New Insights for Understanding the Structural Deformation Style of the Strike-Slip Regime along the Wadi Shueib and Amman-Hallabat Structures in Jordan Based on Remote Sensing Data Analysis
Abstract
:1. Introduction
2. Previous Studies
3. Regional Tectonic Setting
4. Geological Setting of the Study Area
5. Materials and Methods
6. Results and Discussion
6.1. Lineament Density Map
6.2. Tectonic Implications
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moody, J.; Hill, M. Wrench-fault tectonics. Geol. Soc. Am. Bull. 1956, 67, 1207. [Google Scholar] [CrossRef]
- Wilcox, R.E.; Harding, T.P.; Seely, D. Basic wrench tectonics. AAPG 1973, 57, 74–96. [Google Scholar]
- Sanderson, D.; Marchini, W. Transpression. J. Struct. Geol. 1984, 6, 449–458. [Google Scholar] [CrossRef]
- Bond, G.; Christie-Blick, N.; Kominz, M.; Devlin, W. An early Cambrian rift to post-rift transition in the Cordillera of western North America. Nature 1985, 315, 742–746. [Google Scholar] [CrossRef] [Green Version]
- Sylvester, A. Strike-slip faults. Geol. Soc. Am. Bull. 1988, 100, 1666–1703. [Google Scholar] [CrossRef]
- Storti, F.; Holdsworth, R.; Salvini, F. Intraplate Strike-Slip Deformation Belts; Geological Society: London, UK; Special Publications: London, UK, 2003; Volume 210, pp. 1–14. [Google Scholar] [CrossRef] [Green Version]
- Pluijm, B.; Marshak, S. Earth structure: An Introduction to Structural Geology and Tectonics; Norton: New York, NY, USA, 2004. [Google Scholar]
- Kim, Y.-S.; Sanderson, D.J. Structural similarity and variety at the tips in a wide range of strike-slip faults: A review. Terra Nova 2006, 18, 330–344. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, X.; Rao, G.; Wang, R. Mesozoic reactivated transpressional structures and multi-stage tectonic deformation along the Hong-Che fault zone in the northwestern Junggar Basin, NW China. Tectonophysics 2016. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Andrews, J.R.; Sanderson, D.J. Damage zones around strike-slip fault systems and strike-slip fault evolution, Crackington Haven, southwest England. Geosci. J. 2000, 4, 53–72. [Google Scholar] [CrossRef]
- Fossen, H.; Tikoff, B. The deformation matrix for simultaneous simple shearing, pure shearing and volume change, and its application to transpression-transtension tectonics. J. Struct. Geol. 1993, 15, 413–422. [Google Scholar] [CrossRef]
- Fossen, H. Structural Geology, 2nd ed.; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Quennell, A.M. Tectonics of the Dead Sea Rift. International Geological Congress 20th; Association of African Geological Surveys: Mexico City, Mexico, 1959; pp. 385–403. [Google Scholar]
- Garfunkel, Z. Internal structure of the Dead Sea leaky transform (rift) in relation to plate kinematics. Tectonophysics 1981, 80, 81–108. [Google Scholar] [CrossRef]
- Mikbel, S.; Zacher, W. Fold structures in northern Jordan. Neues Jahrbuch für Geologie und Paläontologie. Monatshefte 1981, 4, 248–256. [Google Scholar]
- Mikbel, S.; Zacher, W. The Wadi Shueib structure in Jordan: Neues Jahrbuch für Geologie und Paläontologie. Monatshefte 1986, 9, 571–576. [Google Scholar]
- Diabat, A.; Atallah, M.; Salih, M. Paleostress analysis of the Cretaceous rocks in the eastern margin of the Dead Sea Transform. J. Afr. Earth Sci. 2004, 38, 449–460. [Google Scholar] [CrossRef]
- Al Hseinat, M. Structural Analysis of the Wadi Shueib Fold Belt, Jordan. Master’s. Thesis, Yarmouk University, Irbid, Jordan, 2009. [Google Scholar]
- Al-Awabdeha, M.; Pérez-Peñaab, J.V.; Azañónac, J.M.; Booth-Reaac, G.; Abed, A.; Atallah, M.; Galvea, J.P. Quaternary tectonic activity in NW Jordan: Insights for a new model of transpression-transtension in the southern Dead Sea Transform Fault. Tectonophysics 2016, 693, 465–473. [Google Scholar] [CrossRef]
- Cianfarra, P.; Salvini, F. Lineament domain of regional strike-slip corridor: Insight from the Neogene transtensional De Geer Transform Fault in NW Spitsbergen. Pure Appl. Geophys. 2015, 172, 1185–1201. [Google Scholar] [CrossRef] [Green Version]
- Oakey, G. A structural fabric defined by topographic lineaments: Correlation with Tertiary deformation of Ellesmere and Axel Heiberg Islands, Canadian Arctic. J. Geophys. Res. 1994, 99, 148–227. [Google Scholar] [CrossRef]
- Fichler, C.; Rundhovde, E.; Olesen, O.; Saether, B.M.; Ruelatten, H.; Lundin, E.; Dore, A.G. Regional tectonic interpretation of image enhanced gravity and magnetic data covering the mid-Norweigian shelf and adjacent mainland. Tectonophysics 1999, 306, 183–197. [Google Scholar] [CrossRef]
- Kudo, T.; Yamamoto, A.; Nohara, T.; Kinoshita, H.; Shichi, R. Variations of gravity anomaly roughness in Chugoku district, Japan: Relationship with distributions of topographic lineaments. Earth Planets Space 2004, 56, 5–8. [Google Scholar] [CrossRef] [Green Version]
- Salem, A.; Furuya, S.; Aboud, E.; Elawadi, E.; Jotaki, H.; Ushijima, K. Subsurface structural mapping using gravity data of Hohi Geothermal Area, Central Kyushu, Japan. In Proceedings of the World Geothermal Congress, Antalya, Turkey, 24–29 April 2005. [Google Scholar]
- Milbury, A.E.C.; Smrekar, S.E.; Raymond, C.A.; Schubert, G. Lithospheric structure in the east region of Mars’dichotomy boundary. Planet. Space Sci. 2007, 55, 280–288. [Google Scholar] [CrossRef]
- Austin, J.R.; Blenkinsop, T.G. The Cloncurry Lineament: Geophysical and geological evidence for a deep crustal structure in the Eastern Succession of the Mount Isa Inlier. Precambrian Res. 2008, 163, 50–68. [Google Scholar] [CrossRef]
- Kassou, A.; Essahlaoui, A.; Aissa, M. Extraction of Structural Lineaments from Satellite Images Landsat7 ETM+ of Tighza Mining District (Central Morocco). Res. J. Earth Sci. 2012, 4, 44–48. [Google Scholar]
- Casas, A.M.; Cortes, A.L.; Maestro, A.; Soriano, M.A.; Riaguas, A.; Bernal, J.A. LIDENS: A program for lineament length and density analysis. Comput. Geosci. 2000, 26, 1011–1022. [Google Scholar] [CrossRef] [Green Version]
- McElfresh, S.B.Z.; Harbert, W.; Ku, C.Y.; Lin, J.S. Stress modeling of tectonic blocks at Cape Kamchatka, Russia using principal stress proxies from high-resolution SAR: New evidence for the Komandorskiy block. Tectonophysics 2002, 354, 239–256. [Google Scholar] [CrossRef]
- Aldharab, H.S.; Ali, S.A.; Ikbal, J.; Ghareb, S. GIS and hypsometry based analysis on the evolution of sub-basins in Ataq area-Shabwah, Yemen. Int. J. Res. Appl. Sci. Eng. Technol. 2018, 6, 3489–3497. [Google Scholar] [CrossRef]
- Aldharab, H.S.; Ali, S.A.; Ikbal, J.; Ghareb, S.A. Spatial analysis of lineaments and their tectonic significance using Landsat imagery in Alarasah area-southeastern central Yemen. J. Geogr. Environ. Earth Sci. Int. 2018, 18, 1–13. [Google Scholar] [CrossRef]
- Donoghue, D.; Thomas, M. Remote Sensing and Image Interpretation; Thomas, M., Ralph, W.K., Jonathan, C., Eds.; John Wiley: New York, NY, USA, 2000; p. 736. [Google Scholar]
- Prasad, A.D.; Jain, K.; Gairola, A. Mapping of Lineaments and Knowledge Base Preparation using Geomatics Techniques for part of the Godavari and Tapi Basins, India: A Case Study. Int. J. Comput. Appl. 2013, 70, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Hardcastle, K.C. Photolineament factor: A new computer-aided method for remotely sensing the degree to which the bedrock is fractured. Photogramm. Eng. Remote. Sens. 1995, 61, 739–747. [Google Scholar]
- Stockli, R.; Vermote, E.; Saleous, N.; Simmon, R.; Herring, D. The Blue Marble Next Generation—A True Color Earth Dataset Including Seasonal Dynamics from Modis; Dataset User′s Manual; NASA Earth Observatory: Washington, DC, USA, 2005. [CrossRef]
- Becker, J.; Sandwell, D.; Smith, W.; Braud, J.; Binder, B.; Depner, J. Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS. Mar. Geod. 2009, 32, 355–371. [Google Scholar] [CrossRef]
- Beicip. Structural Map of Jordan, Scale 1:5,000,000, Geological Mapping Division; Natural Resources Authority: Amman, Jordan, 1981. [Google Scholar]
- Alavi, M. Tectonic Map of the Middle East, Scale 1:5,000,000: Geological. Surv. Iran. 1991. [Google Scholar]
- Taymaz, T.; Jackson, J.; McKenzie, D. Active tectonics of the North and Central Aegean Sea. Geophys. J. Int. 1991, 106, 433–490. [Google Scholar] [CrossRef]
- McClusky, S.; Balassanian, S.; Barka, A.; Demir, C.; Ergintav, S.; Georgiev, I.; Gurkan, O.; Hamburger, M.; Hurst, K.H.; Kahle, H.; et al. Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J. Geophys. Res. 2000, 105, 5695–5719. [Google Scholar] [CrossRef]
- Brew, G.E. Tectonic Evolution of Syria Interpreted from Integrated Geophysical and Geological Analysis. Ph.D. Thesis, Cornell University of New York, New York, NY, USA, 2001. [Google Scholar]
- Ziegler, M.A. Late Permian to Holocene paleofacies evolution of the Arabian plate and its hydrocarbon occurrences. GeoArabia 2001, 6, 445–504. [Google Scholar]
- Fox, J.E.; Ahlbrandt, T.S. Petroleum Geology and Total Petroleum Systems of the Widyan Basin and Interior Platform of Saudi Arabia and Iraq; US Geological Survey, US Department of the Interior: Denver, CO, USA, 2002.
- Diabat, A.; Masri, A. Orientation of the principal stresses along Zerqa-Ma’in Fault. Mu’tah Lil-Buhuth Wad-Dirasat 2005, 20, 57–71. [Google Scholar]
- Dilek, Y. Eastern Mediterranean geodynamics. Int. Geol. Rev. 2010, 52, 111–116. [Google Scholar] [CrossRef]
- Radaideh, O.M.A.; Melichar, R. Tectonic paleostress fields in the southwestern part of Jordan: New insights from the fault slip data in the southeastern flank of the Dead Sea Fault Zone. Tectonics 2015, 34, 1863–1891. [Google Scholar] [CrossRef]
- Atallah, M. Tectonic evolution of northern Wadi Araba, Jordan. Tectonophysics 1992, 204, 17–26. [Google Scholar] [CrossRef]
- Atallah, M. On the structural pattern of the Dead Sea Transform and its related structures in Jordan. Abhath Al Yarmouk 1992, 1, 127–143. [Google Scholar]
- Chaimov, T.A.; Barazangi, M.; Al-Saad, D.; Sawaf, T.; Gebran, A. Mesozoic and Cenozoic deformation inferred from seismic stratigraphy in the southwestern intracontinental Palmyride fold-thrust belt, Syria. Geol. Soc. Am. Bull. 1992, 104, 704–715. [Google Scholar] [CrossRef] [Green Version]
- Muneizel, S.S.; Khalil, B. The Geology of Al−Salt Map Sheet No. 3154−III. NRA. Internal report for the Natural Resources Authority, National Mapping Project. Geol. Dir. Geol. Map. Div. Amman 1993. [Google Scholar]
- Sawareih, A.; Barjous, M. The Geology of Suwaylih Map Sheet No. 3154-II. NRA. Internal report for the Natural Resources Authority, National Mapping Project. Geol. Dir. Geol. Map. Div. Amman 1993. [Google Scholar]
- Shawabkeh, K. The geology of Al Karama Area. Map Sheet No. 3153-IV, Internal report for the Natural Resources Authority, National Mapping Project. Geol. Dir. Geol. Map. Div. Bulletin 57 Amman 2001. [Google Scholar]
- Diabat, A.; Abdelghafoor, M. The Geology of Amman Map Sheet No. 3153-I. NRA. Internal report for the Natural Resources Authority, National Mapping Project. Geol. Dir. Geol. Map. Div. Amman 2004. [Google Scholar]
- Burdon, D.J. Handbook of the Geology of Jordan: To Accompany and Explain the Three Sheets of the 1:250,000 Geological Map of Jordan East of the Rift by Albert M. Quennell; Government of the Hashemite Kingdom of Jordan: Benham, UK, 1959.
- Bender, F. Geologie von Jordanien—Beiträge zur Regionalen Geologie der Erde; 7 Gebruder Borntraeger: Stuttgart, Germany, 1968. [Google Scholar]
- Quennell, A.M. The Western Arabia rift system. Geol. Soc. Lond. Spec. Publ. 1984, 17, 775–788. [Google Scholar] [CrossRef]
- Abed, A.M. On the genesis of the phosphorite—Chert association of the Amman formation in the Tel Es-Sur area, Ruseifa, Jordan. Sci. Geol. Bull. 1989, 42, 141–153. [Google Scholar] [CrossRef]
- Atallah, M.; Mikbel, S.H. Structural analysis of the folds between Wadi El Yabis and the basalt plateau, northern Jordan. Dirasat 1992, 19, 43–58. [Google Scholar]
- Sahawneh, J.; Atallah, M. Tectonic evolution of the north-eastern corner of the Dead Sea, Jordan. Abhath Al Yarmouk 2002, 11, 581–598. [Google Scholar]
- Diabat, A. Structural and stress analysis based on fault-slip data in the Amman area, Jordan. J. Afr. Earth Sci. 2009, 54, 155–162. [Google Scholar] [CrossRef]
- Langridge, R.M.; Ries, W.F.; Farrier, T.; Barth, N.C.; Khajavi, N.; De Pascale, G.P. Developing sub 5-m LiDAR DEMs for forested sections of the Alpine and Hope faults, South Island, New Zealand: Implications for structural interpretations. J. Struct. Geol. 2014, 64, 53–66. [Google Scholar] [CrossRef]
- Radaideh, O.M.; Grasemann, B.; Melichar, R.; Mosar, J. Detection and analysis of morphotectonic features utilizing satellite remote sensing and GIS: An example in SW Jordan. Geomorphology 2016, 275, 58–79. [Google Scholar] [CrossRef] [Green Version]
- Mark, R.K. A Multidirectional, Oblique-Weighted, Shaded-Relief Image of the Island of Hawaii (No. 92-422); US Dept. of the Interior, US Geological Survey: Reston, VA, USA, 1992.
- Juhari, M.A.; Ibrahim, A. Geological applications of Landsat TM imagery: Mapping and analysis of lineaments in NW Peninsula Malaysia. In Proceedings of the 18th Asia Conference on Remote Sensing, Kuala Lumpur, Malaysia, 20–24 October 1997; pp. J-1-1–J-1-8. [Google Scholar]
- Akman, A.Ü.; Tüfekci, K. Determination and characterization of fault systems and geomorphological features by RS and GIS techniques in the WSW part of Turkey. In Proceedings of the 20th ISPRS Congress, Istanbul, Turkey, 12–23 July 2004; pp. 899–904. [Google Scholar]
- Micheal, W.F.P.G. Lineaments Analysis South Florida Region, Aquifer Storage and Recovery Regional Study; Draft Technical Memorandum, Central and Southern Florida Project; Army Corps of Engineers: Jacksonville, FL, USA, 2004.
- Walker, R.T. Remote Sensing study of active folding and faulting in southern Kerman province, southeast Iran. J. Struct. Geol. 2006, 28, 654–668. [Google Scholar] [CrossRef]
- Freund, R. A model of the structural development of Israel and adjacent areas since Upper Cretaceous times. Geol. Mag. 1965, 102, 189–205. [Google Scholar] [CrossRef]
- Wilson, J.T. A new class of faults and their bearing on continental drift. Nature 1965, 207, 343–347. [Google Scholar] [CrossRef]
- Larsen, B.; Ben-Avraham, Z.; Shulman, H. Fault and salt tectonics in the southern Dead Sea basin. Tectonophysics 2002, 346, 71–90. [Google Scholar] [CrossRef]
- Mahmoud, Y.; Masson, F.; Meghraoul, M.; Cakir, Z.; Alchalbi, A.; Yavaoglu, H.; Yönlü, O.; Daoud, M.; Ergintav, S.; Inan, S. Kinematic study at the junction of the East Anatolian fault and the Dead Sea fault from GPS measurements. J. Geodyn. 2013, 67, 30–39. [Google Scholar] [CrossRef]
- Garfunkel, Z.; Zak, I.; Freund, R. Active faulting in the Dead Sea rift. The Dead Sea Rift. Tectonophysics 1981, 80, 1–26. [Google Scholar] [CrossRef]
- Girdler, R. The Dead Sea transform system. Tectonophysics 1990, 180, 1–13. [Google Scholar] [CrossRef]
- Alchalbi, A.; Daoud, M.; Gomez, F.; McClusky, S.; Reilinger, R.; Abu Romeyeh, M.; Alsouod, A.; Yassminh, A.; Ballani, B.; Darawcheh, R.; et al. Crustal deformation in northwestern Arabia from GPS measurements in Syria: Slow slip rate along the northern Dead Sea Fault. Geophys. J. Int. 2010, 180, 125–135. [Google Scholar] [CrossRef] [Green Version]
- Bosworth, W.; Huchon, P.; McClay, J. The Red Sea and Gulf of Aden Basins. J. Afr. Earth Sci. 2005, 43, 334–378. [Google Scholar] [CrossRef]
- Quennell, A.M. Evolution of the Dead Sea Rift. In Proceedings of the 1st Jordan Geological Conference: Amman, Jordan; Abed, A.M., Khaled, H.M., Eds.; The University of Jordan: Amman, Jordan, 1983; pp. 460–482. [Google Scholar]
- Al-Tawalbeh, M.; Atallah, M.; Al Tamimi, M. Structural Evolution of the Area North of Ajloun Dome, Jordan. Jordan J. Earth Environ. Sci. 2017, 8, 55–60. [Google Scholar]
- Abutaha, S.; Atallah, M.; Abed, A.M. Structural Evolution of Wadi Hudaydun in Wadi Shueib Area, NW Jordan. Jordan J. Earth Environ. Sci. 2019, 10, 152–160. [Google Scholar]
- Salameh, E.; Zacher, W. Horizontal stylotites and paleostress in Jordan. Neues Jahrbuch für Geologie und Paläontologie. Monatshefte 1982, 8, 509–512. [Google Scholar]
- Diabat, A. Paleostress and strain analysis of the Cretaceous Rocks in the Eastern Margin of the Dead Sea Transform, Jordan. Ph.D. Thesis, Baghdad University, Baghdad, Iraq, 1999. [Google Scholar]
- Diabat, A. Strain analysis of the Cretaceous rocks in the Eastern margin of the Dead Sea Transform, Jordan. Dirasat 2002, 29, 159–172. [Google Scholar]
- Diabat, A. The state of paleostress along the Siwaqa fault based on fault-slip data. Al Manarah 2006, 12, 131–150. [Google Scholar]
- Zain Eldeen, U.; Delvaux, D.; Jacobs, P. Tectonic evolution in the Wadi Araba Segment of the Dead Sea Rift, Southwest Jordan. EGU Stephan Mueller Spec. Publ. Ser. 2002, 2, 63–81. [Google Scholar] [CrossRef]
- Diabat, A.; Salih, M.; Atallah, M. Magnitudes of the paleostresses at the Eastern Rim of the Dead Sea Transform Fault, Jordan. Dirasat 2003, 30, 1–18. [Google Scholar]
- Alhejoj, I.; Alqudah, M.; Alzughoul, K.; Tarawneh, A. Post-Cretaceous Mesostructures and Their Formation Mechanisms, Jordan. Jordanian J. Earth Environ. Sci. 2019, 9, 116–126. [Google Scholar]
- Joffe, S.; Garfunkel, Z. Plate kinematics of the circum Red Sea. A re-evaluation. Tectonophysics 1987, 141, 5–22. [Google Scholar] [CrossRef]
- Chu, D.; Gordon, R.G. Current plate motions across the Red Sea. Geophys. J. Int. 1998, 135, 313–328. [Google Scholar] [CrossRef]
- Zak, I.; Freund, R. Recent strike-slip movement along the Dead Sea Rift. Isr. J. Earth Sci. 1966, 15, 33–37. [Google Scholar]
- Freund, R.; Zak, I.; Garfunkel, Z. Age and rate of the sinistral movement along the Dead Sea rift. Nature 1968, 220, 253–255. [Google Scholar] [CrossRef]
- McKenzie, D.; Davies, D.; Molnar, P. Plate tectonics of the Red Sea and East Africa. Nature 1970, 226, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Ben-Avraham, Z.; Almagor, G.; Garfunkel, Z. Sediments and structures of the Gulf of Elat (Aqaba)—Northern Read Sea. Sediment. Geol. 1979, 23, 239–267. [Google Scholar] [CrossRef]
- Shapira, A.; Hofstetter, H. Source parameters and scaling relationships of earthquakes in Israel. Tectonophysics 1993, 217, 217–226. [Google Scholar] [CrossRef]
- Klinger, Y.; Avouac, J.P.; AbouKaraki, N.; Dorbath, L.; Bourles, D.; Reyss, J.L. Slip-rate on the Dead Sea transform fault in northern Araba valley. Geophys. J. Int. 2000, 142, 755–768. [Google Scholar] [CrossRef] [Green Version]
- Klinger, Y.; Avouac, J.P.; Dorbath, C.; Abou Karaki, N.; Tisnerat, N. Seismic behavior of the Dead Sea fault along Araba valley, Jordan. Geophys. J. Int. 2000, 142, 769–782. [Google Scholar] [CrossRef] [Green Version]
- Meghraoui, M. Paleoseismic History of the Dead Sea Fault Zone. In Encyclopedia of Earthquake Engineering; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef] [Green Version]
- Niemi, T.; Zhang, H.; Atallah, M.; Harrison, J. Late Pleistocene and Holocene slip-rate of the northern Wadi Araba fault, Dead Sea transform, Jordan. J. Seismol. 2001, 5, 449–474. [Google Scholar] [CrossRef]
- Ferry, M.; Meghraoui, M.; Abu Karaki, N.; Al-Taj, M.; Amoush, H.; Al-Dhaisat, S.Y.; Barjous, M. A 48-kyr-long slip rate history for the Jordan Valley segment of the Dead Sea Fault. Earth Planet. Sci. Lett. 2007, 260, 394–406. [Google Scholar] [CrossRef]
- Bender, F. Geology of the Arabian Peninsula (Jordan); US Geological Survey: Reston, VA, USA, 1975.
- Powell, J.H. Stratigraphy and sedimentation of the Phanerozoic rocks in central and southern Jordan. Part B: Kurnub, Ajlun, and Belqa groups. Natural Resources Authority. Geol. Dir. Geol. Map. Div. 1989, 11, 130. [Google Scholar]
- Powell, J.H.; Moh’d, B.K. Evolution of Cretaceous to Eocene alluvial and carbonate platform sequences in central and south Jordan. GeoArabia 2011, 16, 29–82. [Google Scholar]
- Abed, A.M. Geology of Jordan. It’s Environment and Water; Scientific Series 1; Publication of Association of Jordanian Geologists: Arabic, Jordan, 2000; p. 571. [Google Scholar]
- Al-Taj, M.M. Active faulting along the Jordan Valley segment of the Jordan–Dead Sea Transform. Ph.D. Thesis, University of Jordan, Amman, Jordan, 2000. [Google Scholar]
- Environmental Systems Research Institute (Esri, ArcGIS® 10.7). 2019. Available online: http://www.esri.com (accessed on 8 December 2019).
- Sabins, F.F. Remote Sensing: Principles and Interpretation, 3rd ed.; W.H. Freeman and Company: New York, NY, USA, 1996; p. 494. [Google Scholar]
- PCI Geomatics. Geomatica Online Help. 2018. Available online: http://www.pcigeomatics.com/geomatica-help/ (accessed on 20 August 2019).
- Hung, L.Q.; Dinh, N.Q.; Batelaan, O.; Tam, V.T.; Lagrou, D. Remote sensing and GIS-based analysis of cave development in the Suoimuoi Catchment (Son La—NW Vietnam). J. Cave Karst Stud. 2002, 64, 23–33. [Google Scholar]
- RockWare Geoscientific Software. Online Help. Available online: https://www.rockware.com/ (accessed on 1 July 2019).
- Chopra, S. Interpreting fractures through 3D seismic discontinuity attributes and their visualization. CSEG Recocrder 2009, 34, 5–14. [Google Scholar]
- Pinheiro, M.R.; Cianfarra, P.; Salvini, F. Tectonics of the Northeastern border of the Parana Basin (Southeastern Brazil) revealed by lineament domain analysis. J. S. Am. Earth Sci. 2019, 94, 102231. [Google Scholar] [CrossRef]
- Wise, D.U.; Funiciello, R.; Parotto, M.; Salvini, F. Topographic lineament swarms: Clues to their origin from domain analysis of Italy. Geol. Soc. Am. Bull. 1985, 96, 952–967. [Google Scholar] [CrossRef]
- Al-Awabdeha, M.; Pérez-Peñaab, J.V.; Azañónac, J.M.; Booth-Reaac, G.; Abed, A.; Atallah, M.; Galvea, J.P. Stress analysis of NW Jordan: New episode of tectonic rejuvenation related to the Dead Sea transform fault. Arab. J. Geosci. 2016, 9, 264. [Google Scholar] [CrossRef]
- Palano, M.; Imprescia, P.; Gresta, S. Current stress and strain-rate fields across the Dead Sea Fault System: Constraints from seismological data and GPS observations. Earth Planet. Sc. Lett. 2013, 369, 305–316. [Google Scholar] [CrossRef]
- Cianfarra, P.; Maggi, M. Cenozoic extension along the reactivated Aurora Fault System in the East Antarctic Craton. Tectonophysics 2017, 703, 135–143. [Google Scholar] [CrossRef]
- Carreras, J. Zooming on Northern Cap de Creus shear zones. J. Struct. Geol. 2001, 23, 1457–1486. [Google Scholar] [CrossRef]
- Cunningham, W.D.; Mann, P. Tectonics of Strike-Slip Restraining and Releasing Bends; Geological Society: London, UK; Special Publications: London, UK, 2007; Volume 290, pp. 1–12. [Google Scholar]
- Mansoor, N. A GIS-Based Assessment of Active Faults and Liquefaction Potential of the City of Aqaba, Jordan. Master’s Thesis, UMKC, Kansas, MO, USA, 2002. [Google Scholar]
- Mansoor, N.; Niemi, T.; Misra, A. A GIS-based assessment of the liquefaction potential of the city of Aqaba, Jordan. Environ. Eng. Geosci. 2004, 10, 297–320. [Google Scholar] [CrossRef]
- Bowman, D.; King, G.; Tapponnier, P. Slip Partitioning by Elastoplastic Propagation of Oblique Slip at Depth. Science 2003, 300, 1121–1123. [Google Scholar] [CrossRef]
- Jones, R.; Tanner, P. Strain partitioning in transpression zones. J. Struct. Geol. 1995, 17, 793–802. [Google Scholar] [CrossRef]
- Gomez, F.; Nemer, T.; Tabet, C.; Khawlie, M.; Meghraoui, M.; Barazangi, M. Restraining Bend of the Dead Sea Fault (Lebanon and SW Syria) Strain Partitioning of Active Transpression within the Lebanese; Geological Society: London, UK; Special Publications: London, UK, 2007; Volume 290, pp. 285–303. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Hseinat, M.; Al-Rawabdeh, A.; Al-Zidaneen, M.; Ghanem, H.; Al-Taj, M.; Diabat, A.; Jarrar, G.; Atallah, M. New Insights for Understanding the Structural Deformation Style of the Strike-Slip Regime along the Wadi Shueib and Amman-Hallabat Structures in Jordan Based on Remote Sensing Data Analysis. Geosciences 2020, 10, 253. https://doi.org/10.3390/geosciences10070253
Al Hseinat M, Al-Rawabdeh A, Al-Zidaneen M, Ghanem H, Al-Taj M, Diabat A, Jarrar G, Atallah M. New Insights for Understanding the Structural Deformation Style of the Strike-Slip Regime along the Wadi Shueib and Amman-Hallabat Structures in Jordan Based on Remote Sensing Data Analysis. Geosciences. 2020; 10(7):253. https://doi.org/10.3390/geosciences10070253
Chicago/Turabian StyleAl Hseinat, Mu’ayyad, Abdulla Al-Rawabdeh, Malek Al-Zidaneen, Hind Ghanem, Masdouq Al-Taj, Abdullah Diabat, Ghaleb Jarrar, and Mohammad Atallah. 2020. "New Insights for Understanding the Structural Deformation Style of the Strike-Slip Regime along the Wadi Shueib and Amman-Hallabat Structures in Jordan Based on Remote Sensing Data Analysis" Geosciences 10, no. 7: 253. https://doi.org/10.3390/geosciences10070253
APA StyleAl Hseinat, M., Al-Rawabdeh, A., Al-Zidaneen, M., Ghanem, H., Al-Taj, M., Diabat, A., Jarrar, G., & Atallah, M. (2020). New Insights for Understanding the Structural Deformation Style of the Strike-Slip Regime along the Wadi Shueib and Amman-Hallabat Structures in Jordan Based on Remote Sensing Data Analysis. Geosciences, 10(7), 253. https://doi.org/10.3390/geosciences10070253