Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (214)

Search Parameters:
Keywords = covalent organic framework (COF)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 9212 KiB  
Review
Advanced Materials-Based Nanofiltration Membranes for Efficient Removal of Organic Micropollutants in Water and Wastewater Treatment
by Haochun Wei, Haibiao Nong, Li Chen and Shiyu Zhang
Membranes 2025, 15(8), 236; https://doi.org/10.3390/membranes15080236 - 5 Aug 2025
Abstract
The increasing use of pharmaceutically active compounds (PhACs), endocrine-disrupting compounds (EDCs), and personal care products (PCPs) has led to the widespread presence of organic micropollutants (OMPs) in aquatic environments, posing a significant global challenge for environmental conservation. In recent years, advanced materials-based nanofiltration [...] Read more.
The increasing use of pharmaceutically active compounds (PhACs), endocrine-disrupting compounds (EDCs), and personal care products (PCPs) has led to the widespread presence of organic micropollutants (OMPs) in aquatic environments, posing a significant global challenge for environmental conservation. In recent years, advanced materials-based nanofiltration (NF) technologies have emerged as a promising solution for water and wastewater treatment. This review begins by examining the sources of OMPs, as well as the risk of OMPs. Subsequently, the key criteria of NF membranes for OMPs are discussed, with a focus on the roles of pore size, charge property, molecular interaction, and hydrophilicity in the separation performance. Against that background, this review summarizes and analyzes recent advancements in materials such as metal organic frameworks (MOFs), covalent organic frameworks (COFs), graphene oxide (GO), MXenes, hybrid materials, and environmentally friendly materials. It highlights the porous nature and structural diversity of organic framework materials, the advantage of inorganic layered materials in forming controllable nanochannels through stacking, the synergistic effects of hybrid materials, and the importance of green materials. Finally, the challenges related to the performance optimization, scalable fabrication, environmental sustainability, and complex separation of advanced materials-based membranes for OMP removal are discussed, along with future research directions and potential breakthroughs. Full article
Show Figures

Figure 1

15 pages, 5007 KiB  
Article
In Situ Construction of Thiazole-Linked Covalent Organic Frameworks on Cu2O for High-Efficiency Photocatalytic Tetracycline Degradation
by Zhifang Jia, Tingxia Wang, Zhaoxia Wu, Shumaila Razzaque, Zhixiang Zhao, Jiaxuan Cai, Wenao Xie, Junli Wang, Qiang Zhao and Kewei Wang
Molecules 2025, 30(15), 3233; https://doi.org/10.3390/molecules30153233 - 1 Aug 2025
Viewed by 171
Abstract
The strategic construction of heterojunctions through a simple and efficient strategy is one of the most effective means to boost the photocatalytic activity of semiconductor materials. Herein, a thiazole-linked covalent organic framework (TZ-COF) with large surface area, well-ordered pore structure, and high stability [...] Read more.
The strategic construction of heterojunctions through a simple and efficient strategy is one of the most effective means to boost the photocatalytic activity of semiconductor materials. Herein, a thiazole-linked covalent organic framework (TZ-COF) with large surface area, well-ordered pore structure, and high stability was developed. To further boost photocatalytic activity, the TZ-COF was synthesized in situ on the surface of Cu2O through a simple multicomponent reaction, yielding an encapsulated composite material (Cu2O@TZ-COF-18). In this composite, the outermost COF endows the material with abundant redox active sites and mass transfer channels, while the innermost Cu2O exhibits unique photoelectric properties. Notably, the synthesized Cu2O@TZ-COF-18 was proven to have the heterojunction structure, which can efficiently restrain the recombination of photogenerated electron–hole pairs, thereby enhancing the photocatalytic performance. The photocatalytic degradation of tetracycline demonstrated that 3-Cu2O@TZ-COF-18 had the highest photocatalytic efficiency, with the removal rate of 96.3% within 70 min under visible light, which is better than that of pristine TZ-COF-18, Cu2O, the physical mixture of Cu2O and TZ-COF-18, and numerous reported COF-based composite materials. 3-Cu2O@TZ-COF-18 retained its original crystallinity and removal efficiency after five cycles in photodegradation reaction, displaying high stability and excellent cycle performance. Full article
Show Figures

Graphical abstract

29 pages, 23821 KiB  
Review
Covalent Organic Frameworks for Immunoassays: A Review
by Suling Yang and Hongmin Liu
Biosensors 2025, 15(7), 469; https://doi.org/10.3390/bios15070469 - 21 Jul 2025
Viewed by 534
Abstract
Immunoassays relying on highly specific antigen–antibody recognition are important tools for effectively measuring the levels of various targets. Efforts have been made in the development of various methods to improve the detection sensitivity and stability of immunoassays. Covalent organic frameworks (COFs), as an [...] Read more.
Immunoassays relying on highly specific antigen–antibody recognition are important tools for effectively measuring the levels of various targets. Efforts have been made in the development of various methods to improve the detection sensitivity and stability of immunoassays. Covalent organic frameworks (COFs), as an emerging class of novel crystalline porous materials, have unique advantages such as flexible designability, high surface area, excellent stability, tunable pore sizes, and multiple functionalities. They have great potential as novel sensory materials. Herein, we summarize the advances of COFs in electrochemical and optical immunoassays serving as electrode modifiers, signal indicators, enzyme or probe carriers, etc. Meanwhile, the design and application of typical COFs-based immunoassays in the determination of different targets are discussed in detail. Finally, challenges and future perspectives are presented. Full article
(This article belongs to the Special Issue Biosensors Based on Self-Assembly and Boronate Affinity Interaction)
Show Figures

Figure 1

40 pages, 1777 KiB  
Review
Nanomaterials for Direct Air Capture of CO2: Current State of the Art, Challenges and Future Perspectives
by Cataldo Simari
Molecules 2025, 30(14), 3048; https://doi.org/10.3390/molecules30143048 - 21 Jul 2025
Viewed by 415
Abstract
Direct Air Capture (DAC) is emerging as a critical climate change mitigation strategy, offering a pathway to actively remove atmospheric CO2. This comprehensive review synthesizes advancements in DAC technologies, with a particular emphasis on the pivotal role of nanostructured solid sorbent [...] Read more.
Direct Air Capture (DAC) is emerging as a critical climate change mitigation strategy, offering a pathway to actively remove atmospheric CO2. This comprehensive review synthesizes advancements in DAC technologies, with a particular emphasis on the pivotal role of nanostructured solid sorbent materials. The work critically evaluates the characteristics, performance, and limitations of key nanomaterial classes, including metal–organic frameworks (MOFs), covalent organic frameworks (COFs), zeolites, amine-functionalized polymers, porous carbons, and layered double hydroxides (LDHs), alongside solid-supported ionic liquids, highlighting their varied CO2 uptake capacities, regeneration energy requirements, and crucial water sensitivities. Beyond traditional temperature/pressure swing adsorption, the review delves into innovative DAC methodologies such as Moisture Swing Adsorption (MSA), Electro Swing Adsorption (ESA), Passive DAC, and CO2-Binding Organic Liquids (CO2 BOLs), detailing their unique mechanisms and potential for reduced energy footprints. Despite significant progress, the widespread deployment of DAC faces formidable challenges, notably high capital and operational costs (currently USD 300–USD 1000/tCO2), substantial energy demands (1500–2400 kWh/tCO2), water interference, scalability hurdles, and sorbent degradation. Furthermore, this review comprehensively examines the burgeoning global DAC market, its diverse applications, and the critical socio-economic barriers to adoption, particularly in developing countries. A comparative analysis of DAC within the broader carbon removal landscape (e.g., CCS, BECCS, afforestation) is also provided, alongside an address to the essential, often overlooked, environmental considerations for the sustainable production, regeneration, and disposal of spent nanomaterials, including insights from Life Cycle Assessments. The nuanced techno-economic landscape has been thoroughly summarized, highlighting that commercial viability is a multi-faceted challenge involving material performance, synthesis cost, regeneration energy, scalability, and long-term stability. It has been reiterated that no single ‘best’ material exists, but rather a portfolio of technologies will be necessary, with the ultimate success dependent on system-level integration and the availability of low-carbon energy. The review paper contributes to a holistic understanding of cutting-edge DAC technologies, bridging material science innovations with real-world implementation challenges and opportunities, thereby identifying critical knowledge gaps and pathways toward a net-zero carbon future. Full article
(This article belongs to the Special Issue Porous Carbon Materials: Preparation and Application)
Show Figures

Graphical abstract

34 pages, 3610 KiB  
Review
Metal–Organic Frameworks as Fillers in Porous Organic Polymer-Based Hybrid Materials: Innovations in Composition, Processing, and Applications
by Victor Durán-Egido, Daniel García-Giménez, Juan Carlos Martínez-López, Laura Pérez-Vidal and Javier Carretero-González
Polymers 2025, 17(14), 1941; https://doi.org/10.3390/polym17141941 - 15 Jul 2025
Viewed by 731
Abstract
Hybrid materials based on porous organic polymers (POPs) and metal–organic frameworks (MOFs) are increasing attention for advanced separation processes due to the possibility to combine their properties. POPs provide high surface areas, chemical stability, and tunable porosity, while MOFs contribute a high variety [...] Read more.
Hybrid materials based on porous organic polymers (POPs) and metal–organic frameworks (MOFs) are increasing attention for advanced separation processes due to the possibility to combine their properties. POPs provide high surface areas, chemical stability, and tunable porosity, while MOFs contribute a high variety of defined crystalline structures and enhanced separation characteristics. The combination (or hybridization) with PIMs gives rise to mixed-matrix membranes (MMMs) with improved permeability, selectivity, and long-term stability. However, interfacial compatibility remains a key limitation, often addressed through polymer functionalization or controlled dispersion of the MOF phase. MOF/COF hybrids are more used as biochemical sensors with elevated sensitivity, catalytic applications, and wastewater remediation. They are also very well known in the gas sorption and separation field, due to their tunable porosity and high electrical conductivity, which also makes them feasible for energy storage applications. Last but not less important, hybrids with other POPs, such as hyper-crosslinked polymers (HCPs), covalent triazine frameworks (CTFs), or conjugated microporous polymers (CMPs), offer enhanced functionality. MOF/HCP hybrids combine ease of synthesis and chemical robustness with tunable porosity. MOF/CTF hybrids provide superior thermal and chemical stability under harsh conditions, while MOF/CMP hybrids introduce π-conjugation for enhanced conductivity and photocatalytic activity. These and other findings confirm the potential of MOF-POP hybrids as next-generation materials for gas separation and carbon capture applications. Full article
(This article belongs to the Special Issue Organic-Inorganic Hybrid Materials, 4th Edition)
Show Figures

Figure 1

21 pages, 4609 KiB  
Review
Covalent Organic Framework Membranes for Ion Separation: A Review
by Yutong Lou, Zhanyong Wang, Wanbei Yang, Shuchen Lang, Jiaxing Fan, Qiaomei Ke, Rui Wang, Zhen Zhang, Wentao Chen and Jian Xue
Membranes 2025, 15(7), 211; https://doi.org/10.3390/membranes15070211 - 15 Jul 2025
Viewed by 650
Abstract
Covalent organic framework (COF) membranes have garnered significant attention in ion separation due to their high surface area, tunable pore size, excellent stability, and diverse functional groups. Over the past decade, various synthesis methods, such as solvothermal synthesis, interfacial synthesis, microwave-assisted solvothermal synthesis, [...] Read more.
Covalent organic framework (COF) membranes have garnered significant attention in ion separation due to their high surface area, tunable pore size, excellent stability, and diverse functional groups. Over the past decade, various synthesis methods, such as solvothermal synthesis, interfacial synthesis, microwave-assisted solvothermal synthesis, and in situ growth, have been developed to fabricate COF membranes. COF membranes have demonstrated remarkable ion separation performance in different separation processes driven by pressure, electric field, and vapor pressure difference, showing great potential in a wide range of applications. Nevertheless, challenges in the synthesis and application of COF membranes still remain, requiring further research to fully realize their potential in ion separation. This review critically examines the development of COF membranes, from synthesis methods to ion separation applications. We evaluate the advantages and limitations of various synthesis techniques and systematically summarize COF membrane performance based on separation driving forces. Finally, we present a critical analysis of current challenges and offer perspectives on promising future research directions for advancing COF membrane technology in separation. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

24 pages, 7899 KiB  
Review
Catalyst-Driven Improvements in Conventional Methods for Imine-Linked Covalent Organic Frameworks
by Maziar Jafari, Zhiyuan Peng, Ali Samie, Faezeh Taghavi, Amir Khojastehnezhad and Mohamed Siaj
Molecules 2025, 30(14), 2969; https://doi.org/10.3390/molecules30142969 - 15 Jul 2025
Viewed by 415
Abstract
Imine-linked covalent organic frameworks (COFs) have attracted considerable interest in recent years because they can form strong and reversible covalent bonds, enabling the development of highly ordered crystalline structures. This reversibility is crucial in correcting structural defects during the crystallization process, which requires [...] Read more.
Imine-linked covalent organic frameworks (COFs) have attracted considerable interest in recent years because they can form strong and reversible covalent bonds, enabling the development of highly ordered crystalline structures. This reversibility is crucial in correcting structural defects during the crystallization process, which requires sufficient time to proceed. This review critically examines the advancements in synthetic strategies for these valuable materials, focusing on catalytic versus conventional approaches. Traditional methods for synthesizing imine-linked COFs often involve harsh reaction conditions and prolonged reaction times, which can limit the scalability and environmental sustainability of these frameworks. In contrast, catalytic approaches offer more efficient pathways, enabling shorter reaction times, milder reaction conditions, and higher yields. This article elucidates the key differences between these methodologies and examines the impact of reduced reaction times and milder conditions on the crystallinity and porosity of COFs. By comparing the catalytic and conventional synthesis routes, this review aims to provide a comprehensive understanding of the advantages and limitations of each approach, offering insights into the optimal strategies for the development of high-performance COFs. Full article
(This article belongs to the Special Issue Feature Papers in Applied Chemistry: 4th Edition)
Show Figures

Graphical abstract

18 pages, 4672 KiB  
Article
Tailoring Porosity and CO2 Capture Performance of Covalent Organic Frameworks Through Hybridization with Two-Dimensional Nanomaterials
by Hani Nasser Abdelhamid
Inorganics 2025, 13(7), 237; https://doi.org/10.3390/inorganics13070237 - 11 Jul 2025
Viewed by 416
Abstract
This study reported covalent organic frameworks (COFs) and their hybrid composites with two-dimensional materials, graphene oxide (GO), graphitic carbon nitride (g-C3N4), and boron nitride (BN), to examine their structural, textural, and gas adsorption properties. Material characterization confirmed the crystallinity [...] Read more.
This study reported covalent organic frameworks (COFs) and their hybrid composites with two-dimensional materials, graphene oxide (GO), graphitic carbon nitride (g-C3N4), and boron nitride (BN), to examine their structural, textural, and gas adsorption properties. Material characterization confirmed the crystallinity of COF-1 and the preservation of framework integrity after integrating the 2D nanomaterials. FT-IR spectra exhibited pronounced vibrational fingerprints of imine linkages and validated the functional groups from the COF and the integrated nanomaterials. TEM images revealed the integration of the two components, porous, layered structures with indications of interfacial interactions between COF and 2D nanosheets. Nitrogen adsorption–desorption isotherms revealed the microporous characteristics of the COFs, with hysteresis loops evident, indicating the development of supplementary mesopores at the interface between COF-1 and the 2D materials. The BET surface area of pristine COF-1 was maximal at 437 m2/g, accompanied by significant micropore and Langmuir surface areas of 348 and 1290 m2/g, respectively, offering enhanced average pore widths and hierarchical porous strcuture. CO2 adsorption tests were investigated showing maximum adsorption capacitiy of 1.47 mmol/g, for COF-1, closely followed by COF@BN at 1.40 mmol/g, underscoring the preserved sorption capabilities of these materials. These findings demonstrate the promise of designed COF-based hybrids for gas capture, separation, and environmental remediation applications. Full article
Show Figures

Graphical abstract

6 pages, 2223 KiB  
Proceeding Paper
Photocatalytic Degradation of Dyes Using TpPa-COF-Cl2 Membrane
by Mayu Kawaguchi, Hideyuki Katsumata, Ikki Tateishi, Mai Furukawa and Satoshi Kaneco
Chem. Proc. 2025, 17(1), 1; https://doi.org/10.3390/chemproc2025017001 - 4 Jul 2025
Viewed by 350
Abstract
Covalent organic frameworks (COFs) are photocatalysts composed of covalent bonds of light elements and free of toxic metals. COFs are highly active against dyes. Furthermore, we aimed to improve the utility of COFs by making them into membranes. In this study, by utilizing [...] Read more.
Covalent organic frameworks (COFs) are photocatalysts composed of covalent bonds of light elements and free of toxic metals. COFs are highly active against dyes. Furthermore, we aimed to improve the utility of COFs by making them into membranes. In this study, by utilizing the cross-linked structure of calcium alginate, we succeeded in forming the photocatalyst TpPa-COF-Cl2 into a membrane without destroying its structure. This was confirmed by characterization such as FT-IR. In addition, methyl orange was decolorized at 450 nm, confirming the photocatalytic activity of the membrane. Full article
Show Figures

Figure 1

15 pages, 1943 KiB  
Article
Theoretical Study on the Influence of Building Blocks in Benzotrithiophene-Based Covalent Organic Frameworks for Optoelectronic Properties
by Xu Li, Yue Niu, Kexin Ma, Xin Huang, Qingji Wang and Zhiqiang Liang
Catalysts 2025, 15(7), 647; https://doi.org/10.3390/catal15070647 - 2 Jul 2025
Viewed by 423
Abstract
Covalent organic frameworks (COFs) have emerged as unique catalysts for photocatalysis; however, the relationship between their building block units and optoelectronic properties remains elusive. Herein, we explored the influence of building blocks on the optoelectronic properties of benzotrithiophene-based COFs (BTT-COFs) using density functional [...] Read more.
Covalent organic frameworks (COFs) have emerged as unique catalysts for photocatalysis; however, the relationship between their building block units and optoelectronic properties remains elusive. Herein, we explored the influence of building blocks on the optoelectronic properties of benzotrithiophene-based COFs (BTT-COFs) using density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. The calculation results suggested that three critical factors—the conjugated structure, planarity, and the introduction of nitrogen heteroatoms—significantly influenced charge separation and transfer within BTT-COFs. Structure–property relationships were established through several critical quantitative parameters, such as Sr, t, and CT. Among seven BTT-COFs, BTT-Tpa (Tpa: 4,4′,4″-triaminotriphenylamine) exhibited the most efficient charge separation and the highest charge transfer capability due to the electronegativity of triphenylamine, the delocalization of its lone pair electrons, and its unique star-shaped configuration. These theoretical results will provide an essential foundation for selecting donor–acceptor units in the design of novel COF materials for photocatalytic reaction applications. Full article
(This article belongs to the Section Computational Catalysis)
Show Figures

Figure 1

15 pages, 5017 KiB  
Article
Constructing Hydrazone-Linked Chiral Covalent Organic Frameworks with Different Pore Sizes for Asymmetric Catalysis
by Haichen Huang, Kai Zhang, Yuexin Zheng, Hong Chen, Dexuan Cai, Shengrun Zheng, Jun Fan and Songliang Cai
Catalysts 2025, 15(7), 640; https://doi.org/10.3390/catal15070640 - 30 Jun 2025
Viewed by 334
Abstract
Chiral covalent organic frameworks (COFs) hold great promise in heterogeneous asymmetric catalysis due to their designable structures and well-defined chiral microenvironments. However, precise control over the pore size of chiral COFs to optimize asymmetric catalytic performance remains challenging. Herein, we designed a proline-derived [...] Read more.
Chiral covalent organic frameworks (COFs) hold great promise in heterogeneous asymmetric catalysis due to their designable structures and well-defined chiral microenvironments. However, precise control over the pore size of chiral COFs to optimize asymmetric catalytic performance remains challenging. Herein, we designed a proline-derived dihydrazide chiral monomer (L-DBP-Boc), which was subjected to Schiff-base reactions with two aromatic aldehydes of different lengths, 1,3,5-triformyl phloroglucinol (BTA) and 4,4′,4″-(1,3,5-triazine-2,4,6-triyl)tribenzaldehyde (TZ), to construct two hydrazone-linked chiral COFs with distinct pore sizes (L-DBP-BTA COF and L-DBP-TZ COF). Interestingly, the Boc protecting groups were removed in situ during COF synthesis. We systematically investigated the catalytic performance of these two chiral COFs in asymmetric aldol reactions and found that their pore sizes significantly influenced both catalytic activity and enantioselectivity. The large-pore L-DBP-TZ COF (pore size: 3.5 nm) exhibited superior catalytic performance under aqueous conditions at room temperature, achieving a yield of 98% and an enantiomeric excess (ee) value of 78%. In contrast, the small-pore L-DBP-BTA COF (pore size: 2.0 nm) showed poor catalytic performance. Compared to L-DBP-BTA COF, L-DBP-TZ COF demonstrated a 1.69-fold increase in yield and a 1.56-fold enhancement in enantioselectivity, possibly attributed to the facilitated diffusion and transport of substrates and products within the larger pore, thus improving the accessibility of active sites. This study presents a facile synthesis of pyrrolidine-functionalized chiral COFs and establishes the possible structure–activity relationship in their asymmetric catalysis, offering new insights for the design of efficient chiral COF catalysts. Full article
(This article belongs to the Special Issue Asymmetric Catalysis: Recent Progress and Future Perspective)
Show Figures

Graphical abstract

86 pages, 12164 KiB  
Review
Empowering the Future: Cutting-Edge Developments in Supercapacitor Technology for Enhanced Energy Storage
by Mohamed Salaheldeen, Thomas Nady A. Eskander, Maher Fathalla, Valentina Zhukova, Juan Mari Blanco, Julian Gonzalez, Arcady Zhukov and Ahmed M. Abu-Dief
Batteries 2025, 11(6), 232; https://doi.org/10.3390/batteries11060232 - 16 Jun 2025
Cited by 3 | Viewed by 1515
Abstract
The accelerating global demand for sustainable and efficient energy storage has driven substantial interest in supercapacitor technology due to its superior power density, fast charge–discharge capability, and long cycle life. However, the low energy density of supercapacitors remains a key bottleneck, limiting their [...] Read more.
The accelerating global demand for sustainable and efficient energy storage has driven substantial interest in supercapacitor technology due to its superior power density, fast charge–discharge capability, and long cycle life. However, the low energy density of supercapacitors remains a key bottleneck, limiting their broader application. This review provides a comprehensive and focused overview of the latest breakthroughs in supercapacitor research, emphasizing strategies to overcome this limitation through advanced material engineering and device design. We explore cutting-edge developments in electrode materials, including carbon-based nanostructures, metal oxides, redox-active polymers, and emerging frameworks such as metal–organic frameworks (MOFs) and covalent organic frameworks (COFs). These materials offer high surface area, tunable porosity, and enhanced conductivity, which collectively improve the electrochemical performance. Additionally, recent advances in electrolyte systems—ranging from aqueous to ionic liquids and organic electrolytes—are critically assessed for their role in expanding the operating voltage window and enhancing device stability. The review also highlights innovations in device architectures, such as hybrid, asymmetric, and flexible supercapacitor configurations, that contribute to the simultaneous improvement of energy and power densities. We identify persistent challenges in scaling up nanomaterial synthesis, maintaining long-term operational stability, and integrating materials into practical energy systems. By synthesizing these state-of-the-art advancements, this review outlines a roadmap for next-generation supercapacitors and presents novel perspectives on the synergistic integration of materials, electrolytes, and device engineering. These insights aim to guide future research toward realizing high-energy, high-efficiency, and scalable supercapacitor systems suitable for applications in electric vehicles, renewable energy storage, and next-generation portable electronics. Full article
(This article belongs to the Special Issue High-Performance Super-capacitors: Preparation and Application)
Show Figures

Graphical abstract

14 pages, 2373 KiB  
Article
Isomeric Anthraquinone-Based Covalent Organic Frameworks for Boosting Photocatalytic Hydrogen Peroxide Generation
by Shengrong Yan, Songhu Shi, Wenhao Liu, Fang Duan, Shuanglong Lu and Mingqing Chen
Catalysts 2025, 15(6), 556; https://doi.org/10.3390/catal15060556 - 3 Jun 2025
Viewed by 580
Abstract
Utilizing isomeric monomers to construct covalent organic frameworks (COFs) could easily and precisely regulate their structure in order to raise the photocatalytic performance towards two-step single-electron oxygen reduction reaction (ORR) to hydrogen peroxide (H2O2). Herein, isomeric anthraquinone (AQ)-based COFs [...] Read more.
Utilizing isomeric monomers to construct covalent organic frameworks (COFs) could easily and precisely regulate their structure in order to raise the photocatalytic performance towards two-step single-electron oxygen reduction reaction (ORR) to hydrogen peroxide (H2O2). Herein, isomeric anthraquinone (AQ)-based COFs (designated as 1,4-DQTP and 2,6-DQTP) were successfully fabricated through a simple yet effective one-step solvothermal synthesis approach, only utilizing isomeric monomers with alterations in the catalysts. Specifically, the black 1,4-DQTP displayed a high photocatalytic H2O2 production rate of 865.4 µmol g−1 h−1, with 2.44-fold enhancement compared to 2,6-DQTP (354.7 µmol g−1 h−1). Through a series of experiments such as electron paramagnetic resonance (EPR) spectroscopy and the free radical quenching experiments, as well as density functional theory (DFT) calculations, the photocatalytic mechanism revealed that compared with 2,6-DQTP, 1,4-DQTP possessed a stronger and broader visible light absorption capacity, and thus generated more photogenerated e-h+ pairs. Ultimately, more photogenerated electrons were enriched on the AQ motif via a more apparent electron push–pull effect, which provided a stable transfer channel for e and thus facilitated the generation of superoxide anion radical intermediates (•O2). On the other hand, the negative charge region of AQ’s carbonyl group evidently overlapped with that of TP, indicating that 1,4-DQTP had a higher chemical affinity for the uptake of protons, and thus afforded a more favorable hydrogen donation for H+. As a consequence, the rational design of COFs utilizing isomeric monomers could synergistically raise the proton-coupled electron transfer (PCET) kinetics for two-step single-electron ORR to H2O2 under visible light illumination. This work provides some insights for the design and fabrication of COFs through rational isomer engineering to modulate their photocatalytic activities. Full article
(This article belongs to the Special Issue Nanostructured Photocatalysts for Hydrogen Production)
Show Figures

Graphical abstract

23 pages, 5336 KiB  
Review
Advancements in the Research on the Preparation of Isoamyl Acetate Catalyzed by Immobilized Lipase
by Guoqiang Guan, Yuyang Zhang, Jingya Qian, Feng Wang, Liang Qu and Bin Zou
Materials 2025, 18(11), 2476; https://doi.org/10.3390/ma18112476 - 25 May 2025
Viewed by 844
Abstract
This study aims to delve into the application potential of immobilized lipases in the catalytic synthesis of isoamyl acetate. Through a comparative analysis of various immobilization methods, including physical adsorption, encapsulation, covalent binding, and crosslinking, along with the utilization of nanomaterials, such as [...] Read more.
This study aims to delve into the application potential of immobilized lipases in the catalytic synthesis of isoamyl acetate. Through a comparative analysis of various immobilization methods, including physical adsorption, encapsulation, covalent binding, and crosslinking, along with the utilization of nanomaterials, such as magnetic nanoparticles, mesoporous silica SBA-15, and covalent organic frameworks (COFs) as carriers, the study systematically evaluates their enhancing effects on lipase catalytic performance. Additionally, solvent engineering strategies, encompassing the introduction of organic solvents, supercritical fluids, ionic liquids, and deep eutectic solvents, are employed to intensify the enzymatic catalytic process. These approaches effectively improve mass transfer efficiency, activate enzyme molecules, and safeguard enzyme structural stability, thereby significantly elevating the synthesis efficiency and yield of isoamyl acetate. Consequently, this research provides solid scientific rationale and technical support for the industrial production of flavor ester compounds. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Graphical abstract

1 pages, 128 KiB  
Correction
Correction: Bukhari et al. Covalent Organic Frameworks (COFs) as Multi-Target Multifunctional Frameworks. Polymers 2023, 15, 267
by Syed Nasir Abbas Bukhari, Naveed Ahmed, Muhammad Wahab Amjad, Muhammad Ajaz Hussain, Mervat A. Elsherif, Hasan Ejaz and Nasser H. Alotaibi
Polymers 2025, 17(11), 1443; https://doi.org/10.3390/polym17111443 - 23 May 2025
Viewed by 301
Abstract
In the original publication [...] Full article
(This article belongs to the Section Polymer Networks and Gels)
Back to TopTop