Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = cover-thrust tectonics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 9198 KiB  
Article
The Exotic Igneous Clasts Attributed to the Cuman Cordillera: Insights into the Makeup of a Cadomian/Pan-African Basement Covered by the Moldavides of the Eastern Carpathians, Romania
by Sarolta Lőrincz, Marian Munteanu, Ştefan Marincea, Relu Dumitru Roban, Valentina Maria Cetean, George Dincă and Mihaela Melinte-Dobrinescu
Geosciences 2025, 15(7), 256; https://doi.org/10.3390/geosciences15070256 - 3 Jul 2025
Viewed by 294
Abstract
The Eastern Carpathians are thrust to the east and north over their Eastern European foreland, tectonically covering it over an area several hundred kilometers across. Information about the nature of the underthrust part of the Carpathian foreland can be obtained from the rock [...] Read more.
The Eastern Carpathians are thrust to the east and north over their Eastern European foreland, tectonically covering it over an area several hundred kilometers across. Information about the nature of the underthrust part of the Carpathian foreland can be obtained from the rock fragments preserved in the sedimentary successions of the Carpathian fold and thrust belt, specifically in the Outer Dacides and the Moldavides. Fragments of felsic rocks occurring within the sedimentary units of the Upper Cretaceous successions of the Moldavides have long been attributed to the Cuman Cordillera—an intrabasinal ridge in the Eastern Outer Carpathians. This work is the first complex geochemical and geochronological study on the exotic igneous clasts of the Cuman Cordillera. Igneous clasts from the southern part of the Moldavides (Variegated clay nappe/formation) are investigated here. They include mainly granites and rhyolites. Phaneritic rocks are composed of cumulus plagioclase, albite, amphibole and biotite, and intercumulus quartz and potassium feldspar, with apatite, magnetite, sphene, and zircon as main accessories, while the porphyritic rocks have a mineral assemblage similar to that mentioned above, displayed in a porphyritic texture with a usually crystallized groundmass. SHRIMP U-Pb zircon dating indicated the 583–597 Ma age interval for magma crystallization. Based on calcareous nannofossils, the depositional age of the investigated igneous clasts is Cenomanian to Maastrichtian, implying that the Cuman Cordillera was an emerged piece of land, herein an active source of sediments in the flysch basin for at least 40 Ma, from the Early Cretaceous (Aptian) to the Late Cretaceous (Maastrichtian). The intrusive and subvolcanic rocks show similar trends for trace and major elements, evincing their comagmatic nature. The enrichment in LILE and LREE relative to HFSE and HREE, as well as the element anomalies (e.g., negative Nb, Ta, and Eu and positive Rb, Ba, K, and Pb) suggest a convergent continental plate margin tectonic setting. Mineral chemistry suggests magma crystallization in relatively oxic conditions (magnetite series), during ascent within a depth of 15 km to 5 km. The igneous rocks attributed to the Cuman ridge display compositional and geochronological features similar to Brno and Thaya batholiths in the Brunovistulian terrane, which could be a piece of the Carpathian foreland not covered by the Tertiary thrusts. Our data confirm the non-Carpathian origin of the igneous clasts, revealing a Neoproterozoic history of the Carpathian foreland units, which include a Cadomian/Pan-African continental arc, exposed mainly during the Late Cretaceous as an intrabasinal island of the Alpine Tethys, traditionally known as the Cuman Cordillera. Full article
Show Figures

Figure 1

23 pages, 8147 KiB  
Article
Thermochronology of the Kalba–Narym Batholith and the Irtysh Shear Zone (Altai Accretion–Collision System): Geodynamic Implications
by Alexey Travin, Mikhail Buslov, Nikolay Murzintsev, Valeriy Korobkin, Pavel Kotler, Sergey V. Khromykh and Viktor D. Zindobriy
Minerals 2025, 15(3), 243; https://doi.org/10.3390/min15030243 - 26 Feb 2025
Viewed by 571
Abstract
The granitoids of the Kalba–Narym batholith and the Irtysh shear zone (ISZ) are among the main geological features of the late Paleozoic Altai accretion–collision system (AACS) in Eastern Kazakhstan. Traditionally, it is believed that late Paleozoic strike-slip faults played a pivotal role at [...] Read more.
The granitoids of the Kalba–Narym batholith and the Irtysh shear zone (ISZ) are among the main geological features of the late Paleozoic Altai accretion–collision system (AACS) in Eastern Kazakhstan. Traditionally, it is believed that late Paleozoic strike-slip faults played a pivotal role at all stages of the development of the AACS, they were supposed to control deformation, magmatism, and ore deposits. This work is devoted to solving the problem of the tectonic evolution of the AACS based on the reconstruction of the thermal history of granitoids of the Kalba–Narym batholith in connection with the Chechek metamorphic dome structure, which is one of the highly metamorphosed blocks mapped within the ISZ. The new geological and geochronological data presented in this work allowed us to establish the sequence of formation of the Kalba–Narym granitoid batholith and link it with the evolution of the Irtysh shear zone (ISZ). It was revealed that in the late Carboniferous–early Permian (312–289 Ma), during the NE–SW compression, the Irtysh shear zone formed as a gently dipping thrust system into which gabbro of the Surov massif intruded. The combined manifestation of magmatic and tectonic processes caused the formation of tectonic mélange with cataclastic gabbro and metamorphic rocks of the Chechek metamorphic dome structure (312–289 Ma). Compression caused the formation of a cover-thrust structure. The thickening of the crust under the probable thermal action of the Tarim plume led to the formation of the early Permian Kalba–Narym batholith (297–284 Ma) within the Kalba–Narym terrane. Denudation of the orogen occurred before the Early Triassic (280–229 Ma). In this way the sequence of formation of the Kalba–Narym batholith and the ISZ is consistent with the concepts of the stages of plume-lithosphere interaction within the AACS under the influence of the late Carboniferous–early Permian Tarim igneous province, but in the cover-thrust tectonic setting. Full article
(This article belongs to the Special Issue Developments in Geochronology and Dating of Shear Zone Deformation)
Show Figures

Figure 1

20 pages, 4829 KiB  
Article
Structural and Kinematic Analysis of the Xipu Dome in the Tingri Area, Southern Tibet, and New Exploration Discoveries
by Songtao Yan, Ailing Ding, Jie Wang, Hao Huang, Hu Li, Song Chen, Tao Liu and Lidong Zhu
Minerals 2024, 14(12), 1188; https://doi.org/10.3390/min14121188 - 22 Nov 2024
Viewed by 939
Abstract
The newly delineated Xipu Dome, located in the central North Himalayan Gneiss Dome (NHGD), exhibits a significant spatiotemporal relationship with Himalayan polymetallic mineralization. Based on field geological surveys and geochronological analyses, this study provides a comprehensive assessment of the lithological assemblage, tectonic deformation, [...] Read more.
The newly delineated Xipu Dome, located in the central North Himalayan Gneiss Dome (NHGD), exhibits a significant spatiotemporal relationship with Himalayan polymetallic mineralization. Based on field geological surveys and geochronological analyses, this study provides a comprehensive assessment of the lithological assemblage, tectonic deformation, and metallogenic processes of the Xipu Dome. The findings reveal a three-tiered structure: the core consists of early Paleozoic granitic gneiss (523 Ma) and Miocene leucogranite (13.5 Ma), overlain by a cover of low-grade metamorphic or unmetamorphosed sedimentary rocks, and a detachment zone composed of heavily deformed schists and phyllites. The Xipu Dome underwent three phases of tectonic deformation: a southward thrust caused by continental collision, northward extensional activity driven by the South Tibet Detachment System (STDS), and gravitational collapse and downslope sliding following the emplacement of the dome. Two types of mineralization were identified: structural hydrothermal Au-Cu polymetallic deposits related to detachment and skarn-type Cu-Ag polymetallic deposits associated with leucogranite intrusion. This study enhances the understanding of the spatial distribution and metallogenic potential within the Himalayan Be-Sn rare metal-Pb-Zn-Sb-Au belt, offering a valuable direction for strategic mineral exploration in the Tethyan Himalaya (TH). Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

23 pages, 22374 KiB  
Article
Characteristics, Controlling Factors and Reservoir Quality Implications of Inner Fracture Zones in Buried Hills of Archean Covered Metamorphic Rock in Block 13-2, Bozhong Depression
by Junjie Lu, Xuanlong Shan, Jian Yi, Huiyong Li, Peng Xu, Guoli Hao, Ang Li, Shuai Yin, Shuyue Ren, Chaoyang Liu and Yunqian Shi
Energies 2024, 17(6), 1345; https://doi.org/10.3390/en17061345 - 11 Mar 2024
Cited by 2 | Viewed by 1500
Abstract
Inner fracture zones play a decisive role in the formation of high-quality reservoirs in buried hill reservoirs in covered metamorphic rock. Based on core, sidewall core, thin section, seismic, logging and reservoir physical property data, the fracture development characteristics of the Bozhong 13-2 [...] Read more.
Inner fracture zones play a decisive role in the formation of high-quality reservoirs in buried hill reservoirs in covered metamorphic rock. Based on core, sidewall core, thin section, seismic, logging and reservoir physical property data, the fracture development characteristics of the Bozhong 13-2 block buried hill reservoir are described in detail and the controlling factors and the influence on reservoir quality are discussed. The results showed: (1) three groups of tectonic fractures developed in the study area—near-EW-striking, ENE-striking and nearly N–S-striking fractures—were controlled by the early Indosinian thrusting, the late Indosinian to early Yanshanian sinistral strike-slipping and the late Yanshanian late dextral strike-slipping in the Bohai Bay Basin, respectively. The ENE- and nearly-E-W-striking fractures are the most common, and the dip angles of the fractures are mostly between 35° and 75° and thus oblique. (2) The Indosinian-early Yanshanian was the main fracture-forming period, and the dextral strike-slip action in the late Yanshanian was the key to maintaining effective fractures. Imaging logging shows that 97.87% of the fractures are effective fractures. Based on thin section observation, 14.47% of the fractures are unmodified open fractures and 80.37% of the fractures are effective fractures due to reactivation. (3) The late Yanshanian strike-slip fault transformed the deformation adjustment zone formed by the early Indosinian thrust faulting and the core of the fold structure was more conducive to fracture development. The fracture density of a single well located within the deformation adjustment zone and at the core of the fold is between 0.93–1.49 m−1, the fracture density of a single well located only at the core of the fold is between 0.67–0.75 m−1 and that of a single well located at the wing of the fold is between 0.35–0.59 m−1. Diabase dike intrusions promoted the development of local fractures. (4) Fractures promote the migration and accumulation of oil and gas, and the fracture density in the oil layer is between 0.81–2.19 m−1. That in the nonoil layer is between 0.25–1.12 m−1. In addition, fractures not only provide storage space but also effectively improve the reservoir capacity of the inner fracture zones of buried hill reservoirs by concentrating dissolution. Full article
Show Figures

Figure 1

20 pages, 10572 KiB  
Article
Subsurface Geological Characterization of the Late Neogene–Quaternary Argive Basin, Peloponnese, Greece Using Transient Electromagnetic Data and Vintage Stratigraphic Logs
by Hector R. Hinojosa-Prieto, Pantelis Soupios and Pavel Barsukov
Geosciences 2021, 11(8), 317; https://doi.org/10.3390/geosciences11080317 - 28 Jul 2021
Cited by 11 | Viewed by 3279
Abstract
The onshore and offshore clastic deposits of the Argive Basin and the Argolic Gulf, respectively, in Peloponnese, Greece, form a Late Neogene–Quaternary half-graben that connects with the Aegean Sea. The onshore Late Neogene–Quaternary sequence, comprised of chaotically intercalated cohesive and granular clastic deposits, [...] Read more.
The onshore and offshore clastic deposits of the Argive Basin and the Argolic Gulf, respectively, in Peloponnese, Greece, form a Late Neogene–Quaternary half-graben that connects with the Aegean Sea. The onshore Late Neogene–Quaternary sequence, comprised of chaotically intercalated cohesive and granular clastic deposits, is in angular unconformity with bedrock comprised of Triassic–Upper Cretaceous strongly-weathered, highly-fractured karstic limestones thrusted against Paleogene flysch deposits. While the surface geology of the Argive Basin is well-known, the subsurface geology remains both poorly mapped and understood. We utilized transient electromagnetic (TEM) soundings coupled with 185 vintage stratigraphic logs, current surface geology knowledge, and insights from available geophysical surveys to characterize the subsurface conditions of this sedimentary basin. We estimated the thickness of the young deposits (the depth to bedrock) and detected potential subsurface tectonic structures. The TEM-FAST 48HPC data acquisition system with integrated inversion and visualization software package was used with a single-loop dimension of 50 m × 50 m to collect a total of 329 TEM soundings at 151 stations scattered throughout the basin. The TEM station spacing varied from 200 to 750 m allowing the mapping of 80 km2. The total depth of investigation with the inverted TEM data and the lithology logs was 130 m and 183 m, respectively. The joint interpretation produced several quasi-two-dimensional electrical resistivity profiles that traverse the sedimentary basin in various azimuths and depth slices of average electrical resistivity covering the basin. The depth slices and the vintage stratigraphic logs revealed an uneven bedrock topography overlain by an irregularly thick (over 180 m) Late Neogene–Quaternary heterolithic sediment cover. Full article
(This article belongs to the Special Issue Applications of EM Methods for Subsurface Exploration)
Show Figures

Figure 1

38 pages, 12831 KiB  
Article
Structural Evolution of the Rio das Velhas Greenstone Belt, Quadrilátero Ferrífero, Brazil: Influence of Proterozoic Orogenies on Its Western Archean Gold Deposits
by Orivaldo Ferreira Baltazar and Lydia Maria Lobato
Minerals 2020, 10(11), 983; https://doi.org/10.3390/min10110983 - 4 Nov 2020
Cited by 21 | Viewed by 7961
Abstract
The Quadrilátero Ferrífero region is located in the extreme southeast of the Brasiliano São Francisco craton, Minas Gerais state, Brazil. It is composed of (i) Archean TTG granite-gneaissic terranes; (ii) the Archean Rio das Velhas greenstone belt; (iii) the Proterozoic metasedimentary and metavolcano-sedimentary [...] Read more.
The Quadrilátero Ferrífero region is located in the extreme southeast of the Brasiliano São Francisco craton, Minas Gerais state, Brazil. It is composed of (i) Archean TTG granite-gneaissic terranes; (ii) the Archean Rio das Velhas greenstone belt; (iii) the Proterozoic metasedimentary and metavolcano-sedimentary covers. The Rio das Velhas rocks were deposited in the synformal NW–SE-directed Nova Lima basin. The Archean deformation converted the Nova Lima basin into an ample synclinorium with an eastern inverted flank. Archean orogenic gold mineralization within the Rio das Velhas greenstone belt rocks is controlled by NNW–SSE-directed, Archean regional shear zones subparallel to the strata of the Nova Lima synclinorium borders. Transamazonian and Brasiliano orogenies are superposed onto the Archean structures that control gold mineralization. In the eastern domain, Brasiliano fold-and-fault belts prevail, whereas in the western domain Archean and Transamazonian structures abound. The present study focus mainly is the western domain where the Cuiabá, Morro Velho, Raposos, Lamego and Faria deposits are located. Gold orebodies plunge to the E–NE and are tectonically controlled by the Archean D1–D2 deformation. The D3 Transamazonian compression—Which had a SE–NW vector sub-parallel to the regional mineralized Archean foliation/bedding—Buckled these structures, resulting in commonly open, synformal and antiformal regional folds. These are well documented near the gold deposits, with NE–SW axial traces and fold axes plunging to E–NE. Such folds are normal to inverted, NW-verging, with an axial planar foliation dipping moderately to the SE. The Transamazonian compression has only been responsible for the reorientation of the mineralized Archean gold ores, due to coaxial refolding characterized by an opposite tectonic transport. It has therefore not caused any other significant changes. Thrust shear zones, sub-parallel to the strong Transamazonian foliation, have given rise to localized metric segmentation and to the dislocation of gold orebodies. Throughout the region, along the towns of Nova Lima to Sabará, structures pertaining to the Brasiliano Araçuaí orogeny are represented only by gentle folding and by a discrete, non-pervasive crenulation cleavage. Thrust-shear zones and small-scale normal faults have caused, at most, metric dislocations along N–S-oriented planes. Full article
(This article belongs to the Special Issue Gold Deposits in Brazil)
Show Figures

Figure 1

22 pages, 5588 KiB  
Article
New Insights for Understanding the Structural Deformation Style of the Strike-Slip Regime along the Wadi Shueib and Amman-Hallabat Structures in Jordan Based on Remote Sensing Data Analysis
by Mu’ayyad Al Hseinat, Abdulla Al-Rawabdeh, Malek Al-Zidaneen, Hind Ghanem, Masdouq Al-Taj, Abdullah Diabat, Ghaleb Jarrar and Mohammad Atallah
Geosciences 2020, 10(7), 253; https://doi.org/10.3390/geosciences10070253 - 2 Jul 2020
Cited by 16 | Viewed by 6521
Abstract
This paper presents new findings that contribute to the understanding of the deformational style of the Wadi Shueib Structure (WSS) and the Amman-Halabat Structure (AHS) and their relationship with the regional tectonic regime of the Dead Sea Transform Fault (DSTF). Our research utilized [...] Read more.
This paper presents new findings that contribute to the understanding of the deformational style of the Wadi Shueib Structure (WSS) and the Amman-Halabat Structure (AHS) and their relationship with the regional tectonic regime of the Dead Sea Transform Fault (DSTF). Our research utilized Landsat-8 OLI imagery for the automatic extraction of lineaments, and our lineament mapping was facilitated by processing and digital image enhancement using principal component analysis (PCA). Our data revealed a relatively higher density of lineaments along the extension of the major faults of the WSS and AHS. However, a relatively lower density of lineaments was shown in areas covered by recent deposits. Two major lineament trends were observed (NNE-SSW and NW-SE) in addition to a minor one (NE-SW), and most of these lineaments are parallel to the orientation of the WSS and AHS. We offer the supposition that the DSTF has merged into the major faults of the WSS and AHS. We further suppose that these faults were reactivated as a restraining bend composed of active strike-slip fault branches that developed due to the NNW-SSE-trending Dead Sea transpressional stress field. Depending on the relationship between the direction of the WSF and AHF strands and the regional tectonic displacement along the DSTF, thrust components are present on faults with horsetail geometry, and these movements are accompanied by folding and uplifting. Thus, the major faults of the WSS and AHS represent a contractional horsetail geometry with associated folding and thrusting deformation. Full article
(This article belongs to the Special Issue Landscape Evolution in Tectonically Active Regions)
Show Figures

Graphical abstract

21 pages, 13263 KiB  
Article
The Zagreb (Croatia) M5.5 Earthquake on 22 March 2020
by Snježana Markušić, Davor Stanko, Tvrtko Korbar, Nikola Belić, Davorin Penava and Branko Kordić
Geosciences 2020, 10(7), 252; https://doi.org/10.3390/geosciences10070252 - 1 Jul 2020
Cited by 61 | Viewed by 34929
Abstract
On 22 March 2020, Zagreb was struck by an M5.5 earthquake that had been expected for more than 100 years and revealed all the failures in the construction of residential buildings in the Croatian capital, especially those built in the first half of [...] Read more.
On 22 March 2020, Zagreb was struck by an M5.5 earthquake that had been expected for more than 100 years and revealed all the failures in the construction of residential buildings in the Croatian capital, especially those built in the first half of the 20th century. Because of that, extensive seismological, geological, geodetic and structural engineering surveys were conducted immediately after the main shock. This study provides descriptions of damage, specifying the building performances and their correlation with the local soil characteristics, i.e., seismic motion amplification. Co-seismic vertical ground displacement was estimated, and the most affected area is identified according to Sentinel-1 interferometric wide-swath data. Finally, preliminary 3D structural modeling of the earthquake sequence was performed, and two major faults were modeled using inverse distance weight (IDW) interpolation of the grouped hypocenters. The first-order assessment of seismic amplification (due to site conditions) in the Zagreb area for the M5.5 earthquake shows that ground motions of approximately 0.16–0.19 g were amplified at least twice. The observed co-seismic deformation (based on Sentinel-1A IW SLC images) implies an approximately 3 cm uplift of the epicentral area that covers approximately 20 km2. Based on the preliminary spatial and temporal analyses of the Zagreb 2020 earthquake sequence, the main shock and the first aftershocks evidently occurred in the subsurface of the Medvednica Mountains along a deep-seated southeast-dipping thrust fault, recognized as the primary (master) fault. The co-seismic rupture propagated along the thrust towards northwest during the first half-hour of the earthquake sequence, which can be clearly seen from the time-lapse visualization. The preliminary results strongly support one of the debated models of the active tectonic setting of the Medvednica Mountains and will contribute to a better assessment of the seismic hazard for the wider Zagreb area. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

89 pages, 35775 KiB  
Review
Thick-Skinned and Thin-Skinned Tectonics: A Global Perspective
by O. Adrian Pfiffner
Geosciences 2017, 7(3), 71; https://doi.org/10.3390/geosciences7030071 - 17 Aug 2017
Cited by 132 | Viewed by 38528
Abstract
This paper gives an overview of the large-scale tectonic styles encountered in orogens worldwide. Thin-skinned and thick-skinned tectonics represent two end member styles recognized in mountain ranges. Both styles are encountered in former passive margins of continental plates. Thick-skinned style including the entire [...] Read more.
This paper gives an overview of the large-scale tectonic styles encountered in orogens worldwide. Thin-skinned and thick-skinned tectonics represent two end member styles recognized in mountain ranges. Both styles are encountered in former passive margins of continental plates. Thick-skinned style including the entire crust and possibly the lithospheric mantle are associated with intracontinental contraction. Delamination of subducting continental crust and horizontal protrusion of upper plate crust into the opening gap occurs in the terminal stage of continent-continent collision. Continental crust thinned prior to contraction is likely to develop relatively thin thrust sheets of crystalline basement. A true thin-skinned type requires a detachment layer of sufficient thickness. Thickness of the décollement layer as well as the mechanical contrast between décollement layer and detached cover control the style of folding and thrusting within the detached cover units. In subduction-related orogens, thin- and thick-skinned deformation may occur several hundreds of kilometers from the plate contact zone. Basin inversion resulting from horizontal contraction may lead to the formation of basement uplifts by the combined reactivation of pre-existing normal faults and initiation of new reverse faults. In most orogens thick-skinned and thin-skinned structures both occur and evolve with a pattern where nappe stacking propagates outward and downward. Full article
Show Figures

Figure 1

19 pages, 19841 KiB  
Review
Continental Collision Structures and Post-Orogenic Geological History of the Kangerlussuaq Area in the Southern Part of the Nagssugtoqidian Orogen, Central West Greenland
by Jon Engström and Knud Erik S. Klint
Geosciences 2014, 4(4), 316-334; https://doi.org/10.3390/geosciences4040316 - 10 Dec 2014
Cited by 17 | Viewed by 9954
Abstract
Deep-seated continental collision sutures, formed at a depth of more than 20 km, are exposed near Kangerlussuaq, close to the Greenland ice cap, on the southern margin of the Nagssugtoqidian orogen in Central West Greenland, thus offering a rare opportunity to study the [...] Read more.
Deep-seated continental collision sutures, formed at a depth of more than 20 km, are exposed near Kangerlussuaq, close to the Greenland ice cap, on the southern margin of the Nagssugtoqidian orogen in Central West Greenland, thus offering a rare opportunity to study the tectonic deformation style of such an orogen. This paper adds new information on the tectonic history of the southern flank of the Nagssugtoqidian orogen. It focuses on (1) the results of a detailed structural investigation of lineament zones revealed from remote sensing of geophysical and topographic data and aerial photo interpretation, (2) detailed geological mapping at key locations and (3) a tectonic structural model describing the geological development of the area. The area has undergone several episodes of deformation, which have been compiled into an event succession that recognizes eight tectonic events overprinting each other: Two stages of folding (F1 and F2) have been identified along with one major episode of intrusion of the Kangâmiut mafic dyke swarm (2.05 Ga) into the Archaean continent. These dyke intrusions are very important, since by examining the style of deformation for these intrusions it is possible to define the transition from the North Atlantic Craton in the south to the mobile belts in the Nagssugtoqidian orogen in the north. Five different types of pronounced lineaments and one less pronounced lineament post-dating the Kangâmiut dykes extending from ductile deformation shearing events to brittle deformation with extensive faulting. These lineaments cover both the collisional and post-collisional tectonic history of the area. The study focused on two types of lineaments: one semi-ductile type trending E–W with a dextral sense of shear and a second, a pronounced lineament outlining the Kangerlussuaq–Russell thrust fault. These two features are interpreted to be related to the Nagssugtoqidian orogeny, while the latter lineaments have a more brittle appearance and are regarded to be considerably younger and probably related to post-orogenic tectonic events. Full article
(This article belongs to the Special Issue Geological Mapping and Modeling of Earth Architectures)
Show Figures

Graphical abstract

Back to TopTop