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Abstract: This article is an insight into interdisciplinary topics in the field of civil engineering,
morphology, architecture, mechanics, and computer programming. A novel method for shaping
unconventional complex roofs in which regular folded units transformed into various shells are
used as a complex substitute material is proposed. The original method’s algorithm for building
systems of planes defining diversified polyhedral networks in the three-dimensional space by means
of division coefficients of the subsequently determined vertices is presented. The algorithm is based
on the proportions between the lengths of the edges of the reference network, the location and shape
of the ruled shell units included in the designed complex roof structure, so it is intuitive. The shell
units are made up of nominally flat folded sheets transformed effectively into shell forms whose
static-strength properties are controlled by geometric quantities characteristic of ruled surfaces. The
presented original approach to the shaping of the shell roof structures determining specific complex
building forms allows us to go beyond the limitations related to the orthotropic structure of the
folded roof sheeting and the shape transformations.

Keywords: systems of planes; parametric polyhedral networks; control tetrahedra; division coeffi-
cient method; corrugated shell roof units; complex substitute material; engineering computer models;
free-form buildings

1. Introduction

Since the transverse flexural stiffness and torsional stiffness of a nominally flat thin-
walled steel sheet of open profile and folded in one direction are small, then a small load
applied perpendicularly to the neutral surface of the sheet causes a significant initial shape
change. The loaded sheets connected by their longitudinal edges into a nominally flat
single strip are spread on at least two mutually skew directrices to change their forms from
flat into ruled shells, depending on the shape and the mutual position of the directrices [1]
(Figure 1).

Figure 1. Experimental folded shell sheeting supported by two curvilinear skew directrices.
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In order to reduce the initial stresses resulting from the aforementioned shape transfor-
mations, each fold tends to balance the tensile stresses appearing at both fold’s transverse
ends, with the compressive stresses appearing at a half along the fold’s length. If a freedom
of the fold’s changes manifesting especially in the fold’s width increments is ensured
during spreading and fixing all folds to the roof directrices, then the folds tend to obtain
such shell forms that their longitudinal axes remain straight lines and their contraction
appears at a half-way along the length of each shell fold. The geometry of all subsequent
cross-sections of each transformed fold variously changes along the fold’s length, so that
each fold reaches the maximum contraction and the maximum height at a half along
its length.

Since the length of the thin-walled steel sheets is relatively small and the aforemen-
tioned geometric and structural limitations of the effectively transformed sheets are very
important boundary conditions, it is impossible to obtain a single smooth shell roof of a
medium span [1,2] (Figure 2). Therefore, the complete transformed shell sectors are joined
by means of their transverse edges into ribbed structures, so that the shape of each shell
sector is characterized by a contraction passing through the halves of all folds at their
length to optimize the initial stresses [3].

Figure 2. Complex shell structure roofing an experimental hall: (a) an outside view; (b) an inside view.

For scientific research, experimental tests and computer simulations are carried out by
Abramczyk [1,4] (Figure 3), where the transformed experimental folded sheeting is accu-
rately modeled with computational thin-walled folded sheeting. The geometry, strength
and stability of these models are analyzed by Abramczyk [5], using advanced dynamic
incremental non-linear methods described by Bathe [6].

Figure 3. The accurate computational mechanical model of an elastically transformed sheet and the
graphical expression of the “effective” stresses in MPa on its top surface.
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2. Critical Analysis of the Present Knowledge

The complete thin-walled folded shells transformed into central sectors of hyperbolic
paraboloids were investigated by many researchers. The main geometric and mechanical
properties of folded sheeting deformed into corrugated hyperbolic paraboloid shells were
presented by Nilson [7]. The Winter’s team [8] confirmed Nilson’s results and expanded
on the scope of the performed tests and analysis. Parker analyzed structures composed
of a few quarters of right hyperbolic paraboloids made of two layers of sheets located
orthogonally in the same shell.

McDermott [9] described the behaviour of a central sector of a folded steel hyperbolic
paraboloid stiffened with a circumferential frame. Parallel studies related to the static-
strength work single and complex hyperbolic paraboloid shells were conducted by Egger
et al. [10] based on the conventional analysis and analytical calculations of strength and
critical loads. Gergely et al. [11] carried out a detailed analysis of the static-strength work of
the single and complex profiled hyperbolic paraboloid shells composed of two orthogonal
layers, which enables these research studies to analyze the shells as isotropic.

Gioncu and Petcu [12] developed the novel HYPBUCK computer program for calculat-
ing the critical loads. Davis and Bryan [13] pointed out the most important geometric and
mechanical characteristics of the transformed shell folds, to make it easier for the designer
to shape the transformed shells. Finally, they stated that theoretically it is possible to shape
many different types of the transformed folded shell sheeting. Practically, it is possible
to build only cylindrical and shallow corrugated hyperbolic paraboloid roofs due to the
available engineering technology. In summary, all the investigated shells underwent forced
shape transformations, causing relatively big initial stresses, because the fold’s longitudinal
axes were adapted to the selected rulings of the adopted hyperbolic paraboloids. There-
fore, the initial stresses had to be restricted, for example, by limiting the transformation
degree. As a result, only shallow hyperbolic-paraboloid shells called hypars can be created
(Figure 4).

Figure 4. Two symmetric experimental hyperbolic paraboloid shells: (a) a complete shell; (b) umbrella structures of four quarters.

Biswas and Iffland [14] presented a few concepts of shaping continuous regular
roof structures composed of many identical hyperbolic paraboloid segments made up of
transformed folded steel sheets. They arranged many complete shell sectors on a sphere to
increase the span of the designed free form building.

The thin-walled corrugated shell steel roofs transformed freely are shaped by Reich-
hart [15] and simply modeled with various right hyperbolic paraboloids (Figure 5) and
other deeply ruled surfaces [16]. For geometric engineering developments, each shell
sheeting can be modeled with a smooth sector of a ruled undevelopable surface called a
warped surface [1] (Figure 1) including hyperbolic paraboloid [17] (Figure 2).
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Figure 5. The external views of two opposite elevations of the experimental hall at a university roofed with the shell
structure: (a) the roof structure; (b) the south side of the entire building.

In order to create a method for shaping corrugated shells transformed rationally,
Abramczyk has proposed a condition requiring the contraction of a single shell to pass
halfway along the length of each shell fold [1] (Figure 3). Abramczyk’s method employs
some specific geometric properties of regular warped surfaces, primarily their lines of
striction. The second condition utilized by Abramczyk relates to determining certain
surface areas of the created smooth shell models corresponding to the compressing and
stretching zones of each transformed fold [3]. These two conditions are based on the results
of his experimental tests and computer simulations (Figures 1 and 3).

The quarters of the hyperbolic paraboloid shells are often arranged symmetrically
in different configurations to increase the expected roof spans. In order to create diver-
sified free form building structures roofed with complex corrugated shells characterized
by medium spans, Prokopska and Abramczyk [18,19] analyzed the so-called reference
tetrahedrons to model a complete free form covered with oblique plane elevations and
roofed with many transformed complete corrugated shell sectors arranged regularly in the
three dimensional space [20].

Each single shell segment is modeled by Abramczyk for the engineering develop-
ments [1] with a sector of a warped surface [21] (Figure 6a), limited by a closed spatial line
composed of four segments contained in the planes of a so-called reference network [22].
The planes of the reference network divide the complete shell segments of the designed
shell roof structure. They are helpful in defining roof directrices (Figure 6b). In the present
article, all directrices e and f are straight sections.

Figure 6. (a) A simplified geometric smooth model of a complete corrugated shell sheeting; (b) A simplified geometric
model of a building free form roofed with complex corrugated shell sheeting structure.
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Abramczyk [23] developed a method for shaping axis symmetric polyhedral networks
based on rigid motions of all vertices of these networks (Figure 7). Four adjacent planes of
each reference network limit one tetrahedral mesh. A parameterization of the reference
networks enables one to shape various configurations of attractive complex building
free forms and innovative structural systems intended for these free forms by means of
computer technique.

Figure 7. Stiff motions: translations and rotations for creating meshes Γ11, Bv11 and ∑11.

The above-mentioned method allows one to transform the shapes of various types
of building structures proposed by Abdel and Mungan [24] and Saitoh [25]. Free-form
shell bar structures are presented by Obrębski [26]. Structural bar systems for several
types of the corrugated roofs were developed by Rębielak [27]. Free-form buildings and
their constructions were analyzed by Reichhart [28] and Wei-Wen [29]. Samyn suggests
interesting aluminium hypar forms [30].

The most general method of architectural shaping of polyhedral shell structures was
developed by Pottmann et al. [31,32]. The designed geometry of these structures does
not result from the orthotropic properties, rectangular shapes of the folded sheets and the
shape transformations of the designed roof shells.

The folded steel sheeting transformed elastically or plastically can be used as a struc-
tural shell unit supporting appropriate roof covers [33]. The classical theory of elasticity
proposed by Green and Lindsay has been extended by Marin et al. [34] to cover the the-
ory of thermoelasticity for dipolar bodies. A specific method of unique solution of a
mixed problem in the dynamical case is proposed using a reciprocal theorem [35]. These
fundamental results were obtained under not very restrictive conditions.

3. The Aim and the Scope of the Research

The aim of this article is to present a novel method for shaping unconventional
complex shell roof structures whose various complete folded shell segments are used as
a complex substitute material. The unit segments of a similar ruled form are located in
the three-dimensional space in an orderly and effective manner using a reference regular
surface and an innovative regular polyhedral network whose straight edges are normal to
this reference surface.

The presented parametric development of the specific polyhedral reference networks
enables one to computationally shape diversified unconventional complex building free
forms roofed with regular structures composed of many different shell segments made
up of nominally flat thin-walled steel folded sheets transformed into various corrugated
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shell shapes. Simplified geometric models of the complete roof shells created by means
of the method as smooth sectors of warped surfaces are sufficient for most engineering
developments. These models can be determined by means of the reference and eaves
networks investigated in the present article.

The method’s algorithm must be supported by computer technology due to the acces-
sibility of the method for designers. This is why a few novel computer applications were
written in one of the CAD programming languages. The important feature of the algorithm
is that the proposed reference networks enable an intuitive and automatic modification of
the obtained results to adapt these networks to the geometric and static-strength character-
istics of the transformed folded sheets and the required geometric boundary conditions.
These conditions are related to some initially adopted proportions between the dimensions
of all main elements of the designed building and the shape and mutual position of all
pairs of the designed roof directrices.

The description and the computer implementation of the presented algorithm, helpful
in searching for possible and acceptable parametric configurations and modifications of
the reference networks, have led to rational solutions related to: (1) attractive forms of
the designed complex building forms, in particular multi-plane folded facades and multi-
segment shell roof sheeting, (2) satisfactory stability and the smallest possible effort causing
by the investigated shape transformations, and (3) rationality of shaping of bar structural
systems intended for the complex building forms.

4. The Method’s Concept

The process of shaping the built environment by means of diverse unconventional
building forms requires one to solve many interdisciplinary issues in the field of town
planning, architecture, morphology, civil engineering, constructions and computer support.
Each issue is considered at different levels of accuracy, which further complicates the
process of conducting the relevant analysis. The complex design process must therefore be
divided into many steps related to the function, arrangement and type of the components
of the building shaped, as well as the level of the modeling accuracy and execution of
these elements.

The relation between the formation of the urban space and the social experience of the
human self must be taken into account [36]. The formation of the space investigating its
physical form and cultural patterns into a whole spatial system is very important.

The design syntax of urban greenways should also be explicitly discussed. In this
way, mathematics-based graph studies to analyze patterns and shapes, photography based
thermal, material and morphology studies, and section analyses to make imagery-derived
deductions on the design syntax are carried out [37].

The morphological shaping of buildings plays a significant role in the design process,
by using features specific for architectural, industrial and structural design [38]. Mor-
phology is a study of the forms taking account of the adopted interrelationships between
the function, structure, internal and external texture, static-strength work and comfort
conditions ascribed to the designed building object.

In each of the above mentioned aspects of the design process, a strict ordering of the
objects characteristic for the considered step must be carried out. Therefore, according
to the deliberated step, the general model is divided into many consistent individual
elements and then into sub-elements arranged in a strictly defined order. These elements
are adapted to the utilized concept, in accordance with the production technology and the
assembly technique.

Thorough research and tests allow one to create appropriate geometric and static-
strength models used in the search and development of the new concepts and techniques.
The created unconventional new forms result from various innovative approaches to the
shaping and ordering of their individual elements, for example in the three-dimensional
Euclidean space.
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Systematic morphology is defined by Eekhout as “the study of the system, rules and
principles of form has led to the interpretation of the study of the geometry of regular
three-dimensional bodies or forms, usually known as polyhedra.” [38]. Analogous systems
of planes called polyhedral reference networks are used in the present article. These are
sums of many regular tetrahedrons arranged regularly in the three-dimensional space.

Wester defined structural morphology as “the Study of Form” [39]. A detailed descrip-
tion of the issues related to the morphology of the structure is presented by Qingpeng [40].
In this article, the study is limited to the geometric shaping of complex building structures
roofed with free-form transformed corrugated shell structures arranged regularly in the
three-dimensional space. The arrangement of the complete roof shell sectors is carried out
by means of plane systems called polyhedral reference networks. The individual planes of
each system separate single roof shells and contain the directrices of these shells. The diver-
sification of the shape and mutual position of each pair of the adjacent directrices enables
one to shape various innovative transformed forms of the complete corrugated shells.

The following factors have a decisive impact on the geometric properties of the investi-
gated reference networks: (1) the regularity of the shapes and arrangement of the designed
roof structures, (2) the rectangular shapes of the utilized folded sheets connected by their
longitudinal edges into a single transformed strip, respectively, (3) the shape and mutual
position of the roof directrices supporting each individual transformed shell segment, and
(4) multi-wall character of the shaped complex facades. The assumed multi-segment nature
of each roof structure Ω divided by the specific sets of planes allows all individual shells
Ωij to be arranged by joining together along their transverse edges in relation to the fold
directions. This way of connection results in specific ribbed roof structures.

Two adjacent shells of a roof structure can be connected along common eaves lines,
including directrices (Figures 2 and 5), or separated by flat window areas, allowing the
sun rays to illuminate the building interior. This method allows the designer to shape
freely attractive free forms of the roof structures (Figure 6b). In the last case, the roof direc-
trices of two adjacent shells are contained in the same plane, which forced development
of a specific method for creating the special systems of these planes called polyhedral
reference networks.

The quadrilateral nature of each closed edge line Bvij limiting each complete trans-
formed roof shell Ωij results in that each reference network Γ is composed of meshes Γij
restricted by tetrads of planes. Due to the rectangular characteristics of the individual
sheets and their strips, the meshes are built as specific reference tetrahedrons whose four
walls contain four single segments of the edge line Bvij of each single shell Ωij. Thus, all
Bvij are closed spatial quadrangles whose all four apex angles are close to right angles.

As a rule, the complete shell segments are variously transformed, because they take
relatively different forms depending on the shape and mutual position of their roof di-
rectrices adapted to the diversified curvature of the whole roof shell structure. Many
special regular single shell sectors Ωij and complete free forms ∑ij should be located in one
polyhedral network mesh Γij (Figure 8a). Thus, the respective façade walls, side edges, roof
directrices and eaves segments are included in the tetrad of planes of each Γij. The most
general type of the tetrahedral meshes Γij was adopted in the further analysis (Figure 8b).
Every two adjacent planes of the same mesh Γij intersect in a side edge aij, bij, cij or dij,
however, two of its opposite planes intersect in one axis uij or vij. The side edges and axes
are defined by means of four vertices WABij, WCDij, WADij and WBCij, adopted initially or
created previously for Γij (Figure 8b).

Subsequently, tetrads of points SAij, SBij, SCij and SDij are determined on four side
edges aij, bij, cij, dij in relation to four adopted vertices WABij, WCDij, WADij and WBCij
of Γij, (i = 2, j = 1) (Figure 8a). The constructed points are the vertices of a quadrangle
SAijSBijSCijSDij constituting a plane mesh of an auxiliary multi-plane edge net determining
a reference surface ωr. In relation to the reference surface ωr, four vertices Aij, Bij, Cij, Dij of
the quadrilateral eaves net Bvij are determined. Other tetrads of points PAij, PBij, PCij and
PDij defining a flat horizontal base of the sought-after free form ∑ are also constructed in
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relation to four vertices WABij, WCDij, WADij and WBCij. The complex free form ∑ determined
by the reference network Γ is a sum of all individual free forms ∑ij roofed with Ωij.

Figure 8. Creating complex building free form by means of a polyhedral reference network consisting of tetrahedral meshes
divided by common sides: (a) the obtained Γ and ∑ after setting up Γij and ∑ij, with each other; (b) Γij and ∑ij before setting.

To construct the subsequent shell sectors Ωij of different curvature in two orthogonal
directions, the axes uij and vij must be mutual skew. The greater the curvature diversity of
Ωij in two orthogonal directions, the greater the distance between the uij and vij axes must
be adopted. To build the diversified shells Ωij as sectors of warped surfaces, many pairs of
directrices must be modeled with the help of skew straight or curved lines contained in
opposite walls of each tetrahedron Γij.

The parameterization proposed in the present article regarding the geometric process
of shaping such free forms ∑ is based on an adoption of a finite set of independent variables
entering into the proposed novel computer application in the form of division coefficients
of the respective pairs of the investigated Γ’s vertices. The algorithm of the activities
leading to the creation of Γ and ∑ is presented in Section 5.

5. Results—The Methods Algorithm

The first step of the method’s algorithm relates to the determination of all vertices of
the subsequent reference tetrahedrons Γij, constituting the meshes of a reference network Γ.
The first mesh Γ11 is created so that the positions of its four vertices WAB11, WCD11, WAD11
and WBC11 are defined. For that purpose, a global coordinate system [x,y,z] with the origin
O was taken (Figure 9a). A first set of the initial data concerning the creation of Γ11 is
formed from the coordinates of these vertices. A few ways of determination of the vertices
belonging to the investigated reference networks were developed by Abramczyk [1,17,21].
If we want a sought-after mesh to be symmetric, then its vertices must be arranged either
symmetrically, in accordance with the principal planes (x,z) and (y,z), or in these planes.
After defining the vertices WAB11, WCD11, WAD11 and WBC11, we can determine four straight
side edges a11, b11, c11 and d11 of Γ11.

The second reference tetrahedron Γ12 is located along the (x,z)-plane in one of two
principal orthogonal directions relative to Γ11 (Figure 9b). Its vertex WAB12 is identical
to WCD11 introduced previously, so the second set of the initial data is composed of the
coordinates of three other vertices WCD12, WAD12 and WBC12 of Γ12. These vertices can
be determined as follows. The positions of the vertices WBC12, WAD12 have to be defined
on two side edges b12 = c11, a12 = d11, by means of two division coefficients of the pairs
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(WCD11,WBC11) and (WCD11,WAD11) by these vertices. The division coefficients constitute
the elements of the second set of the initial data instead of the coordinates of these points.

Figure 9. The results of two initial steps of the method’s algorithm used for creating Γ: (a) Γ11; (b) Γ12.

The position of vertex WCD12 is obtained as a result of a rotation of the triangle
WAB12WBC12WAD12 about the axis v12(WAD12,WBC12) into the position of the triangle
WCD12WBC12WAD12 (Figure 9b). If Γ12 is to be symmetrical towards the (x,z)-plane, WBC12
and WAD12 have to be identical to each other with respect to this plane. The point O12
helpful in programming, is the middle point of WAD12WBC12. Four vertices WAB12, WCD12,
WAD12 and WBC12 determine four straight side edges: a12, b12, c12 and d12 of Γ12. The
remaining tetrahedrons Γ1j (for j > 2) arranged symmetrically along the (x,z)-plane are
determined in an analogous manner.

The third reference tetrahedron Γ21 is located in the second of two principal orthogonal
directions of Γ11, that is, along the (y,z)-plane (Figure 10a). The third set of the initial data is
composed of the coordinates of only three vertices WAB21, WCD21 and WBC21 of Γ21 because
the other vertex WAD21 = WBC11. The positions of the vertices WAB21 and WCD21 are defined
on two side edges a21 = b11, d21 = c11 with the help of two division coefficients belonging to
the third set of initial data instead of the coordinates of these points. The position of vertex
WBC21 is obtained as a result of a rotation of the triangle WAD21WCD21WAB21 about the axis
u21(WCD21,WAB21) into the position of the triangle WBC21WCD21WAB21. If (y,z) is to be the plane
of symmetry of Γ21, then WCD21 and WAB21 have to be isentical to each other in relation to this
plane. In addition, the point O21, helpful in programming, has to be taken as the middle point
of WCD21WAB21. Four vertices—WAB21, WCD21, WAD21 and WBC21—determine four straight
side edges—a21, b21, c21 and d21 of Γ21. The remaining tetrahedrons Γi1 (for i > 2) arranged
along the (y,z)-plane are determined in an analogous manner.

The fourth reference tetrahedron Γ22 is located diagonally in relation to Γ11 (Figure 10b).
The fourth set of the initial data should be composed of the coordinates of only two vertices
WCD22 and WBC22 because WAD22 = WBC12 and WAB22 = WCD21. The positions of WCD22
and WBC22 are defined on two side edges d22 = c12, b22 = c21 with the help of two division
coefficients belonging to the fourth set of the initial data, instead of the coordinates of these
points. Four vertices—WAB22, WCD22, WAD22 and WBC22—determine four straight side
edges a22, b22, c22 and d22 and two axes u22 and v22 of Γ22. The remaining tetrahedrons Γij
(for i,j > 2) arranged diagonally in relation to Γ11 are determined in an analogous manner.
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Figure 10. The results of further initial steps of the method’s algorithm used for creating Γ: (a) Γ21; (b) Γ22.

Let us follow some selected instructions characteristic of the AutoLISP language of
programming the AutoCAD graphic editor used in the novel application to create the inves-
tigated reference networks. The procedure presented in Line 1 instructs the displacement
of a local coordinate system to the position of the global coordinate system [x,y,z]. Line
2 contains the instruction giving the WAB12 point coordinates identical to the coordinates
of the point WCD11. Instructions of Lines 3 and 4 calculate the coordinates of the points
WAD12 and WBC12 on the side edges b12 = c11(WCD11,WBC11) and a12 = d11(WCD11,WAD11) by
means of two division coefficients—dWBC12 and dWAD12—of the pairs (WCD11,WBC11)
and (WCD11,WAD11) by WBC12 and WAD12.

Line 1: (command “luw” “g”)
Line 2: (setq WAB12 (cal “WCD11+Oo”))
Line 3: (setq WBC12 (cal “plt(WCD11,WBC11,dWBC12)”))
Line 4: (setq WAD12 (cal “plt(WCD11,WAD11,dWAD12)”))
Line 5: (setq O12 (cal “plt(WBC12,WAD12,0.5)”))
Line 6: (command “luw” “3” WBC12 WAD12 WAB12)
Line 7: (setq O12u (cal “w2u(O12)”))
Line 8: (command “luw” “_o” O12u)
Line 9: (command “luw” “x” alfCD12)
Line 10: (setq WCD12u (list 0.0 jcd12 0.0) WCD12 (cal “u2w(WCD12u)”))

By means of the instruction from Line 6, a local clockwise coordinate system [xL,yL,zL]
with the origin at WBC12 is created so that the positive half axis xL is determined by
the points WBC12 and WAD12, and the positive half axis yL is contained in the plane
(WBC12,WAD12,WAB12), where the point WAB12 determines its positive course. The axis
zL passes through WBC12 perpendicularly to the plane (xL,yL), so that, the system [xL,yL,zL]
is clockwise. Then, [xL,yL,zL] is moved into a new position [xL1,yL1,zL1] according to the
instruction assigned to Line 8. After executing this instruction, the origin of [xL1,yL1,zL1] is
located in the middle point O12 of WBC12WAD12 (Figure 9b).

Since the translation of the old system [xL,yL,zL] to its new position [xL1,yL1,zL1] has to
be performed, the coordinates of the point O12 must be transformed into the new system.
This action is initiated by the procedure shown in Line 7. The instruction given in Line 9
rotates the system [xL1,yL1,zL1] to its new position [xL2,yL2,zL2]. The point WCD12u takes
the coordinates (0.0 jcd12 0.0) in its new position, according to the instruction given in Line
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10. The height of the triangle WAB12WBC12WAD12, passed from the point WAB12 is equal to
jcd12. In the second part of Line 10, the coordinates of WCD12 are transformed from the
local system [xL2,yL2,zL2] to the global system [x,y,z].

The code of the presented application contains two main instructions (while...) for
creating subsequent meshes Γij located in two orthogonal directions, that is, in i rows and j
columns of the network Γ. The selection function (cond...) makes it possible to distinguish
and determine four sets of these meshes. The first set relates to the first mesh Γ11. The
subsequent two sets concern the meshes located in two orthogonal directions passing along
the planes (x,z) and (y,z). The last set of meshes is related to the diagonal directions relative
to Γ11.

(setq i 0)

(while (<= i iN)

(setq j 0)

(setq i (+ i 1))

(while (<= j jN)

(setq j (+ j 1))

(cond ((and (= i 1) (= j 1)) (progn . . . creation of the first Γ11))

((and (= i 1) (> j 1)) (progn . . . creation of the first type of orthogonal reference

tetrahedrons Γ1j))
((and (> i 1) (= j 1)) (prong . . . creation of the second type of orthogonal reference

tetrahedrons Γi1))
((and (> i 1) (> j 1)) (progn . . . creation of diagonal reference tetrahedrons Γij)

);cond

);while.

);while

The above-mentioned procedures are represented by the block scheme shown in
Figure 11. They are the main part of the method’s algorithm presented in this article.

To determine four points SA11, SB11, SC11 and SD11 (Figure 12a) defining a sector of a
reference surface, four division coefficients constituting four elements of the first set of the
initial data must be employed. Subsequently, four auxiliary points of the reference surface
must be determined on the side edges of Γ12 so that two of them SB12 = SC11, SA12 = SD11
belong to b12 = c11 and a12 = d11, and the other two—SC12 and SD12—are determined on
two side edges c12 and d12 using two division coefficients constituting two elements of
the second set of the initial data adopted earlier (Figure 12b). Tetrads of points SA1j, SB1j,
SC1j and SD1j belonging to the remaining tetrahedrons Γ1j (for j > 2) arranged along the
(x,z)-plane are determined in an analogous manner.

At the subsequent step of the method’s algorithm, four auxiliary points SA21, SB21,
SC21 and SD21 of the reference surface must be determined on the side edges of Γ21, so that
two of them are SA21 = SB11, SD21 = SC11, and the other two SC21 and SB21 are determined
on two side edges c21 and b21 (Figure 13), using two division coefficients of the third set of
the initial data.
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Figure 11. The algorithm of the iterative process for creating the nets Γ and Bv and structures Ω and ∑.

Figure 12. Tetrads of the ωr‘s points belonging to: (a) Γ11; (b) Γ12.
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Figure 13. Subsequent tetrads of the points belonging to Γ21.

At the end of this step, four auxiliary points f the ωr reference surface are determined
on the side edges of Γ22. Three of these points are determined on a22 = b12, b22 = c21,
and d22 = c12, so that SA22 = SB12, SB22 = SC21 and SD22 = SC12 (Figure 14). The last one
belongs to c22 determined by WCD22 and WBC22, using a division coefficient constituting
one element of the fourth set of the initial data.

Figure 14. An auxiliary quadrilateral net determining a reference surface ω the polyhedral net Γ.
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Tetrads of points SAij, SBij, SCij and SDij belonging to the remaining tetrahedrons Γij
(for i,j > 2) arranged diagonally in relation to Γ11 have to be determined in an analogous
manner. On the basis of the auxiliary quadrilateral net having vertices located at the points
SAij, SBij, SCij and SDij of Γij, the ωr surface is defined (Figure 14).

Some procedures related to the determination of the aforementioned points SAij,
SBij, SCij and SDij are presented and analyzed below. The procedures shown in Lines
11 to 14 realize the calculations of the coordinates of the above points. The procedure
given in Line 15 creates the plane quadrangle SA11SB11SC11SD11 in the three-dimensional
computer space.

Line 11: (setq SA11 (cal “plt(WAB11,WAD11,dSA11)”))
Line 12: (setq SB11 (cal “plt(WAB11,WBC11,dSB11)”))
Line 13: (setq SD11 (cal “plt(WCD11,WAD11,dSD11)”))
Line 14: (setq SC11 (cal “plt(WCD11,WBC11,dSC11)”))
Line 15: (command “linia” SA11 SB11 SC11 SD11 SA11 ““)

The instructions assigning the values of the coordinates of the previously determined
points SD11 and SC11 to the coordinates of SA12 and SB12 are presented in Lines 16 and 17.
The procedure from Line 18 calculates the division coefficient of the pair (WAB12,WAD12)
by SA12 using an internal novel function (wspolcz...) written by the author. The next
instruction located in Line 19 assigns the value calculated by the function (wspolcz...) to
the division coefficient dSA12.

The analogous procedures resulting in the calculation of the coefficient dSB12 of the
pair (WAB12,WBC12) by SB12 are given in Lines 20 and 21. The instructions from Lines 22
and 23 calculate the coordinates of the points SC12 and SD12 positioned on the straight lines
(WCD12,WBC12) and (WCD12,WAD12), using the division coefficients dWBC12 and dWAD12
of the aforementioned pairs by SC12 and SD12. The procedure shown in Line 24 creates a
quadrangle SA12SB12SC12 SD12 in the three-dimensional computer space.

Line 16: (setq SA12 (cal “SD11 + Oo”))
Line 17: (setq SB12 (cal “SC11 + Oo”))
Line 18: (wspolcz SA12 WAB12 WAD12)
Line 19: (setq dSA12 wspcz)
Line 20: (wspolcz SB12 WAB12 WBC12)
Line 21: (setq dSB12 wspcz)
Line 22: (setq SC12 (cal “plt(WCD12,WBC12,dSC12)”))
Line 23: (setq SD12 (cal “plt(WCD12,WAD12,dSD12)”))
Line 24: (command “linia” SA12 SB12 SC12 SD12 SA12 ““)

The procedures calculating the coordinates of SA22, SB22, SC22 and SD22 are analogous
to those presented earlier for Γ11 and Γ12. The internal function (wspolcz...) must be used
three times to calculate the coordinates of the above three points. In the case of Γ22, the
value of the calculated division coefficient dSA22 of (WAB22,WAD22) by SC11 have to be
assigned to the division coefficient dSC22 of (WCD22,WBC22) by SC2.

It is worth paying attention to the following properties of the reference network Γ
built so far. All vertices of each reference tetrahedron Γij designate four side edges aij, bij, cij
and dij and four planes of Γ. Each new reference tetrahedron Γi+1j or Γij+1 is created as a
spatial mesh with two sought-after vertices defined on two side edges of two previously
constructed tetrahedrons Γij, so the subsequent pairs of adjacent meshes of Γ have to have
common planes. The roof directrices of each Γij should be positioned in these planes.

To calculate the coordinates of A11, B11, C11 and D11 of a closed spatial eaves quad-
rangle Bv11, four division coefficients constituting four elements of the first set of the
initial data, used for Γ11, have to be adopted. These points belong to four side edges
a11(WAB11,WAD11), b11(WAB11,WBC11), c11(WBC11,WCD11) and d11(WCD11,WAD11) and should
be positioned in accordance with ωr by means of the respective division coefficients
(Figure 15a). Subsequently, four vertices—A12, B12, C12 and D12 of Bv12—have to be deter-
mined on the side edges a12, b12, c12 and d12 of Γ12 in relation to ωr. Two of these vertices
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are A12 = C11, B12 = D11. The other two C12 and D12 have to be determined on two side
edges c12(WBC12,WCD12) and d12(WCD12,WAD12) using two division coefficients constituting
two elements of the second set of the initial data. The tetrads of points A1j, B1j, C1j and D1j
belonging to the side edges of the remaining tetrahedrons Γ1j (for j > 2) and constituting
the vertices of the remaining spatial quadrangles Bv1j located along the (x,z)-plane are
determined in an analogous manner.

Figure 15. Final steps of creating: (a) Bv net; (b) elevation structure ∑.

Four vertices A21, B21, C21 and D21 of the eaves Bv21 have to be determined on the side
edges a21, b21, c21 and d21 of Γ21 in accordance with ωr (Figure 15a). Two of these vertices
are A21 = B11, D21 = C11. The other two C21 and B21 have to be determined on two side edges
c21 (WBC21,WCD21) and b21(WAB21,WBC21), using two division coefficients constituting two
elements of the third set of the initial data. The points Ai1, Bi1, Ci1 and Di1 belonging to
the other tetrahedrons Γi1 and constituting the vertices of the spatial quadrangles Bvi1 (for
i > 2) arranged along the (y,z)-plane are determined in an analogous manner.

Four vertices A22, B22, C22 and D22 of the quadrangle Bv22 have to be determined on the
side edges a22(WAB22,WAD22), b22(WAB22,WBC22), c22(WBC22,WCD22) and d22(WCD22,WAD22)
of Γ22 relative to ωr (Figure 15a). Three of these points are determined on a22 = c11, b22 = c21,
and d22 = c12 so that A22 = C11, B22 = C21 and D22 = C12. The last one C22 belongs to
c22(WCD22,WBC22). It is determined by means of one division coefficient constituting an
element of the fourth set of the initial data. The tetrads of points Aij, Bij, Cij and Dij
belonging to the remaining tetrahedrons Γij (for i,j > 2) arranged diagonally with regard to
Γ22 can be determined in an analogous manner.

In order to determine a horizontal plane base of the free form ∑, one its point, for
example, PD12 has to be defined on d12 (Figure 15b). The value of the division coefficient
of the pair (WCD12,WAD12) by this point is an element of the second set of the initial data.
Another point of the plane base is the intersection of the horizontal base plane passing
through PD12 with the subsequent tetrads of side edges of Γ11, Γ12, etc.

The result of adding up the four reference tetrahedrons Γij is a subnet Γ1 constituting
a quarter of the resultant reference network Γ. The other three parts of Γ can be built using
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a z-axis symmetry and two (x,z)-plane and (y,z)-plane symmetries, called 3D-mirrors, in
the way described in the next section on an example of a more complex reference network.

Similarly, four tetrahedrons ∑ij create a subnet ∑1 constituting one-fourth of the
designed building free form ∑. Four eaves quadrangles Bvij create a subnet Bv1 constituting
one-fourth of the network Bv. On the basis of Bv, the roof structure Ω composed of many
sectors Ωij is created.

In summary, for the case of creating reference tetrahedrons Γ1j or Γi1 (for j > 2 or i > 2
and i, j different from (1) located in two orthogonal directions of planes (x,z) and (y,z),
one vertex of each of these tetrahedrons must be located outside the side edges of the
already created subnet of Γ. The vertex determines a new plane of Γ passing through the
already constructed axis of the designed tetrahedron. Two of its subsequent vertices ought
to be determined on two side edges of the previously created subnet of Γ with the help
of two division coefficients. The location of the fourth vertex is identical with one of the
vertices of Γ constructed earlier. In the case of the diagonal directions of Γ11, each new
reference tetrahedron Γij has two vertices identical to two previously constructed vertices
of Γ. However, its new vertices have to be determined on two side edges of the previously
created subnet of Γ by means of the respective division coefficients.

This way of constructing the subsequent reference tetrahedrons located in the orthog-
onal and diagonal courses of each reference network Γ is characterized by the fact that each
inner side edge of Γ is shared by four adjacent reference tetrahedrons and eight vertices of
these four tetrahedrons belong to the same side edge of Γ. In a general case, these eight
vertices occupy four different positions, in pairs. This topic is going to be presented in
further publications. The example of using the proposed algorithm for determining the
parametric reference polyhedral networks Γ and eaves nets Bv is given in next section.

6. Results—Parametric Shaping of the Reference Networks

Two ways of shaping of the investigated networks Γ and Bv can be carried out in
scientific and engineering problems. One of these ways is based on the stiff-motions such
as translations and rotations of several initially adopted or calculated points edges and
planes determining the other vertices and side edges of these nets [22]. The second way,
presented in this article, is more intuitive, because it enables one to create parametric
models by means of the division coefficients expressing very specific relations between the
main elements of the designed building free-forms. To make this method easy for many
designers, a novel computer application written in the AutoLISP language of programming
the AutoCAD visual editor was developed.

The last way requires a little more operations related to the division coefficients of
the respective pairs of the determined vertices of the investigated reference polyhedral Γ
and the quadrilateral Bv networks. The coefficients define the positions of: (1) the vertices
of the sought-after reference network Γ with respect to a few intuitively adopted specific
points of Γ, (2) the planes of Γ, (3) the points SAij, SBij, SCij, and SDij belonging to ωr, and (4)
the vertices Aij Bij, Cij and Dij of Bv determining the multi-shell roof structure Ω.

In the example presented below, a usage of the method for computational determining
one quarter Γ1 of a reference network Γ (Figure 16) based on some adopted proportions is
discussed. All vertices of three other quarters Γ2L, Γ3p, Γ4r of Γ are determined using: (1)
z-axial symmetry for the case of Γ2L, (2) (x,z)-plane symmetry called 3D-mirror for Γ3p, and
(3) (y,z)-plane symmetry for the case of Γ4r. A description of creating the symmetric nets
Γ2L, Γ3p, Γ4r is not presented in this article.

Creating one quarter Γ1 of an z-axially symmetric network Γ is started by defining
the first z-axis-symmetric mesh Γ11 (Figure 17a). It is continued for subsequent meshes Γij
arranged orthogonally (Figure 17b) and, next, diagonally with respect to Γ11, following the
algorithm presented in the previous section. To obtain the first tetrahedron Γ11, four of
its vertices—WAB11, WCD11, WAD11 and WBC11—are defined by means of their coordinates
listed in Table 1.
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Figure 16. A multi-segment reference network Γ consisting of four symmetric subnets Γ1, Γ2L, Γ3p

and Γ4r.

Figure 17. Two initial steps of the method’s algorithm related to creation of: (a) Γ11; (b) Γ12; (c) Bv11 and Bv12.

Table 1. The coordinates of Γ11’s vertices.

Point x-Coordinate (mm) y-Coordinate (mm) z-Coordinate (mm)

WAB11 −1000 0 0
WCD11 1000 0 0
WAD11 0 −871.6 9961.90
WBC11 0 871.6 9961.90
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The positions of the points SA11, SB11, SC11 and SD11 of ωr are defined with the follow-
ing division coefficients (WAB11,WAD11)\SA11, (WAB11,WBC11)\SB11, (WCD11,WBC11)\SC11
and (WCD11,WAD11)\SD11, where

(WAB11,WAD11)\SA11 = m(
→

WAB11SA11)/m(
→

WAB11WAD11)

(WAB11,WBC11)\SB11 = m(
→

WAB11SB11)/m(
→

WAB11WBC11)

(WCD11,WBC11)\SC11 = m(
→

WCD11SC11)/m(
→

WCD11WBC11)

(WCD11,WAD11)\SD11 = m(
→

WCD11SD11)/m(
→

WCD11WAD11)

and
→

WAB11WAD11 is the vector starting with WAB11 and ending at WAD11, m(
→

WAB11WAD11)

is the measure of
→

WAB11WAD11,
→

WAB11SA11 is the vector with the starting point at WAB11
and the ending point at SA11, etc. The values of the above ratios are listed in Table 2. The
subsequent points SA11, SB11, SC11 and SD11 define the spatial quadrangle determining a
respective segment of ωr.

Table 2. The initial data defining the meshes Γ11 and Bv11.

Division Coefficient Value

(WAB11,WAD11)\SA11 5.5
(WAB11,WBC11)\SB11 5.5
(WCD11,WAD11)\SC11 5.5
(WCD11,WAD11)\SD11 5.5

(WAB11,WAD11)\(SA11,A11) −0.1
(WAB11,WBC11)\(SB11,B11) 0.1
(WCD11,WBC11)\(SC11,C11) −0.1

(WCD11, WAD11)\(SD11,D11) 0.1

The locations of the vertices A11, B11, C11 and D11 of Γ11 (Figure 17c) are defined by
means of the aforementioned vertices of Γ11 and the following proportions

(WAB11,WAD11)\A11 = m(
→

WAB11 A11)/m(
→

WAB11WAD11)

(WAB11, WBC11)\B11 = m(
→

WAB11B11)/m(
→

WAB11WBC11)

(WCD11, WBC11)\C11 = m(
→

WCD11C11)/m(
→

WCD11WBC11)

(WCD11, WAD11)\D11 = m(
→

WCD11D11)/m(
→

WCD11WAD11)

where
→

WAB11 A11 is the vector defined by the starting point at WAB11 and the ending
point A11, etc. The points A11, B11, C11 and D11 determine the spatial quadrangle Bv11 limit-
ing the single smooth shell segment Ω11 of the complex roof structure Ω. Subsequently, the
values of four division coefficients (WAB11,WAD11)\(SA11,A11), (WAB11,WBC11)\(SB11,B11),
(WCD11,WBC11)\(SC11,C11) and (WCD11,WAD11)\(SD11,D11) must be adopted as follows

(WAB11,WAD11)\(SA11,A11) = m(
→

SA11 A11)/m(
→

WAB11WAD11) = (WAB11,WAD11)\A11-(WAB11,WAD11)\SA11

(WAB11,WBC11)\(SB11,B11) = m(
→

SB11B11)/m(
→

WAB11WBC11) = (WAB11,WBC11)\B11–(WAB11,WBC11)\SB11

(WCD11,WBC11)\(SC11,C11) = m(
→

SC11C11)/m(
→

WCD11WBC11) = (WCD11,WBC11)\C11-(WCD11,WBC11)\SC11

(WCD11,WAD11)\(SD11,D11) = m(
→

SD11D11)/m(
→

WCD11WAD11) = (WCD11,WAD11)\D11-(WCD11,WAD11)\SD11

The above constants have positive or negative signs depending on whether the
points A11, B11, C11 and D11 lie above or below ωr defined by means of the quadran-
gle SA11SB11SC11SD11 (Figure 17a).

If we transform the above formulas, the division ratios (WAB11,WAD11)\A11, (WAB11,WBC11)
\B11, (WCD11,WBC11)\C11 and (WCD11,WAD11)\D11 can be calculated as follows

(WAB11,WAD11)\A11 = (WAB11,WAD11)\SA11 + (WAB11,WAD11)\(SA11,A11)
(WAB11,WBC11)\B11 = (WAB11,WBC11)\SB11 + (WAB11,WBC11)\(SB11,B11)
(WCD11,WBC11)\C11 = (WCD11,WBC11)\SC11 + (WCD11,WBC11)\(SC11,C11)
(WCD11,WAD11)\D11 = (WCD11,WAD11)\SD11 + (WCD11,WAD11)\(SD11,D11)
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The values of the division coefficients used in the example are given in Table 2.
In order to create the tetrahedron Γ12, four of its vertices—WAB12, WCD12, WAD12 and

WBC12—were defined by means of the coordinates listed in Table 3.

Table 3. The coordinates of the Γ12’s vertices.

Point x-Coordinate (mm) y-Coordinate (mm) z-Coordinate (mm)

WAB12 4500.00 4880.70 55,786.90
WCD12 3254.30 0 468.2
WAD12 −100 −958.7 10,958.10
WBC12 −100 958.7 10,958.10

The positions of the points SA12, SB12, A12 and B12 are similar to the positions of SD11,
SC11, D11 and C11, so the following division coefficients have to be calculated as follows

(WAB12,WAD12)\SA12 = (WCD11,WAD11)\SD11/(WCD11,WAD11)\WAD12
(WAB12,WBC12)\SB12 = (WCD11,WBC11)\SC11/(WCD11,WBC11)\WBC12
(WAB12,WAD12)\A12 = (WCD11,WAD11)\D11/(WCD11,WAD11)\WAD12
(WAB12,WBC12)\B12 = (WCD11,WBC11)\C11/(WCD11,WBC11)\WBC12
where the spaces before and behind the slash denote that we have common division

of two numbers. Other division ratios related to Γ12 and Bv12 are adopted as follows.
(WCD12,WBC12)\SC12 = (WAB12,WAD12)\SA12
(WCD12,WAD12)\SD12 = (WAB12,WBC12)\SB12
(WCD12,WBC12)\C12 = (WAB12,WAD12)\A12
(WCD12,WAD12)\D12 = (WAB12,WBC12)\B12
The calculated values of these division coefficients are given in Table 4.

Table 4. The data defining the mesh Bv12.

Ratio Value

(WAB12,WAD12)\SA12 5
(WAB12, WBC12)\SB12 5
(WCD12, WBC12)\SC12 5
(WCD12, WAD12)\SD12 5

(WAB12,WAD12)\(SA12,A12) 0.091
(WAB12, WBC12)\(SA12,B12) −0.091
(WCD12, WBC12)\(SA12,C12) 0.091
(WCD12, WAD12)\(SA12,D12) −0.091

The positions of the points: (1) SA13, SB13, SC13, SD13, A13, B13, C13 and D13, (2) SA21,
SB21, SC21, SD21, A21, B21, C21 and D21, (3) SA31, SB31, SC31, SD31, A31, B31, C31 and D31
can be defined or calculated in an analogous way, as for SA12, SB12, SC12, SD12, A12, B12,
C12 and D12. The values of the coordinates of all aforementioned points are given in
Tables A2 and A3, posted in Appendix A.

To determine the last tetrahedron Γ22 investigated in our example, four of its vertices—
WAB22, WCD22, WAD22 and WBC22 (Figure 18)—are initially defined by means of the coordi-
nates listed in Table 5.

Table 5. The coordinates of the Γ22’s vertices.

Point x-Coordinate (mm) y-Coordinate (mm) z-Coordinate (mm)

WAB22 1100.00 −87.2 −996.2
WCD22 3589.70 −95.9 −580.8
WAD22 −100 958.7 10,958.10
WBC22 −110 2840.10 10,744.40
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Figure 18. The reference tetrahedron Γ22 and spatial quadrangle Bv22.

To construct the quadrangle Bv22 (Figure 18), the values of the vertices SA22, SB22, SC22,
SD22, A22, B22, C22 and D22 must be calculated in the following way. The positions of the
points SA22, SB22, SD22, A22, B22 and D22 are similar to the positions of SC11, SC21, SC12, C11,
C21 and C12 determined previously for Γ11, Γ21, Γ12, Bv11, Bv21 and Bv12.

To achieve the coordinates of the aforementioned points of ωr and Bv, the following
division coefficients should be calculated

(WAB22,WAD22)\SA22 = (WCD11,WBC11)\SC11
(WCD11,WBC11)\WAD22·(WBC11,WCD11)\WAB22

(WAB22,WAD22)\A22 = (WCD11,WBC11)\C11
(WCD11,WBC11)\WAD22·(WBC11,WCD11)\WAB22

(WAB22,WAD22)\(SA22,A22) = (WAB22,WAD22)\A22 − (WAB22,WAD22)\SA22
(WAB22,WBC22)\SB22 = (WCD21,WBC21)\SC21/(WCD21,WBC21)\WBC22
(WAB22,WBC22)\B22 = (WCD21,WBC21)\C21/(WCD21,WBC21)\WBC22
(WAB22,WBC22)\(SB22,B22) = (WAB22,WBC22)\B22 − (WAB22,WBC22)\SB22
(WCD22,WAD22)\SD22 = (WCD12,WAD12)\SC12/(WBC12,WCD12)\WCD22
(WCD22,WAD22)\D22 = (WCD12,WAD12)\C12/(WBC12,WCD12)\WCD22
(WCD22,WAD22)\(SD22,D22) = (WCD22,WAD22)\D22 − (WCD22,WAD22)\SD22

A detailed description of a mutual position of the vertices belonging to one exemplary
configuration of a polygonal Bv net and a polyhedral net Γ is presented by Abramczyk
using the method based on stiff motions [22]. In the present article, the extensive method
of parametric shaping of the regular roof shell structures by means of the orthotropic
properties of the corrugated shell sectors is developed based on the division coefficients.

The spaces before and after slash/depict if a usual division is used. In contrast, a
division ratio is expressed if there are not spaces before and after the backslash\. On the
basis of the above division coefficients, the following can be calculated

(WCD22,WBC22)\SC22 = (WAB22,WAD22)\SA22
(WCD22,WBC22)\C22 = (WAB22,WAD22)\A22
(WCD22,WBC22)\(SC22,C22) = (WCD22,WBC22)\C22−(WCD22,WBC22)\SC22
The values of these division coefficients are given in Table 6.
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Table 6. The initial data defining the mesh Bv22.

Ratio Value

(WAB22,WAD22)\SA22 4.6667
(WAB22, WBC22)\SB22 4.6281
(WCD22, WAD22)\SD22 4.6667
(WCD22, WAD22)\SD22 4.6364

(WAB22,WAD22)\(SA21,A22) −0.0833
(WAB22, WBC22)\(SA21,B22) 0.0826
(WCD22, WBC22)\(SA22,C22) −0.0833
(WCD22, WAD22)\(SA22,D22) 0.0826

Analogous proportions as for the quadrangle Γ22 can be defined for other meshes
located diagonally with respect to Γ11, including for Γ23, Γ32, and Γ33. The subnet Γ1
constituting a sum of Γij (for i,j = 1 to 3) is located between the planes (x,z) and (y,z) in the
dihedral angle containing the positive axis y and the negative axis x (Figure 19). It is about
one quarter of the designed resultant z-axis-symmetric Γ (Figure 16).

Figure 19. (a) The first quarter of the reference network Γ composed of Γij for i,j = 1 to 3, (b) the Γ’s vertices.

7. Discussion

The first basic goal accomplished by the proposed novel method is to create a relatively
simple and regular spatial arrangement of many simple complete free forms connected
to each other into one complex building free-form with oblique plane elevations and a
transformed multi-segment shell roof structure. The individual free forms are roofed
with single ruled shells whose shapes result from the expected shape transformations of
thin-walled folded sheets. The simplicity of the method’s algorithm is to build a system of
planes that, when intersected, isolate many spatial meshes creating a reference network
adaptable to various boundary conditions. These complete meshes also define the facade



Materials 2021, 14, 2402 22 of 29

walls of the designed complete free-forms. In these planes, common directrices of the
shell segments roofing adjacent single free-forms are included. In the article, mutual skew
straight lines are investigated as the roof directrices.

The regularity of numerous arrangements of many individual roof shell segments is
ensured by the specific geometric shaping of these segments, based on the reference surface
and division coefficients related to the intersecting point of respective planes and side edges
of the reference networks. The most important steps of the method’s algorithm leading
to the achievement of the above assumed goal by means of a parameterization based on
the aforementioned division coefficients are presented in Figures 11 and 20. The multitude
and complexity of the activities and objects realized by the algorithm need to use computer
technology to program the calculations and create the required geometric models.

Figure 20. A block scheme of the method’s algorithm.

The second main goal implemented by the method is the possibility of a relatively free
and intuitive shaping of complex building free-form structures and their easy modification
to the requirements and expectations of the designer.
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To build a complex building form, the presented method’s algorithm instructs the iter-
ative activities and objects presented by means of the block scheme shown in Figure 11. At
the beginning of each Γ’s and Bv’s shaping process, a set of numbers defining the locations
of the vertices WABij, WCDij, WADij and WBCij of all subsequent reference tetrahedrons Γij of
Γ is adopted. The numbers are the division coefficients of the proper pairs of the already
constructed vertices belonging to Γij by the other sought-after vertices belonging to the
subsequently determined tetrahedrons Γi+1j, Γij+1 and Γi+1j+1.

To create tetrahedrons Γ1j and Γi1 forming two principal orthogonal strips of Γ, a
specific set of numbers constituting dependent or independent variables has to be adopted.
To determine four vertices of each new reference tetrahedron located in one of these
orthogonal strips, the following relations must be taken. Each tetrahedron has to have
one common wall and two common side edges with one of the previously built reference
tetrahedrons. Three other walls and two remaining side edges of this new reference
tetrahedron are determined by means of two searched and two known vertices.

In order to determine the diagonal strips of the network Γ, a new set of parameters
defining the location of four vertices of each tetrahedron Γij located diagonally has to be
adopted, so that: (1) two its walls and three side edges have to be common with some
tetrahedrons constructed previously, and (2) one of these side edges must also be common
with one of the previously constructed tetrahedrons of the same diagonal strip. Based on
the above set, the locations of the remaining fourth side edge and two walls of this diagonal
reference tetrahedron, for example Γ22, are sought by means of two sought-after points
belonging to two different side edges created previously.

Subsequently, the points SAij, SBij, SCij and SDij of a reference surface ωr and the
vertices of all Bvij meshes are determined on the basis of the reference network Γ and the
adopted sets of initial data. These parameters are single-division coefficients and double-
division coefficients of the subsequently selected pairs of the Γ’s vertices by: (1) the points
SAij, SBij, SCij and SDij, (2) the vertices Aij, Bij, Cij and Dij of Bvij, and (3) the points PAij, PBij,
PCij and PDij of the base of the free-form-shaped building. In the example presented in the
previous section, the calculated values of the division coefficients related to the positions of
the aforementioned vertices are listed in Table 7.

Table 7. The division coefficients defining selected Bvij.

Ratio Value

(WAB11,WAD11)\A11 5.4
(WAB11,WBC11)\B11 5.6
(WCD11,WBC11)\C11 5.4
(WCD11,WAD11)\D11 5.6
(WAB12,WAD12)\A12 5.091
(WAB12, WBC12)\B12 −4.909
(WCD12, WBC12)\C12 5.091
(WCD12, WAD12)\D12 −4.909
(WAB22,WAD22)\A22 4.5833
(WAB22, WBC22)\B22 4.7107
(WCD22, WBC22)\C22 4.5833
(WCD22, WAD22)\D22 4.7107

The main step of the method’s algorithm is accomplished by means of the activities
assigned to the sections Prock, where k = 1 to 3 (Figure 20) depending on the location of Γij
in Γ. There are four configurations of these procedures, supporting the activities requiring
different input data and various type and number of the functions used to determine the
Γ’s and Bv’s vertices. The common actions assigned to all configurations are presented in
the container called Procedure k shown in Figure 21. The activities are implemented in the
innovative computer application written in the AutoLISP programming language.
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Figure 21. Common operations accomplished by the four configurations Prodk, where k = 1 to 4.

The actions of the section Proc1 (for k = 1) concern the first constructed meshes of
networks Γ and Bv and the sectors of structures Ω and ∑, where i = j = 1. The activities
referred to the section Proc2 (for k = 2), relating to the meshes of the first of two orthogonal
strips of Γ, Bv, Ω and ∑ running along the plane (x,z), for which i = 1 and j different from 1.
The activities of the section Proc3 (for k = 3) relate to the meshes of the second orthogonal
strip passing along the plane (y,z), for which j = 1 and i is different from 1. The activities
assigned to the section Proc4 (for k = 4) refer to all meshes of the diagonal strips of Γ, Bv, Ω
and ∑, for which i and j are different from 1. A novel computer-aided method is proposed
due to the complexity of the above operations and geometric objects.

The division coefficients adopted initially to define the characteristic points of Γ,
ωr and Bv are also used for assessing the curvature of the reference surface ωr and the
roughness of the eaves net Bv. The expected curvature of the ωr’s area corresponding to
the single mesh Γij can be shaped by means of four division coefficients (WABij,WADij)\SAij,
(WABij,WBCij)\SBij, (WCDij,WBCij)\SCij and (WCDij,WADij)\SDij determining the positions of
the points SAij, SBij, SCij and SDij on the side edges aij, bij, cij and dij. Since the points are
created for a finite number of subsequent meshes Γij, then the curves located on ωr can be
defined in an approximate way on the basis of these points. These curves also define ωr in
an approximate way.

For the considered networks Γ and Bv and structures Ω and ∑, roughness of the Bv
network also plays an important role. The roughness is determined by means of division
coefficients of the respective pairs of the Γ’s vertices by the selected ωr’s points and Bv’s
vertices. The roughness describes the disturbances in the smoothness of the network
Bv in relation to the smooth surface ωr. The disturbances result from the forced mutual
inclination of each pair of the adjacent roof directrices designed for all complete meshes
Bvij to realize the shape transformations of the complete corrugated roof shells. On the
one hand, the roughness can have a positive effect on the attractiveness and span of the
complex roof free forms Ω and entire building ∑. On the other hand, the edges between
the adjacent meshes Bvij can reduce the visual attractiveness of the building shaped by
disturbing the smoothness of the shell roof rib structure.

The maximum and minimum values of the absolute and relative roughness of the
entire network Bv and the proportions between these values can be defined as double- and
triple-division coefficients if the need exists. This problem also goes beyond the scope of
the article.

The division coefficients of the selected pairs of the Γij’s vertices by the points SAij,
SBij, SCij and SDij affect the ωr’s curvature. If the values of the above coefficients are greater
than 1, convex roof free forms with positive Gaussian curvatures are shaped (Figure 22a).
If the values of the above coefficients are greater than 0 and less than 1, then concave roof
shell forms with negative Gaussian curvature are shaped (Figure 22b). If the values of the
above coefficients are from the range (-∞,0), concave roof free forms with positive Gaussian
curvature are shaped. These forms have oblique facades tapering upwards in contrast
to the forms widening upwards, e.g., the one presented in Figure 22a. A possibility of
modifying the reference networks Γ by changing some division coefficients defining their
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shapes and the positions of their vertices allows one to optimize the curvature of ωr and
the roughness of Bv according to the demands referring to the attractiveness of the shaped
building free-forms.

Figure 22. Two shell roof structures with eaves meshes arranged compatible with a regular surface of characterized by:
(a) the positive Gaussian curvature, (b) the negative Gaussian curvature defined by means of two various polyhedral
reference networks.

The third basic goal realized by means of the method is attractiveness and rationality
of the final complex building free forms ∑, which is associated with the properties of
the investigated networks Γ and Bv, and surface ωr. The main elements determining the
attractiveness are: (1) the ωr’s curvature in two orthogonal and diagonal directions, (2) the
positions of the Γ’s planes, and (3) the positions of the Bv’s vertices on the Γ’s side edges
with respect to ωr. Modifications of these elements enable us to maintain the expected
shape and slope of the designed multi-plane facades and multi-segment shell roof structure,
as well as their geometric coherence with the entire building free form.

The main elements determining the rationality of the investigated geometric structures
are: (1) the mutual consistency and regular arrangement of all individual forms ∑ij, (2) the
mutual consistency and the regular arrangement of all individual roof forms Ωij, (3) the
consistency of the entire roof and facade forms, (4) the regularity of the distribution of all
Γij relative to ωr, and (5) the location of the contraction of each effectively transformed fold
along its length, induced by the mutual position and slope of the Bvij’s and Ωij’s directrices.
The rationality is defined by means of the respective division coefficients or proportions
between the selected elements of the investigated networks and structures.

8. Conclusions

The investigated innovative method’s algorithm utilizing the novel polyhedral refer-
ence networks for shaping unconventional visually attractive and shaped rational multi
sector shell roofs, entire building free forms and their structural systems is proposed. The
nominally plane thin-walled corrugated sheets transformed elastically and effectively into
ruled shell shapes are the basic material impacting the shapes of the building elements.

The meshes of the reference networks enable the designer to define the eaves lines
of all individual roof shell sectors made up of these sheets. The side edges and planes
of these networks also define the elevations of the designed building free forms. Since
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the roof directrices of the complete roof shell sectors are skew straight or curved lines, it
is convenient to contain them in the planes of the reference networks. Many innovative
systems of such planes separating the roof shell sectors and containing the eaves lines
including directrices of the shell sectors can simply and intuitively be developed as poly-
hedral reference networks Γ using computer technology, including the novel applications
written for the CAD systems.

The investigated parameterization, regularity, symmetry and intuitiveness of the
engineering computational models created with the help of the novel algorithm and
its implementation in the novel computer applications enables one to shape attractive
and rational building free-forms. The complex nature of the investigated building free
forms and many interdisciplinary problems, as well as the proposed iterative diversified
solutions of many complete issues, require the use of computer technology to obtain
optimal solutions.

The attractiveness of the presented method results from the freedom of shaping of the
diversified shell roof structures characterized by the positive, negative and zero Gaussian
curvature and various patterns of many complete shell segments in the roof depending on
the adopted values of the analyzed division coefficients related to the investigated reference
networks Γ and eaves nets Bv. Unlike other conventional methods, the extensive method
for parametric shaping of the regular roof shell structures composed of many transformed
corrugated shell sectors is developed based on the division coefficients. The regular shell
units determined with Bv are used as an orthotropic material for composing the innovative
roof structures. In addition, the method’s algorithm takes account of the rectangular shapes
of the folded sheets and the rational shape transformations of the shell units.
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Appendix A

Table A1. The coordinates of the vertices WABij, WCDij, WADij, WBCij (for i, j = 1, 2, 3) of the polyhedral
reference network Γ1.

Point x-Coordinate (mm) y-Coordinate (mm) z-Coordinate (mm)

WAB13 3254.30 0 468.2
WCD13 5572.70 0 1487.4
WAD13 −435.4 −1054.60 12,007.10
WBC13 −435.4 1054.60 12,007.10
WAB21 −1100.00 −87.2 −996.2
WCD21 1100.00 −87.2 −996.2
WAD21 −4500.00 −4880.70 55,786.90
WBC21 0 2574.00 9677.1
WAB31 −1210.00 −353.3 −2063.50
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Table A1. Cont.

Point x-Coordinate (mm) y-Coordinate (mm) z-Coordinate (mm)

WCD31 1210.00 353.3 −2063.50
WAD31 0 2574.00 9677.1
WBC31 0 4374.60 9074.60
WAB23 3589.70 −95.9 −580.8
WCD23 6173.60 −105.5 435.5
WAD23 −435.4 1054.60 12,007.10
WBC23 −480 3133.70 11,876.90
WAB32 1210.00 353.3 −2063.50
WCD32 3959.70 −389.5 −1713.3
WAD32 −110 2840.10 10,744.40
WBC32 −121 4847.40 10,188.40
WAB33 3959.70 −389.5 −1713.3
WCD33 6838.90 −429.4 −708.6
WAD33 −480 3133.70 11,876.90
WBC33 −529.1 5371.00 11,378.60

Table A2. The coordinates of the points SAij, SBij, SCij, SDij (for i, j = 1, 2, 3) of the reference surface
network ωr.

Point x-Coordinate (mm) y-Coordinate (mm) z-Coordinate (mm)

SA11 4500.00 −4793.60 54,790.70
SB11 4500.00 4880.70 55,786.90
SC11 −4500.00 4793.60 54,790.70
SD11 −4500.00 −4880.70 55,786.90
SA12 −4500.00 −4880.70 55,786.90
SB12 −4500.00 4793.60 54,790.70
SC12 −13,517.10 4793.60 52,918.00
SD12 −13,517.10 −4793.60 52,918.00
SA13 −13,517.10 −4793.60 52,918.00
SB13 −13,517.10 4793.60 52,918.00
SC13 −21,737.10 4793.60 49,304.20
SD13 −21,737.10 −4793.60 49,304.20
SA21 4500.00 4880.70 55,786.90
SB21 4500.00 13,460.50 53,340.40
SC21 −4500.00 13,460.50 53,340.40
SD21 −4500.00 4793.60 54,790.70
SA31 4500.00 13,460.50 53,340.40
SB31 4500.00 21,957.50 50,497.30
SC31 −4500.00 21,957.50 50,497.30
SD31 −4500.00 13,460.50 53,340.40
SA22 −4500.00 4793.60 54,790.70
SB22 xSC21 13,460.50 53,340.40
SC22 −13,675.60 13,605.30 52,270.20
SD22 −13,517.10 4793.60 52,918.00
SA23 −13,517.10 4793.60 52,918.00
SB23 −13,675.60 13,605.30 52,270.20
SC23 −22,104.00 13,660.90 49,061.50
SD23 −21,737.10 4793.60 49,304.20
SA32 −4500.00 13,460.50 53,340.40
SB32 −4500.00 21,957.50 50,497.30
SC32 −13,692.40 22,263.80 49,770.70
SD32 −13,675.60 13,605.30 52,270.20
SA33 −13,675.60 13,605.30 52,270.20
SB33 −13,692.40 22,263.80 49,770.70
SC33 −22,428.40 22,611.20 47,304.50
SD33 −22,104.00 13,660.90 49,061.50
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Table A3. The coordinates of the vertices Aij, Bij, Cij, Dij (for i, j = 1, 2, 3) of the eaves edge net Bv1.

Point x-Coordinate (mm) y-Coordinate (mm) z-Coordinate (mm)

A11 4400 −4706.4 53,794.50
B11 4600 4880.7 55,786.90
C11 −4400.0 4706.4 53,794.50
D11 −4600.0 −4880.7 55,786.90
A12 −4390.0 −4697.7 53,694.90
B12 −4610.0 4889.4 55,886.50
C12 −13,517.1 4697.9 51,869.00
D12 −13,852.6 −4889.4 53,967.00
A13 −13,148.2 −4688.1 51,764.10
B13 −13,886.1 4899 54,071.90
C13 −21,136.3 4688.1 48,252.20
D13 −22,338.0 −4899.0 50,356.20
A21 4390 4697.7 53,694.90
B21 4610 13,726.60 54,407.70
C21 −4390.0 13,194.40 52,273.00
D21 −4610.0 4889.4 55,886.50
A31 4379 13,167.70 52,166.30
B31 4621 22,430.30 51,611.1
C31 −4379.0 21,484.70 49,383.50
D31 −4621.0 13,753.20 54,514.40
A22 −4400.0 4706.4 53,794.50
B22 −4621.0 13,753.20 54,514.40
C22 −13,367.3 13,360.70 51,326.40
D22 −13,886.1 4899 54,071.90
A23 −13,517.1 4697.9 51,869.00
B23 −13,983.9 13,850.00 53,213.90
C23 −21,549.5 13,391.00 48,108.10
D23 −22,338.0 4899 50,356.20
A32 −4390.0 13,194.40 52,273.00
B32 −4621.0 22,430.30 51,611.10
C32 −13,352.3 21,827.40 48,778.90
D32 −13,983.9 13,850.00 53,213.90
A33 −13,367.3 13,360.70 51,326.40
B33 −14,032.4 22,700.20 50,762.60
C33 −21,916.7 22,208.40 46,465.10
D33 −22,658.4 13,930.90 50,015.00
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