Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (67)

Search Parameters:
Keywords = corrosion aggressiveness of water

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 7841 KiB  
Article
Investigation of the Effect of Exposure to Liquid Chemicals on the Strength Performance of 3D-Printed Parts from Different Filament Types
by Arslan Kaptan
Polymers 2025, 17(12), 1637; https://doi.org/10.3390/polym17121637 - 12 Jun 2025
Viewed by 1146
Abstract
Additive manufacturing (AM), particularly fused deposition modeling (FDM) 3D printing, has emerged as a versatile and accessible technology for prototyping and functional part production across a wide range of industrial applications. One of the critical performance-limiting factors in AM is the chemical resistance [...] Read more.
Additive manufacturing (AM), particularly fused deposition modeling (FDM) 3D printing, has emerged as a versatile and accessible technology for prototyping and functional part production across a wide range of industrial applications. One of the critical performance-limiting factors in AM is the chemical resistance of thermoplastic materials, which directly influences their structural integrity, durability, and suitability in chemically aggressive environments. This study systematically investigates the chemical resistance of eight different widely utilized FDM filaments—acrylonitrile butadiene styrene (ABS), acrylonitrile styrene acrylate (ASA), polyamide (PA, Nylon), polycarbonate (PC), polyethylene terephthalate glycol (PETG), polylactic acid (PLA), polypropylene (PP), and polyvinyl butyral (PVB)—by examining their tensile strength and impact resistance after immersion in representative chemical agents: distilled water, ethanol (99.5%), isopropyl alcohol (75% and 99%), acetic acid (8%), hydrochloric acid (37%), hydrogen peroxide (30%), and acetone (99.5%). Quantitative mechanical testing was conducted in accordance with ASTM D638 and ASTM D256 standards, and statistical variability was accounted for using triplicate measurements with standard deviation analysis. The results reveal that PP exhibits the highest chemical resilience, retaining over 97% of its mechanical properties even after 7 days of immersion in aggressive solvents like acetone. PETG and ASA also demonstrated quite successful stability (>90% retention) in mildly corrosive environments such as alcohols and weak acids. In contrast, PLA, due to its low crystallinity and polar ester backbone, and PVB, due to its high amorphous content, showed substantial degradation: tensile strength losses exceeding 70% and impact resistance dropping below 20% in acetone. Moderate resistance was observed in ABS and PC, which maintained structural properties in neutral or weakly reactive conditions but suffered mechanical deterioration (>50% loss) in solvent-rich media. A strong correlation (r > 0.95) between tensile and impact strength reduction was found for most materials, indicating that chemical attack affects both static and dynamic mechanical performance uniformly. The findings of this study provide a robust framework for selecting appropriate 3D printing materials in applications exposed to solvents, acids, or oxidizing agents. PP is recommended for harsh chemical environments; PETG and ASA are suitable for moderate exposure scenarios, whereas PLA and PVB should be limited to low-risk, esthetic, or disposable applications. Full article
(This article belongs to the Special Issue Polymer Mechanochemistry: From Fundamentals to Applications)
Show Figures

Figure 1

22 pages, 7757 KiB  
Article
Study on Chloride Permeability and Chloride Ion Transport of Fiber-Reinforced Cementitious Composite Repair System
by Qiang Xue, Tian-Yu Zheng, Jian Wang, Jian-Jun Zhang, Wei Xia and Sheng-Ai Cui
Buildings 2025, 15(6), 975; https://doi.org/10.3390/buildings15060975 - 19 Mar 2025
Viewed by 508
Abstract
The durability degradation of concrete structures in marine and urban underground environments is largely governed by chloride-induced corrosion. This process becomes significantly more severe under the coupled action of external loading and drying–wetting cycles, which accelerate chloride transport and structural deterioration. However, the [...] Read more.
The durability degradation of concrete structures in marine and urban underground environments is largely governed by chloride-induced corrosion. This process becomes significantly more severe under the coupled action of external loading and drying–wetting cycles, which accelerate chloride transport and structural deterioration. However, the existing research often isolates the effects of mechanical loading or environmental exposure, failing to comprehensively capture the synergistic interaction between these factors. This lack of understanding of chloride ingress under simultaneous mechanical and environmental loading limits the development of reliable service life prediction models for concrete structures. In this study, a self-made loading system was employed to simulate this coupled environment, combining external loading with 108 days of drying–wetting cycles. Chloride profiles were obtained to assess the combined effects of stress level, water/binder ratio, and fiber content on chloride penetration in fiber-reinforced cementitious composites (FRCCs). To further extend the analysis, a Crank–Nicolson-based finite difference approach was developed for the numerical assessment of chloride diffusion in concrete structures after repair. This model enables the point-wise treatment of nonlinear chloride concentration profiles and provides space- and time-dependent chloride concentration distributions. The results show that using an FRCC as a repair material significantly enhances the service life of chloride-contaminated concrete structures. The remaining service life of the repaired concrete was extended by 36.82% compared to the unrepaired case, demonstrating the clear practical value of FRCC repairs in aggressive environments. Full article
Show Figures

Figure 1

20 pages, 11003 KiB  
Article
An Integrated Model for Mass Transport, Corrosion Propagation, and Cracking in Offshore Reinforced Concrete Structures
by Wenchao Li, Huaikuan Wang, Jiangshun Wu, Bo Zhang, Yuming Lai, Feifei Huang and Ying Jin
Coatings 2025, 15(2), 172; https://doi.org/10.3390/coatings15020172 - 3 Feb 2025
Viewed by 780
Abstract
The corrosion of steel reinforcements substantially degrades the longevity of reinforced concrete structures, particularly in marine settings. This investigation introduces a comprehensive model that simulates the processes involved in moisture and chloride ion transport, rebar corrosion, and the consequent cracking of concrete. The [...] Read more.
The corrosion of steel reinforcements substantially degrades the longevity of reinforced concrete structures, particularly in marine settings. This investigation introduces a comprehensive model that simulates the processes involved in moisture and chloride ion transport, rebar corrosion, and the consequent cracking of concrete. The model reveals that the transport dynamics of chloride ions are primarily dictated by their penetration rates through the solution. The sensitivity of the steel to corrosion is a function of the concentrations of water and chloride ions, whereas the rate of corrosion predominantly depends on the availability of oxygen at the corrosive site. Oxygen diffusion is the rate-limiting step in the entire process of the electrochemical reactions of the rebar. And the peak corrosion rates are observed at the interface between the solution and the gas phase. The model calculates the stress and strain in the concrete resulting from volumetric expansion due to oxidization of the steel bars. By accurately reproducing the progression of corrosion-related damage, this model provides crucial insights for predicting the service life of offshore concrete structures and enhancing durability against aggressive environmental conditions. Full article
(This article belongs to the Special Issue Alloy/Metal/Steel Surface: Fabrication, Structure, and Corrosion)
Show Figures

Graphical abstract

13 pages, 1840 KiB  
Article
Crystalline Coating and Its Influence on Chloride Ion Diffusion Resistance of Carbonated Concrete
by Martin Mottl, Jiří Pazderka and Pavel Reiterman
Coatings 2025, 15(2), 163; https://doi.org/10.3390/coatings15020163 - 2 Feb 2025
Viewed by 858
Abstract
Carbonation and chloride ingress are the most important damaging mechanisms for steel-reinforced concrete. The combination of these two corrosion processes accelerates the destruction of concrete, leads to extensive structural repairs, negatively impacts durability, and significantly reduces the service life of the structure. One [...] Read more.
Carbonation and chloride ingress are the most important damaging mechanisms for steel-reinforced concrete. The combination of these two corrosion processes accelerates the destruction of concrete, leads to extensive structural repairs, negatively impacts durability, and significantly reduces the service life of the structure. One possible and effective way to reduce chloride diffusion through the concrete pore system is through the use of crystalline materials. An experimental study focused on the ability of an applied crystalline coating to increase the chloride resistance of carbonated concrete is presented in this paper. Carbonated concrete specimens treated with a crystalline coating were exposed to a sodium chloride solution for various periods of time, and a water-soluble chloride ion content analysis was performed on powder samples taken from the tested specimens. Chloride profiles presenting the chloride ion concentrations at selected depths are presented for multiple types of concrete at various ages to show the effect of crystalline technology on the chloride resistance of concrete. The results of this study confirm the impact of carbonation on chloride ion ingress through concrete and show that crystalline coatings can improve the chloride resistance of concrete. Using crystalline coatings on carbonated concrete can, from a long-term perspective, significantly reduce the chloride ion content in concrete placed in an aggressive environment. The crystalline coatings were functional even after 28 days, when the concentration of chloride ions was below the critical concentration. The crystalline coating was able to reduce the concentration of chloride ions by 68% under the surface of the concrete and by 65% at depths of 20–25 mm after 180 days of immersion, compared to the untreated concrete. Crystalline coatings reduce the depth of critical chloride ion concentration, effectively protect the concrete reinforcement against corrosion and extend the service life of the structure. Full article
Show Figures

Figure 1

53 pages, 2645 KiB  
Review
The Future of Nuclear Energy: Key Chemical Aspects of Systems for Developing Generation III+, Generation IV, and Small Modular Reactors
by Katarzyna Kiegiel, Dagmara Chmielewska-Śmietanko, Irena Herdzik-Koniecko, Agnieszka Miśkiewicz, Tomasz Smoliński, Marcin Rogowski, Albert Ntang, Nelson Kiprono Rotich, Krzysztof Madaj and Andrzej G. Chmielewski
Energies 2025, 18(3), 622; https://doi.org/10.3390/en18030622 - 29 Jan 2025
Cited by 5 | Viewed by 1752
Abstract
Nuclear power plants have the lowest life-cycle greenhouse gas emissions intensity and produce more electricity with less land use compared to any other low-carbon-emission-based energy source. There is growing global interest in Generation IV reactors and, at the same time, there is great [...] Read more.
Nuclear power plants have the lowest life-cycle greenhouse gas emissions intensity and produce more electricity with less land use compared to any other low-carbon-emission-based energy source. There is growing global interest in Generation IV reactors and, at the same time, there is great interest in using small modular reactors. However, the development of new reactors introduces new engineering and chemical challenges critical to advancing nuclear energy safety, efficiency, and sustainability. For Generation III+ reactors, water chemistry control is essential to mitigate corrosion processes and manage radiolysis in the reactor’s primary circuit. Generation IV reactors, such as molten salt reactors (MSRs), face the challenge of handling and processing chemically aggressive coolants. Small modular reactor (SMR) technologies will have to address several drawbacks before the technology can reach technology readiness level 9 (TRL9). Issues related to the management of irradiated graphite from high-temperature reactors (HTR) must be addressed. Additionally, spent fuel processing, along with the disposal and storage of radioactive waste, should be integral to the development of new reactors. This paper presents the key chemical and engineering aspects related to the development of next-generation nuclear reactors and SMRs along with the challenges associated with them. Full article
(This article belongs to the Section B4: Nuclear Energy)
Show Figures

Figure 1

11 pages, 2406 KiB  
Article
The Use of Some Natural Extracts as Environmentally Friendly Carbon Steel Corrosion Inhibitors
by Ioana-Alina Ciobotaru, Oana Camelia Mic and Danut-Ionel Vaireanu
Appl. Sci. 2024, 14(24), 11528; https://doi.org/10.3390/app142411528 - 11 Dec 2024
Cited by 1 | Viewed by 1030
Abstract
This paper presents the influence of natural extracts obtained from Levisticum officinale and Citrus x clementine on the corrosion of carbon steel in a 3.5% NaCl solution. We started from dried leaves of Levisticum officinale and Citrus x clementine peel in order to [...] Read more.
This paper presents the influence of natural extracts obtained from Levisticum officinale and Citrus x clementine on the corrosion of carbon steel in a 3.5% NaCl solution. We started from dried leaves of Levisticum officinale and Citrus x clementine peel in order to prepare several extracts in a 50%:50% (v:v) water/ethanol solution and in analytical-grade ethanol. Several electrochemical techniques, such as open circuit potential monitoring, electrochemical impedance spectroscopy and potentiodynamic polarization, were employed in order to investigate the influence of the synthetized extracts on the corrosion of carbon steel. The aggressive solution that the corrosion tests were performed in was a 3.5% NaCl solution modified with different amounts of the extracts. The electrochemical tests performed in order to determine the influence of the Levisticum officinale leaf and Citrus x clementine peel extracts showed that these extracts may be employed as natural corrosion inhibitors for carbon steel in a 3.5% NaCl solution, achieving inhibiting efficiencies up to 87.8%, in the case of the Levisticum officinale extracts. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Graphical abstract

23 pages, 6749 KiB  
Article
A Study of the Influence of Thermoactivated Natural Zeolite on the Hydration of White Cement Mortars
by Ventseslav Stoyanov, Vilma Petkova, Katerina Mihaylova and Maya Shopska
Materials 2024, 17(19), 4798; https://doi.org/10.3390/ma17194798 - 29 Sep 2024
Cited by 1 | Viewed by 1155
Abstract
One trend in the development of building materials is the partial or complete replacement of traditional materials that have a high carbon footprint with eco-friendly ecological raw materials and ingredients. In the present work, the influence of replacing cement with 10 wt% thermally [...] Read more.
One trend in the development of building materials is the partial or complete replacement of traditional materials that have a high carbon footprint with eco-friendly ecological raw materials and ingredients. In the present work, the influence of replacing cement with 10 wt% thermally activated natural zeolite on the structural and physical-mechanical characteristics of cured mortars based on white Portland cement and river sand was investigated. The phase compositions were determined by wavelength dispersive X-ray fluorescence (WD-XRF) analysis, X-ray powder diffraction (PXRD), diffuse reflectance infrared Fourier transformed spectroscopy (DRIFTS), and scanning electron microscopy (SEM), as well as thermogravimetric analysis simultaneously with differential scanning calorimetry (TG/DTG-DSC). The results show that the incorporation of zeolite increases the amount of pores accessible with mercury intrusion porosimetry by about 40%, but the measured strengths are also higher by over 13%. When these samples were aged in an aqueous environment from day 28 to day 120, the amount of pores decreased by about 10% and the compressive strength increased by nearly 15%, respectively. The microstructural analysis carried out proves that these results are due to hydration with a low content of crystal water and the realization of pozzolanic reactions that last over time. Replacing some of the white cement with thermally activated natural zeolite results in the formation of a greater variety of crystals, including new crystalline CSH and CSAH phases that allow better intergrowth and interlocking. The results of the investigations allow us to present a plausible reaction mechanism of pozzolanic reactions and of the formation of new crystal hydrate phases. This gives grounds to claim that the replacement of part of the cement with zeolite improves the corrosion resistance of the investigated building solutions against aggressive weathering. Full article
Show Figures

Figure 1

15 pages, 3305 KiB  
Article
Pitting Corrosion of Steel Pipes in Water Supply Systems: An Influence of Shell-like Layer
by Valentin Chukhin, Alexey Andrianov and Nikolay Makisha
Appl. Sci. 2024, 14(16), 7189; https://doi.org/10.3390/app14167189 - 15 Aug 2024
Cited by 2 | Viewed by 2101
Abstract
The research was aimed at studying pitting corrosion, which precedes the appearance of fistulas in steel and cast-iron pipelines in water supply systems and leads to significant expenditures. The process of fistula formation is accompanied by the formation of tubercles and craters on [...] Read more.
The research was aimed at studying pitting corrosion, which precedes the appearance of fistulas in steel and cast-iron pipelines in water supply systems and leads to significant expenditures. The process of fistula formation is accompanied by the formation of tubercles and craters on the surface of a corroding metal. The study focused on examining the qualitative and quantitative composition of the solution, which is generated inside the tubercles during their growth. It was found that, during the operation of water pipelines, the concentration of aggressive chloride ions inside the tubercles increases significantly compared to the chloride content of the source water. The increase in chloride concentration leads to an accelerated corrosion rate, potentially causing the formation of fistulas over time. As a result of the study, a mechanism for changing the mineral composition of the solution inside the tubercles has been proposed. This is due to the manifestation of selective properties by a dense layer of tubercles. The study also examined the appearance of crystalline forms of corrosion products that form after removing pipes from the water supply system. The study also reveals the conditions of corrosion products emerging. Further studies on the structure and properties of a dense layer of corrosive sediment could be used to evaluate the effectiveness of various corrosion inhibitors. Full article
Show Figures

Figure 1

15 pages, 4279 KiB  
Article
The Effect of Nitriding Temperature of AISI 316L Steel on Sub-Zero Corrosion Resistance in C2H5OH
by Beata Kucharska, Janusz Kamiński, Krzysztof Kulikowski, Tomasz Borowski, Jerzy Robert Sobiecki and Tadeusz Wierzchoń
Materials 2024, 17(13), 3056; https://doi.org/10.3390/ma17133056 - 21 Jun 2024
Cited by 2 | Viewed by 938
Abstract
In this paper, glow nitriding processes at cathode potential are used at various temperatures to investigate how they affect the corrosion resistance of 316L steel in ethanol at temperatures of 22 °C and −30 °C. Lowering the test temperature reduces the corrosion rate [...] Read more.
In this paper, glow nitriding processes at cathode potential are used at various temperatures to investigate how they affect the corrosion resistance of 316L steel in ethanol at temperatures of 22 °C and −30 °C. Lowering the test temperature reduces the corrosion rate of the nitrided layers. Conversely, glow nitriding at 450 °C improves the corrosion resistance of the tested steel. Increasing the nitriding temperature to 520 °C increases the corrosion rate. It should be noted that the ethyl alcohol solution, due to the lack of aggressive ions, does not cause significant changes in the corrosion rate of the steel. The value of the corrosion current varies in the range of 10−2–10−3 µA/cm2. Nitrided layers increase the contact angle measured for water and are entirely wettable for ethanol. The objective of this study is to evaluate the effect of the nitriding temperature of AISI 316L steel on its corrosion resistance in an ethanol solution at room temperature and at −30 °C. Full article
Show Figures

Figure 1

16 pages, 1031 KiB  
Article
Investigation of Hydrophysical Properties and Corrosion Resistance of Modified Self-Compacting Concretes
by Adlet M. Zhagifarov, Daniyar A. Akhmetov, Dossym K. Suleyev, Zhanar O. Zhumadilova, Meiram M. Begentayev and Yuryi V. Pukharenko
Materials 2024, 17(11), 2605; https://doi.org/10.3390/ma17112605 - 28 May 2024
Cited by 3 | Viewed by 1300
Abstract
Improvement of hydrophysical properties and corrosion resistance of self-compacting concrete to the effects of alternate freezing–thawing and aggressive soils of Southern and Central Kazakhstan is of interest to a wide range of researchers from the side of practical application of the obtained results [...] Read more.
Improvement of hydrophysical properties and corrosion resistance of self-compacting concrete to the effects of alternate freezing–thawing and aggressive soils of Southern and Central Kazakhstan is of interest to a wide range of researchers from the side of practical application of the obtained results in construction practice. It is proposed to form a spatially reinforced fine crystalline structure of a cement matrix with the maximum dense packing by using a complex modifier (hyperplasticizer + polymer + microsilica + fibro fibers) in the composition of self-compacting concretes (SCCs). The introduction of the calculated amount of the above additives increases the operational reliability of the current SCC compositions, increasing the water resistance to W16, frost resistance to F = 500, increasing the compressive strength by 20%, and reducing the mass loss of samples during corrosion leaching to 50%. It has been experimentally established that the proposed addition of the complex modifier (hyperplasticizer + polymer + microsilica + fibro fibers) to the SCC composition allows obtaining self-compacting concrete of high quality with improved performance characteristics (compressive strength, water resistance, frost resistance, and corrosion resistance). Studies have shown that the complex modifier-modified SCC compositions have a high degree of resistance in aggressive environments and leaching corrosion. Based on the results of the conducted tests, it is possible to recommend the obtained SCC compositions for the production of building products working in the zone of alternating freezing–thawing and aggressive soils. Full article
Show Figures

Figure 1

18 pages, 6106 KiB  
Article
Numerical Modeling and Performance Evaluation of Carbon Fiber-Reinforced Polymer-Strengthened Concrete Culverts against Water-Induced Corrosion
by Hafiz Ahmed Waqas, Alireza Bahrami, Fayiz Amin, Mehran Sahil and Muhammad Saud Khan
Infrastructures 2024, 9(5), 82; https://doi.org/10.3390/infrastructures9050082 - 6 May 2024
Cited by 4 | Viewed by 2686
Abstract
Culverts fulfill the vital function of safely channeling water beneath railway tracks, highways, and overpasses. They serve various purposes, including facilitating drainage in areas such as watercourses, drainage zones, and regions with restricted ground-bearing capacity. Precast reinforced concrete (RC) box culverts are a [...] Read more.
Culverts fulfill the vital function of safely channeling water beneath railway tracks, highways, and overpasses. They serve various purposes, including facilitating drainage in areas such as watercourses, drainage zones, and regions with restricted ground-bearing capacity. Precast reinforced concrete (RC) box culverts are a popular choice because they are strong, durable, rigid, and economical. However, culverts are prone to corrosion due to exposure to a range of environmental factors and aggressive chemicals. Therefore, enhancing the design and construction of this crucial infrastructure is imperative to effectively combat corrosion and to adhere to modern standards of reliability and affordability. In this study, carbon fiber-reinforced polymer (CFRP) was used to strengthen corroded culverts, with promising potential to improve safety and longevity in these structures. This study compared the behavior of corroded RC box culverts to CFRP-strengthened ones using the finite element method (FEM). It explored the impact of varying the damage thicknesses owing to corrosion, ranging from 0 mm to 20 mm, on the structural performance of the box culverts. The results showed that the CFRP model exhibited a substantial 25% increase in the capacity and reduced the damage compared to the reference model. Moreover, a parametric study was conducted for establishing a cost-effective design, in which numerous CFRP strip configurations were examined for a damaged-culvert model. The results indicated that a complete CFRP sheet was most effective for the maximum design capacity and repair effectiveness. The study’s outcomes provide valuable insights for professionals engaged in enhancing the strength of box culverts, aiming to increase the capacity, enhance the stability, and strengthen corroded culverts. Full article
Show Figures

Figure 1

16 pages, 4378 KiB  
Article
A Study of Accelerated Corrosion of Stainless Steels under Highly Oxidizing Conditions
by Alberto Ubaldini, Chiara Telloli, Antonietta Rizzo, Alessandro Gessi, Giuseppe Marghella, Stefania Bruni, Sara Calistri, Francesco Gennerini and Georgiana Pintilei
Coatings 2024, 14(4), 390; https://doi.org/10.3390/coatings14040390 - 27 Mar 2024
Cited by 2 | Viewed by 3883
Abstract
The corrosion behavior of certain steels under extremely oxidative conditions, simulating the impact of water radiolysis on stainless steels, has been investigated. Radiolysis generates aggressive species, including radicals, solvated electrons, and hydrogen peroxide, potentially leading to corrosion over time in materials typically considered [...] Read more.
The corrosion behavior of certain steels under extremely oxidative conditions, simulating the impact of water radiolysis on stainless steels, has been investigated. Radiolysis generates aggressive species, including radicals, solvated electrons, and hydrogen peroxide, potentially leading to corrosion over time in materials typically considered resistant. To expedite the kinetics of this phenomenon, drastic conditions were employed, involving high concentrations of peroxide in a strongly acidic environment. Under these conditions, corrosion can manifest rapidly. The varied responses of different steels are contingent upon their inherent nature and chemical composition, notably the chromium and nickel content. Steels with higher chromium and nickel concentrations exhibit increased resistance to corrosion, even in such severe environments. Microscopic corrosion mechanisms involve pitting and intergranular corrosion. Pitting results in the formation of craters on surfaces, while intergranular corrosion leads to the detachment of grains. Full article
(This article belongs to the Special Issue Advances in Corrosion-Resistant Coatings, 2nd Edition)
Show Figures

Figure 1

20 pages, 2843 KiB  
Article
Corrosion of API 5L X60 Pipeline Steel in Soil and Surface Defects Detection by Ultrasonic Analysis
by Fatima Benkhedda, Ismail Bensaid, Abderrahim Benmoussat, Sid Ahmed Benmansour and Abdeldjelil Amara Zenati
Metals 2024, 14(4), 388; https://doi.org/10.3390/met14040388 - 26 Mar 2024
Cited by 4 | Viewed by 2386
Abstract
The corrosion steels phenomenon is one of the main problems in the oil industry, such as in buried transmission pipelines used for high gas pressure for long distances. Steels are protected from the external soil corrosion through a bituminous coating, whose action is [...] Read more.
The corrosion steels phenomenon is one of the main problems in the oil industry, such as in buried transmission pipelines used for high gas pressure for long distances. Steels are protected from the external soil corrosion through a bituminous coating, whose action is coupled with a cathodic protection system, which aims to maintain steel in its protection field and thus to avoid any corrosion risk. However, steels in service may experience external surface defects like corrosion pitting and cracking due to electrochemical or mechanical interactions of bare steel with an aggressive soil solution after steel protection failure. These are concerning phenomena and are the major threats of the pipeline transmission system’s reliability and ecological safety. Corrosion mechanisms are varied and can be evaluated by different methods, such as electrochemical measurements, which are influenced by various factors like temperature, pH, soil characteristics, resistivity, water content, and as well mechanical stresses. Corrosion results from simulated artificial soil solutions showed that steel is sensitive to corrosion by soil. Surface defects detection was carried out using an ultrasonic non-destructive method such as C-Scan Emission testing and the time of flight diffraction technique (TOFD) ultrasonic non-contact testing method. After propagation of the ultrasonic waves, the diffracted ultrasonic reflected wave occurring at the edges of the defects appears due to the presence of a corrosion defect by generating defect echoes. The C-Scan ultrasonic image shows surface reflection, including corrosion defects on interfaces with varying acoustic impedances. The cross-transverse speed ultrasonic propagation through the plate including defect is modified, revealing more surface defects, and cross-transverse speed is shown to increase ultrasonic detection presents some advantages, such as precision and speed of detection without alteration to the structure. This method can be used in the industrial context as an intelligent industrial robotics technique. Full article
(This article belongs to the Special Issue Environmentally-Assisted Degradation of Metals and Alloys)
Show Figures

Figure 1

17 pages, 6560 KiB  
Article
Advanced EIS-Based Sensor for Online Corrosion and Scaling Monitoring in Pipelines of Geothermal Power Plants
by Lorena Freire, Ignacio Ezpeleta, Julio Sánchez and Rubén Castro
Metals 2024, 14(3), 279; https://doi.org/10.3390/met14030279 - 27 Feb 2024
Cited by 4 | Viewed by 2314
Abstract
Corrosion and scaling in metal pipelines are the major issues in the exploitation of geothermal sources. Geothermal fluids are complex mixtures consisting of dissolved gases and high-salinity solutions. This creates very aggressive environments primarily due to the high concentrations of carbon dioxide (CO [...] Read more.
Corrosion and scaling in metal pipelines are the major issues in the exploitation of geothermal sources. Geothermal fluids are complex mixtures consisting of dissolved gases and high-salinity solutions. This creates very aggressive environments primarily due to the high concentrations of carbon dioxide (CO2), hydrogen sulfide (H2S), chlorides, and other chemical species. Besides, the high temperature of the brines also increases corrosion rates, which can lead to failures related to stress and fatigue corrosion. On the other hand, reinjection of cooled brine exiting the heat exchanger favors the onset of scaling, since the chemicals dissolved in geothermal waters may tend to precipitate promoting inorganic depositions on the casing. Corrosion and scaling phenomena are difficult to detect visually or monitor continuously. Standard techniques based on pH, temperature pressure, electrical resistance measurements, chemistry composition, and physical properties are habitually applied as indirect methods for corrosion rate control. These methods, however, lack enough robustness for accurate and reliable measuring of the corrosion behavior of materials. To address this issue, a novel system has been proposed for the continuous monitoring of corrosion degradation caused by the effect of the geothermal brines. The present work aims to design, develop, and validate a dedicated electrochemical-based test system for online and onsite monitoring of the corrosion rate and scaling growth occurring on different materials exposed to real operating conditions. This system uses non-standard methods based on electrochemical impedance spectroscopy (EIS) to obtain quantitative data related to the material quality. It can be used to track the condition of the pipeline, reducing the operation and maintenance (O&M) costs and shutdown times. By providing early corrosion rate data, this system allows the prediction of failures in critical units of the plant. Full article
Show Figures

Figure 1

20 pages, 7574 KiB  
Article
Evaluation of Chloride Ion Attack in Self-Compacting Concrete Using Recycled Construction and Demolition Waste Aggregates
by Lorena K. S. Peixoto, Marcos A. S. dos Anjos, Evilane C. de Farias and Fernando G. Branco
Buildings 2024, 14(2), 319; https://doi.org/10.3390/buildings14020319 - 23 Jan 2024
Cited by 3 | Viewed by 1525
Abstract
Construction and demolition waste (CDW) destined for recycling companies has great potential for use in civil construction, since it gives rise to recycled aggregates of different particle sizes that can be used in concrete. However, there is a lack of studies on the [...] Read more.
Construction and demolition waste (CDW) destined for recycling companies has great potential for use in civil construction, since it gives rise to recycled aggregates of different particle sizes that can be used in concrete. However, there is a lack of studies on the durability of concrete produced with recycled aggregates from CDW. This study analyzed the influence of incorporating recycled aggregates from CDW, sand, and gravel on the durability parameters of SCC mixtures, with and without the addition of metakaolin (MK), when subjected to two exposure conditions: outdoors and in cycles of attack by chloride ions. Five mixtures were produced: reference SCC, with natural sand and gravel; SCC with recycled sand and gravel; SCC with recycled sand and gravel and the addition of 10% MK; SAC with recycled sand, natural gravel, and the addition of 10% MK; and SCC with natural sand, recycled gravel and the addition of 10% MK. The water/binder ratio was kept constant for all mixtures and the additive dosage was adjusted according to the variation in the use of aggregates. The mechanical and durability properties were assessed using axial compressive strength, ultrasonic pulse velocity, chloride penetration, chloride ion diffusion, and electrical resistivity tests. The results showed the feasibility of using recycled aggregates from CDW in SCC. The addition of MK significantly improved the performance of SCC using these aggregates. The mixtures with added MK showed a low risk of corrosion and high resistance to chloride ion penetration, and, under highly aggressive attack conditions, it was observed that the chloride ions did not exceed the minimum cover thickness recommended for reinforced concrete structures. The addition of MK to the mix with recycled aggregates caused an 84.6% reduction in the Cl diffusion coefficient, there was also a 40.3% reduction in Cl penetration and an increase of up to 156.14% in electrical resistivity compared to the mix with recycled aggregates without the addition of MK. The SCC mix with recycled sand and metakaolin stood out positively compared to the others, achieving an axial compressive strength similar to the reference mix (55.10 MPa). We, therefore, conclude that it is possible to produce such a mix with acceptable performance and ensure good behavior under aggressive environmental conditions. Full article
(This article belongs to the Special Issue Advanced Studies in Concrete Materials)
Show Figures

Figure 1

Back to TopTop