Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = corrugated shell roof

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4562 KB  
Article
Complex Building Forms Roofed with Transformed Shell Units and Defined by Saddle Surfaces
by Jacek Abramczyk and Katarzyna Chrzanowska
Materials 2022, 15(24), 8942; https://doi.org/10.3390/ma15248942 - 14 Dec 2022
Cited by 3 | Viewed by 1840
Abstract
A novel method and description of creating diversified complex original building forms roofed with a number of transformed folded shell units developed on the basis of a novel reference polyhedral network and arranged according to a reference surface with the negative Gaussian curvature [...] Read more.
A novel method and description of creating diversified complex original building forms roofed with a number of transformed folded shell units developed on the basis of a novel reference polyhedral network and arranged according to a reference surface with the negative Gaussian curvature is presented. For that purpose, specific reference polyhedral networks is are defined as a complex material deliberately composed of many regular tetrahedrons that are arranged regularly to obtain original attractive complex general building forms. The proposed method is a significant extension of the previous method for shaping roof structures with the positive Gaussian curvature and fills existing gaps in current scientific knowledge. The extended method enables the designer to significantly increase the variety of the created complex shell roof forms and plane-walled folded elevation forms of buildings and to define the shapes of their rod structural systems. It allows one to overcome the existing significant geometric and material limitations related to shape transformations of nominally flat rectangular folded steel sheets into different shell forms. The developed extension is based on formation of a set of properly connected tetrahedra as a material determining different (a) inclination of elevation walls to the vertical, and (b) distribution of many individual warped roof shells in accordance with the properties of a regular surface with negative Gaussian curvature. A number of the adopted specific sets of division coefficients (parameters) is used for determining the entire network and its complete tetrahedra. The presented description makes it possible to adopt appropriate assumptions and data and then employ the innovative method to obtain the expected characteristics of the unconventional building form shaped. The presented three different special forms created with the help of the novel method and the appropriately selected diversified values of the division coefficients of pairs of the vertices of a polyhedral reference network, a polygonal eaves network and points of a reference surface confirm the innovative scientific nature of the obtained results. The method has to be computationally aided due to the complexity of mathematical operations and the need to visualize the designed forms. Full article
Show Figures

Figure 1

24 pages, 5571 KB  
Article
Transformed Shell Structures Determined by Regular Networks as a Complex Material for Roofing
by Jacek Abramczyk
Materials 2021, 14(13), 3582; https://doi.org/10.3390/ma14133582 - 26 Jun 2021
Cited by 7 | Viewed by 2705
Abstract
The article presents a comprehensive extension of the proprietary basic method for shaping innovative systems of corrugated shell roof structures by means of a specific complex material that comprises regular transformable shell units limited by spatial quadrangles. The units are made up of [...] Read more.
The article presents a comprehensive extension of the proprietary basic method for shaping innovative systems of corrugated shell roof structures by means of a specific complex material that comprises regular transformable shell units limited by spatial quadrangles. The units are made up of nominally plane folded sheets transformed into shell shapes. The similar shell units are regularly and effectively arranged in the three-dimensional space in an orderly manner with a universal regular reference surface, polyhedral network, and polygonal network. The extended method leads to the increase in the variety of the designed complex shell roof forms and plane-walled elevation forms of buildings. For this purpose, the rules governing the creation of the continuous roof shell structures of many shells arranged in different unconventional visually attractive patterns and their discontinuous regular modifications are sought. To obtain several novel groups of similar unconventional parametric roof forms, single division coefficients and double division coefficients are used. The easy and intuitive modifications of the positions of the vertices belonging to the polygonal network on the side edges of the polyhedral network accomplished by means of a parametric algorithm allow one to adjust the geometry of the complete shell units to the geometric and material constraints related to the orthotropic properties of the transformed sheeting by means of these coefficients. The innovative approach to the shaping of the diverse unconventional roof structures requires the solving of many interdisciplinary problems in the field of mathematics, civil engineering, construction, morphology, architecture, mechanics, computer visualization, and programming. Full article
Show Figures

Figure 1

29 pages, 7635 KB  
Article
Transformed Corrugated Shell Units Used as a Material Determining Unconventional Forms of Complex Building Structures
by Jacek Abramczyk
Materials 2021, 14(9), 2402; https://doi.org/10.3390/ma14092402 - 5 May 2021
Cited by 6 | Viewed by 2426
Abstract
This article is an insight into interdisciplinary topics in the field of civil engineering, morphology, architecture, mechanics, and computer programming. A novel method for shaping unconventional complex roofs in which regular folded units transformed into various shells are used as a complex substitute [...] Read more.
This article is an insight into interdisciplinary topics in the field of civil engineering, morphology, architecture, mechanics, and computer programming. A novel method for shaping unconventional complex roofs in which regular folded units transformed into various shells are used as a complex substitute material is proposed. The original method’s algorithm for building systems of planes defining diversified polyhedral networks in the three-dimensional space by means of division coefficients of the subsequently determined vertices is presented. The algorithm is based on the proportions between the lengths of the edges of the reference network, the location and shape of the ruled shell units included in the designed complex roof structure, so it is intuitive. The shell units are made up of nominally flat folded sheets transformed effectively into shell forms whose static-strength properties are controlled by geometric quantities characteristic of ruled surfaces. The presented original approach to the shaping of the shell roof structures determining specific complex building forms allows us to go beyond the limitations related to the orthotropic structure of the folded roof sheeting and the shape transformations. Full article
Show Figures

Figure 1

25 pages, 8278 KB  
Article
Folded Sheets as a Universal Material for Shaping Transformed Shell Roofs
by Jacek Abramczyk
Materials 2021, 14(8), 2051; https://doi.org/10.3390/ma14082051 - 19 Apr 2021
Cited by 7 | Viewed by 3378
Abstract
This article provides a novel insight into specific properties of flat folded sheets transformed elastically into building roof shells. Elastic twist transformations of the sheets resulting from the arrangement of the sheets on two skew roof directrices cause changes in the geometric and [...] Read more.
This article provides a novel insight into specific properties of flat folded sheets transformed elastically into building roof shells. Elastic twist transformations of the sheets resulting from the arrangement of the sheets on two skew roof directrices cause changes in the geometric and mechanical sheet properties of the roof shell sheeting composed of these sheets. Regular smooth-ruled surfaces and their characteristic lines are used in the analysis of changes in the geometric properties. In the analysis of the mechanical changes, the constitutive relations and complex state of stresses are considered. The analysis is carried out on the basis of the results of the experimental tests and FEM computer simulations. They have led to the development of such a method of shaping of the effectively transformed folded covers that ensures the initial effort of each shell fold to be the smallest possible. Full article
Show Figures

Figure 1

37 pages, 12175 KB  
Article
Symmetric Free Form Building Structures Arranged Regularly on Smooth Surfaces with Polyhedral Nets
by Jacek Abramczyk
Symmetry 2020, 12(5), 763; https://doi.org/10.3390/sym12050763 - 6 May 2020
Cited by 5 | Viewed by 3632
Abstract
The article is an original insight into interdisciplinary challenges of shaping innovative unconventional complex free form buildings roofed with multi-segment shell structures arranged with using novel parametric regular networks. The roof structures are made up of nominally plane thin-walled folded steel sheets transformed [...] Read more.
The article is an original insight into interdisciplinary challenges of shaping innovative unconventional complex free form buildings roofed with multi-segment shell structures arranged with using novel parametric regular networks. The roof structures are made up of nominally plane thin-walled folded steel sheets transformed elastically and rationally into spatial shapes. A method is presented for creating such symmetric structures based on the regular spatial polyhedral networks created as a result of a composition of many complete reference tetrahedrons by their common flat sides and straight side edges arranged regularly and symmetrically in the three-dimensional Euclidean space. The use of the regularity and symmetry in the process of shaping different forms of (a) single tetrahedral meshes and whole consistent polyhedral structures, (b) individual plane walls and complex elevations, (c) single transformed folds, entire corrugated shell roofs, and their structures allow a creative search for attractive rational parametric solutions using a few author’s parametric algorithms and their implementation as built-in commands of the AutoCAD visual editor or applications of the Rhino/Grasshopper program. Full article
Show Figures

Graphical abstract

22 pages, 8648 KB  
Article
Symmetric Shape Transformations of Folded Shell Roofs Determining Creative and Rational Shaping of Building Free Forms
by Jacek Abramczyk and Aleksandra Prokopska
Symmetry 2019, 11(12), 1438; https://doi.org/10.3390/sym11121438 - 22 Nov 2019
Cited by 4 | Viewed by 3497
Abstract
The paper presents an innovative approach to solving interdisciplinary problems emerging in the design process of building free forms roofed with elastically transformed corrugated shells. The effectiveness and rationality of shaping such free forms and the creativeness in searching for the parametric forms [...] Read more.
The paper presents an innovative approach to solving interdisciplinary problems emerging in the design process of building free forms roofed with elastically transformed corrugated shells. The effectiveness and rationality of shaping such free forms and the creativeness in searching for the parametric forms require the application of their regular and symmetric models which have to be derived from the geometric and mechanical properties of the rationally transformed subsequent folds of these shells. Simplified smooth models used for engineering developments and accurate folded models implemented for scientific research have to be created by means of unconventional methods different from those presented in classical courses. Owing to the variety of the forms of the proposed innovative reference tetrahedrons and their parametric description, the algorithms developed by the authors have to be implemented in computer programs. The rationality of the transformed roof shells, revealed in the limitation of the level of the fold’s initial stresses resulting from the shape transformation, and the attractiveness of these forms are achieved by the axial symmetry and contraction of each shell fold at its half-length. The symmetries adopted in the process of modeling such roof shells are also exploited by the discussed new method to obtain coherent unconventional general forms of entire buildings. Full article
Show Figures

Figure 1

32 pages, 12406 KB  
Article
Transformed Shell Roof Structures as the Main Determinant in Creative Shaping Building Free Forms Sensitive to Man-Made and Natural Environments
by Jacek Abramczyk
Buildings 2019, 9(3), 74; https://doi.org/10.3390/buildings9030074 - 25 Mar 2019
Cited by 7 | Viewed by 7172
Abstract
The article presents author’s propositions for shaping free forms of buildings sensitive to harmonious incorporation into built or natural environments. Complex folded structures of buildings roofed with regular shell structures are regarded as the most useful in creative shaping the free forms that [...] Read more.
The article presents author’s propositions for shaping free forms of buildings sensitive to harmonious incorporation into built or natural environments. Complex folded structures of buildings roofed with regular shell structures are regarded as the most useful in creative shaping the free forms that can easily adapt to various expected environmental conditions. Three more and more sophisticated methods are proposed for creating variously conditioned free form structures. The first method allows the possibility of combining many single free forms into one structure and leaves the designer full freedom in shaping regular or irregular structures. The second, more sophisticated method introduces additional rules supporting the designer’s spatial reasoning and intuition in imposing regularity of the shapes of the building structure and its roof shell structure. The third, most sophisticated method introduces additional conditions allowing the optimization of the regular shapes and arrangement of complete shell roof segments on the basis of an arbitrary reference surface and a finite number of straight lines normal to the surface. This original, interdisciplinary study offers new insight into, and knowledge of, unconventional methods for the creative shaping of innovative free forms, where great possibility and significant restrictions result from geometrical and mechanical properties of the materials used. Solving a number of issues in the field of civil engineering, descriptive geometry and architecture is crucial in the process of creating these structures. Full article
(This article belongs to the Special Issue Responsive Architecture)
Show Figures

Figure 1

23 pages, 37488 KB  
Article
Parametric Creative Design of Building Free-Forms Roofed with Transformed Shells Introducing Architect’s and Civil Engineer’s Responsible Artistic Concepts
by Jacek Abramczyk and Aleksandra Prokopska
Buildings 2019, 9(3), 58; https://doi.org/10.3390/buildings9030058 - 6 Mar 2019
Cited by 6 | Viewed by 7425
Abstract
The article concerns a parametric description of unconventional building forms roofed with folded sheeting transformed elastically into shells. The description supports the designer in the search for attractive forms and a rational use of materials. The adoption of strictly defined sets of initial [...] Read more.
The article concerns a parametric description of unconventional building forms roofed with folded sheeting transformed elastically into shells. The description supports the designer in the search for attractive forms and a rational use of materials. The adoption of strictly defined sets of initial parameters determines the diversification of the designed architectural free-forms. An impact of selected proportions between these parameters on these forms is illustrated by an example of a single structure. Folded elevations and a segmented shell roof make each such structure internally coherent and externally sensitive. The mutual position and proportions of the shape of all elements, such as the roof, eaves, and façades, along with regular patterns in the same structure, determine this consistency of its form and sensitivity to harmonious incorporation into the natural or built environments. The study is a new insight into shaping free-forms of buildings in which the modern and ecological materials determine the important shape and mechanical limitations of these forms. With a skillful approach, the materials allow their extensive use in buildings. However, various interdisciplinary problems related to architectural shaping of free-forms and static and strength work thin-walled shell sheeting roofs must be solved. For effective design it is necessary to use relevant software applications, where spatial reasoning is crucial for ordering the three-dimensional space by means of simplified engineering models. Full article
(This article belongs to the Special Issue Responsive Architecture)
Show Figures

Figure 1

27 pages, 69612 KB  
Article
Responsive Parametric Building Free Forms Determined by Their Elastically Transformed Steel Shell Roofs
by Aleksandra Prokopska and Jacek Abramczyk
Buildings 2019, 9(2), 46; https://doi.org/10.3390/buildings9020046 - 14 Feb 2019
Cited by 10 | Viewed by 6793
Abstract
The article concerns the unconventional architectural forms of buildings roofed with transformed shells made up of thin-walled steel fold sheets, and a parametric description of how they are shaped. Complicated deformations of flanges and webs, as well as the complex static–strength work of [...] Read more.
The article concerns the unconventional architectural forms of buildings roofed with transformed shells made up of thin-walled steel fold sheets, and a parametric description of how they are shaped. Complicated deformations of flanges and webs, as well as the complex static–strength work of the folds in a shell roof, demand the creation of simplified models regarding the parameterization of such shells and their integration with the general forms of the buildings. To obtain favorable results, it was necessary to write computer applications because of both the complicated problems related to the significant limitations of the transformations, as well as the great possibilities of shaping shell roofs by means of directrices of almost free shape and mutual position. The developed procedures enable the prediction of shapes and states of all the folds in the designed shell. They take account of two basic conditions related to these restrictions, which guarantee that the folds encounter little resistance when matching their transformed forms to the roof directrices, and that their initial effort was as low as possible. The developed procedures required solving a number of issues in the fields of architecture, civil engineering, and structures, and are illustrated with an example of shaping one unconventional architectural form. The interdisciplinary study explains a new insight into shaping such forms. Full article
(This article belongs to the Special Issue Responsive Architecture)
Show Figures

Figure 1

Back to TopTop