Crack Characterization
by Sean Jamieson and Greg White
Materials 2026, 19(2), 376; https://doi.org/10.3390/ma19020376 - 17 Jan 2026
Viewed by 147
Abstract
The contraction joints within paver runs are important for the design and construction of rigid aircraft pavements. These joints are typically un-doweled and sawn into the pavement to induce a crack. The joints control shrinkage cracking during curing, allow for thermal expansion and [...] Read more.
The contraction joints within paver runs are important for the design and construction of rigid aircraft pavements. These joints are typically un-doweled and sawn into the pavement to induce a crack. The joints control shrinkage cracking during curing, allow for thermal expansion and contraction, and provide load transfer through aggregate interlock joint stiffness between adjacent slabs. Aggregate interlock joint stiffness is typically modeled by assigning a spring element between two slabs that is indicative of the stiffness of the joint. However, that simplification may not accurately represent the complex interaction of irregularly shaped concrete faces and joint openings. Consequently, previous researchers have recommended modelling aggregate interlock stiffness based on physical crack shape. This research uses a novel approach to characterize crack shape through an idealized two-dimensional sinusoidal shape. Once the crack shape was defined, finite element methods were used to determine the significance of load, sublayer, and crack shape factors on load transfer values. It was determined that joint opening was the most significant factor for aggregate interlock load transfer. Future research is recommended to further validate the model against a larger data set, to confirm if the two-dimensional idealization of crack shape is an appropriate estimation of field conditions. Full article
Show Figures

Figure 1

15 pages, 4562 KB  
Article
Investigating the Role of Silica in Thermo-Oxidative Degradation of EPDM Recycled Composites for Applications in Building and Construction
by Xavier Colom, Leire Moral and Javier Cañavate
Polymers 2026, 18(2), 250; https://doi.org/10.3390/polym18020250 - 16 Jan 2026
Viewed by 218
Abstract
This work investigates the structural, acoustic, and thermo-oxidative degradation behavior of elastomeric composites made from neat EPDM and recycled devulcanized EPDM (EPDMd) blends, both with and without silica (SiO2). SiO2 plays a complex role in degradation, possibly acting as a [...] Read more.
This work investigates the structural, acoustic, and thermo-oxidative degradation behavior of elastomeric composites made from neat EPDM and recycled devulcanized EPDM (EPDMd) blends, both with and without silica (SiO2). SiO2 plays a complex role in degradation, possibly acting as a catalyst and also affecting the properties of the materials. Samples were subjected to accelerated degradation at 80 °C for 30 days. The characterization included the mechanical, spectroscopical (FTIR-ATR), thermal (TGA), and morphological (SEM) studies of the samples. Given EPDM’s use in construction as a sound-absorber, its acoustic properties were also analyzed. The determination of the mechanical properties shows that the incorporation of SiO2 improves the Young’s modulus (YM), maintains the tensile strength (TS) at similar values, and causes a decrease in elongation at break (EB). The content of EPDMd slightly decreases both the TS and the EB and increases the YM. The thermo-oxidative degradation of the studied composites does not affect the TS values, but it increases the YM for the samples with and without SiO2 for EPDMd contents higher than 40 phr, and decreases the EB for samples with and without SiO2 for all EPDMd contents. The FTIR-ATR, TGA, and SEM results show that the addition of SiO2 catalyzes the thermo-oxidative degradation process, while the EPDMd inhibits structural degradation. Migration of the ZnSt2 included in the formulations to the surface is common in these elastomers. In this case, EPDMd forms microaggregates, which retain the exudation of ZnSt2 crystals, especially in the non-degraded samples. The degraded samples present irregular structures, with microcavities, cracks, and occlusions, which increase the acoustic absorption mainly at frequencies below 1500 Hz. Full article
Show Figures

Figure 1

15 pages, 5772 KB  
Article
Study on Formation Mechanism of Edge Cracks and Targeted Improvement in Hot-Rolled Sheets of Grain-Oriented Electrical Steel
by Weidong Zeng, Hui Tang, Xiaoyong Tang, Jiaming Wang, Zhongyu Piao and Fangqin Dai
Metals 2026, 16(1), 96; https://doi.org/10.3390/met16010096 - 15 Jan 2026
Viewed by 212
Abstract
Edge cracks in hot-rolled sheets of industrial grain-oriented electrical steel significantly affect the yield rate and pose substantial challenges to cold rolling fabrication. Eliminating such structural defects through hot rolling requires a thorough understanding of their formation mechanism. This study investigates the formation [...] Read more.
Edge cracks in hot-rolled sheets of industrial grain-oriented electrical steel significantly affect the yield rate and pose substantial challenges to cold rolling fabrication. Eliminating such structural defects through hot rolling requires a thorough understanding of their formation mechanism. This study investigates the formation mechanism of edge cracks in hot-rolled sheets, which are characterized by coarse strip-like grains with typical thicknesses ranging from 20 μm to 100 μm. Coarse, strip-shaped grains have low fracture stress, which is the cause of edge cracks. They originate from abnormally developed columnar grains in continuous casting slabs after reheating, which is unavoidable in industrial large-scale production. Inadequate fragmentation and insufficient recrystallization during rough rolling result in residual coarse grains of intermediate slabs, and their preferential deformation and outward protrusion lead to the formation of grooves. In the subsequent finishing rolling process, deformed coarse grains near the grooves undergo further elongation, developing into distinct strip-like structures. Based on the above mechanistic understanding, the edge microstructure under various rolling parameters was investigated, and targeted improvement measures for edge cracks were proposed. It is concluded that the edge quality can be significantly enhanced through increasing the total width reduction, additional rough rolling passes, and the implementation of edge heating during rough rolling. Quantitative analysis demonstrates that increasing the rolling passes from D to E significantly reduces the fraction of band structure from 64% to 48% and the average width of elongated grains from 43.5 μm to 38.4 μm. Full article
(This article belongs to the Section Metal Casting, Forming and Heat Treatment)
Show Figures

Figure 1

22 pages, 14271 KB  
Article
Fracture Instability Law of Thick Hard Direct Covering Roof and Fracturing and Releasing Promotion Technology
by Xingping Lai, Chuan Ai, Helong Gu, Hao Wang and Chong Jia
Appl. Sci. 2026, 16(2), 806; https://doi.org/10.3390/app16020806 - 13 Jan 2026
Viewed by 138
Abstract
Because of its strong bearing capacity and large size, a thick and hard roof is the main source of strong ground pressure in a stope, and its breaking and migration mechanism and effective control are very important for realizing safe and efficient mining [...] Read more.
Because of its strong bearing capacity and large size, a thick and hard roof is the main source of strong ground pressure in a stope, and its breaking and migration mechanism and effective control are very important for realizing safe and efficient mining in coal mines. In this paper, by constructing a numerical model that fully considers the actual occurrence conditions of such a roof, the control law of the occurrence conditions of a thick and hard roof on its fracture law and strata behavior is systematically studied, and the control mechanism of the movement and hydraulic fracturing of this kind of roof is revealed. The results show that (1) the fracture process of a thick hard roof is characterized by three stages—crack initiation, extension, and overall instability—and the “pressure arch” structure formed by the overlying huge hard rock stratum is the fundamental force source leading to strong ground pressure; (2) the roof thickness and horizon significantly control the stress distribution and fracture behavior of coal and rock mass, and the peak stress of coal and rock mass is positively correlated with the roof thickness, but negatively correlated with its horizon; (3) with the increase in roof thickness, the dominant fracture mechanism changes from tension type to tension–shear composite type, which leads to a significant increase in fracture step. Hydraulic fracturing technology can effectively cut off the “pressure arch” structure and optimize the stress field of surrounding rock. After fracturing, the first weighting step and weighting strength are reduced by 36% and 38.1%, respectively. An industrial test shows that a fracturing treatment realizes timely and orderly roof caving and achieves the controllable weakening and safe promotion of the thick and hard roof. This study provides a solid theoretical basis and a successful engineering practice model for roof disaster prevention and control under similar geological conditions. Full article
(This article belongs to the Special Issue Advanced Technologies in Intelligent and Sustainable Coal Mining)
Show Figures

Figure 1

Back to TopTop