Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = corneal dysregulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1973 KiB  
Communication
Pro-Angiogenic Effects of Canine Platelet-Rich Plasma: In Vitro and In Vivo Evidence
by Seong-Won An and Young-Sam Kwon
Animals 2025, 15(15), 2260; https://doi.org/10.3390/ani15152260 - 1 Aug 2025
Viewed by 149
Abstract
Platelet-rich plasma (PRP) is widely applied in veterinary regenerative medicine due to its rich composition of growth factors that promote tissue repair. However, the direct pro-angiogenic function of canine PRP (cPRP) has not been thoroughly validated through controlled in vitro and in vivo [...] Read more.
Platelet-rich plasma (PRP) is widely applied in veterinary regenerative medicine due to its rich composition of growth factors that promote tissue repair. However, the direct pro-angiogenic function of canine PRP (cPRP) has not been thoroughly validated through controlled in vitro and in vivo experimentation. Human umbilical vein endothelial cells (HUVECs) were used to assess cell proliferation, migration, and tube formation after exposure to cPRP. In addition, a rabbit corneal micropocket assay was employed to evaluate in vivo angiogenic responses. Treatment with 20% cPRP significantly enhanced HUVEC proliferation and migration and induced robust tube formation. In the in vivo model, we observed dose-dependent neovascularization, with the earliest vascular sprouting seen on day 1 in the 40% group. Both models consistently demonstrated that cPRP stimulates vascular development in a concentration-dependent manner. This study provides novel evidence of cPRP’s capacity to induce neovascularization, supporting its therapeutic value for treating nonhealing wounds in dogs, especially in cases involving chronic inflammation, aging, or immune dysregulation. These findings offer a scientific foundation for the broader clinical application of cPRP in veterinary regenerative practice. Full article
Show Figures

Figure 1

17 pages, 12539 KiB  
Article
TGF-β Promotes Endothelial-to-Mesenchymal Transition and Alters Corneal Endothelial Cell Migration in Fuchs Endothelial Corneal Dystrophy
by Judy Yan, Brooke Lim, Narisa Dhupar, Kathrine Bhargava, Lina Chen, Greg Moloney and Stephan Ong Tone
Int. J. Mol. Sci. 2025, 26(14), 6685; https://doi.org/10.3390/ijms26146685 - 11 Jul 2025
Viewed by 308
Abstract
Fuchs endothelial corneal dystrophy (FECD) is a progressive corneal disease characterized by corneal endothelial cell (CEC) loss and guttae formation. Elevated levels of Transforming Growth Factor-Beta 1 and 2 (TGF-β1/-β2) have been reported in the aqueous humor (AH) of FECD patients and have [...] Read more.
Fuchs endothelial corneal dystrophy (FECD) is a progressive corneal disease characterized by corneal endothelial cell (CEC) loss and guttae formation. Elevated levels of Transforming Growth Factor-Beta 1 and 2 (TGF-β1/-β2) have been reported in the aqueous humor (AH) of FECD patients and have been implicated with abnormal extracellular matrix (ECM) production, endothelial-to-mesenchymal transition (EndoMT), the unfolded protein response, and cell death. However, how TGF-β signaling affects cell migration in FECD remains to be elucidated. In this study, we found that TGF-β2 levels were significantly elevated in the AH of FECD patients compared to controls. We performed bulk RNA sequencing on FECD CECs treated with TGF-β1 or TGF-β2 and identified the epithelial-to-mesenchymal (EMT) pathway as one of the top dysregulated pathways. We found that TGF-β1 and TGF-β2 increased EMT markers, filamentous-actin (F-actin) expression and produced more EMT-like phenotype in FECD and control CECs. We also observed that TGF-β1 and TGF-β2 significantly increased FECD CEC migration speed as detected by scratch assay and individual cell tracking and promoted individual cellular migration behavior. This study provides novel insight into FECD pathogenesis and how increased TGF-β signaling promotes EndoMT and alters cellular migration in FECD CECs. Full article
(This article belongs to the Special Issue Functional Roles of Epithelial and Endothelial Cells)
Show Figures

Figure 1

18 pages, 570 KiB  
Review
Keratoconus: The Local Manifestation of a Systemic Disease?
by Matteo Pederzolli, Federico Procopio, Beatrice Tombolini, Simone Marra, Massimo De Micheli, Francesco Bandello and Giulio Ferrari
J. Clin. Med. 2025, 14(13), 4587; https://doi.org/10.3390/jcm14134587 - 28 Jun 2025
Viewed by 896
Abstract
Keratoconus (KC) is the most common ectatic corneal disease. In this review, the systemic aspects of the disease are discussed, including patient age, genetics, systemic inflammatory status and immune system dysregulation, atopy and eye rubbing, systemic metabolism, the metabolism of micronutrients (including vitamin [...] Read more.
Keratoconus (KC) is the most common ectatic corneal disease. In this review, the systemic aspects of the disease are discussed, including patient age, genetics, systemic inflammatory status and immune system dysregulation, atopy and eye rubbing, systemic metabolism, the metabolism of micronutrients (including vitamin D), and hormonal balance. The association between KC and metabolic diseases, collagen diseases, and psychiatric conditions is also considered. The evidence that is currently available strongly suggests a systemic predisposition toward KC. The understanding that KC may be the local manifestation of a systemic disease could allow earlier detection/prevention and pave the way for research into new treatments addressing the pathogenetic foundations of KC, rather than limiting intervention to the corneal disease. Full article
(This article belongs to the Special Issue Keratoconus: Current Status and Prospects)
Show Figures

Figure 1

15 pages, 531 KiB  
Review
The Role of Substance P in Corneal Homeostasis
by Irmina Jastrzębska-Miazga, Bartosz Machna, Dorota Wyględowska-Promieńska and Adrian Smędowski
Biomolecules 2025, 15(5), 729; https://doi.org/10.3390/biom15050729 - 16 May 2025
Viewed by 902
Abstract
The cornea, a highly innervated and avascular ocular tissue, relies on intricate neuro-immune interactions to maintain homeostasis. Among key neuromediators, substance P (SP)—a neuropeptide belonging to the tachykinin family—plays a dual role in corneal physiology and pathology. This review synthesizes current knowledge on [...] Read more.
The cornea, a highly innervated and avascular ocular tissue, relies on intricate neuro-immune interactions to maintain homeostasis. Among key neuromediators, substance P (SP)—a neuropeptide belonging to the tachykinin family—plays a dual role in corneal physiology and pathology. This review synthesizes current knowledge on SP’s involvement in corneal innervation, epithelial homeostasis, immune regulation, neovascularization, and wound healing, while highlighting its dichotomous effects in both promoting tissue repair and exacerbating inflammation. SP, primarily signaling through the neurokinin-1 receptor (NK1R), influences corneal epithelial proliferation, barrier function, and wound healing by modulating cytokines, chemokines, and growth factors. However, its overexpression is linked to pain sensitization, inflammatory keratitis, and corneal neovascularization, driven by interactions with immune cells (e.g., mast cells, neutrophils) and pro-angiogenic factors (e.g., VEGF). Clinical studies demonstrate altered SP levels in dry eye disease, neurotrophic keratitis, and post-refractive surgery, correlating with nerve damage and ocular surface dysfunction. Emerging therapies targeting SP pathways- such as NK1R antagonists (e.g., fosaprepitant) and SP-IGF-1 combinations-show promise for treating neurotrophic ulcers but face challenges due to SP’s context-dependent actions. Future research should clarify the roles of NK2R/NK3R receptors and optimize SP-based interventions to balance its reparative and inflammatory effects. Understanding SP’s multifaceted mechanisms could advance the development of therapies for corneal diseases, particularly those involving sensory neuropathy and immune dysregulation. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

34 pages, 558 KiB  
Review
Emerging Trends and Management for Sjögren Syndrome-Related Dry Eye Corneal Alterations
by Maria Letizia Salvetat, Francesco Pellegrini, Fabiana D’Esposito, Mutali Musa, Daniele Tognetto, Rosa Giglio, Roberta Foti, Caterina Gagliano and Marco Zeppieri
Appl. Sci. 2025, 15(9), 5076; https://doi.org/10.3390/app15095076 - 2 May 2025
Viewed by 1249
Abstract
Background: Sjögren’s syndrome (SS) is a systemic autoimmune condition marked by significant dry eye disease (DED), leading to considerable corneal changes. These modifications, encompassing punctate epithelial erosions, chronic epithelial abnormalities, and corneal ulcers, significantly impact eyesight and quality of life. Progress in comprehending [...] Read more.
Background: Sjögren’s syndrome (SS) is a systemic autoimmune condition marked by significant dry eye disease (DED), leading to considerable corneal changes. These modifications, encompassing punctate epithelial erosions, chronic epithelial abnormalities, and corneal ulcers, significantly impact eyesight and quality of life. Progress in comprehending the corneal pathophysiology associated with SS has prompted innovative diagnostic and treatment approaches. Aim: This narrative review aims to examine developing trends in the pathogenesis, diagnostic methods, and treatment strategies for Sjögren’s syndrome-associated corneal changes. Methods: The study was based on a narrative review of the current literature available on PubMed and Cochrane from Jan 2000 to December 2024. Results: Corneal changes associated with Sjögren’s syndrome result from a multifactorial interaction of ocular surface inflammation, tear film instability, and epithelium degradation. Recent research underscores the significance of immune-mediated pathways, such as T-cell-induced inflammation and cytokine dysregulation, as crucial factors in corneal disease. Innovations in diagnostic instruments, including in vivo confocal microscopy and tear proteomics, provide earlier and more accurate identification of subclinical alterations in the corneal epithelium and stroma. Therapeutic developments concentrate on meeting the specific requirements of SS-related DED. Biological treatments, especially tailored inhibitors of interleukin-6 and tumor necrosis factor-alpha, show potential in mitigating inflammation and facilitating epithelial repair. Moreover, regenerative approaches, such as autologous serum tears and mesenchymal stem cell therapies, provide innovative methods to repair ocular surface integrity. Advanced drug delivery technologies, including nanoparticle-loaded eye drops, enhance bioavailability and therapeutic efficacy. Conclusion: Recent developments in comprehending SS-related corneal changes have transformed the management approach to precision medicine. The combination of improved diagnostics and innovative therapy approaches offers potential for reducing disease progression, maintaining corneal health, and enhancing patient outcomes. Subsequent investigations ought to concentrate on enhancing these tactics and examining their long-term safety and effectiveness. Clinicians and researchers must adopt these developments to successfully tackle the difficulties of SS-related corneal illness, providing hope for improved care and higher quality of life for those affected. Full article
(This article belongs to the Special Issue Trends and Prospects in Retinal and Corneal Diseases)
15 pages, 1484 KiB  
Review
Ocular Side Effects of Dupilumab: A Comprehensive Overview of the Literature
by Giacomo Boscia, Federico Spataro, Vanessa Desantis, Antonio Giovanni Solimando, Angelo Vacca, Roberto Ria and Alfonso Savastano
J. Clin. Med. 2025, 14(7), 2487; https://doi.org/10.3390/jcm14072487 - 5 Apr 2025
Cited by 1 | Viewed by 1814
Abstract
Dupilumab, a monoclonal antibody targeting the interleukin (IL)-4 receptor alpha subunit and IL-13, has markedly advanced the treatment of atopic conditions such as dermatitis, asthma, and chronic rhinosinusitis. However, its expanding use has brought increased attention to a range of ocular adverse events—conjunctivitis, [...] Read more.
Dupilumab, a monoclonal antibody targeting the interleukin (IL)-4 receptor alpha subunit and IL-13, has markedly advanced the treatment of atopic conditions such as dermatitis, asthma, and chronic rhinosinusitis. However, its expanding use has brought increased attention to a range of ocular adverse events—conjunctivitis, blepharitis, keratitis, corneal ulcers, and cicatricial conjunctivitis—that remain underrecognized and frequently underestimated in clinical practice. These manifestations often emerge in patients with atopic dermatitis and display varying severity, posing diagnostic and therapeutic challenges. Rather than isolated phenomena, these effects appear to stem from a complex interplay of goblet cell depletion, mucin deficiency, immune dysregulation, and microbiome alterations, including Demodex proliferation. Current management strategies remain largely empirical, lacking standardized protocols, and are often guided by anecdotal evidence. In this review, we critically appraise the existing literature, synthesize emerging pathogenic hypotheses, and highlight the unmet clinical need for evidence-based treatment algorithms. We advocate for a multidisciplinary approach and future research aimed at elucidating mechanisms, refining risk stratification, and minimizing ocular toxicity without compromising the therapeutic benefits of dupilumab. Furthermore, we intend to provide a more practical and straightforward resource for the reader based on the current literature on approaching the topic. Full article
Show Figures

Figure 1

16 pages, 3655 KiB  
Article
Decreased PAX6 and DSG1 Protein Expression in Corneal Epithelium of Patients with Epithelial Basal Membrane Dystrophy, Salzmann Nodular Degeneration, and Pterygium
by Tanja Stachon, Fabian N. Fries, Zhen Li, Loay Daas, Zoltán Zsolt Nagy, Berthold Seitz and Nóra Szentmáry
J. Clin. Med. 2025, 14(5), 1456; https://doi.org/10.3390/jcm14051456 - 21 Feb 2025
Viewed by 656
Abstract
Background/Objectives: Evaluation of stem cell, keratin, retinoic acid metabolism markers and non-coding micro-RNAs (miRNAs) in conjunctival and corneal samples of patients with epithelial basal membrane dystrophy (EBMD), Salzmann nodular degeneration (SND), pterygium and congenital aniridia (CA), to detect similarities and differences in [...] Read more.
Background/Objectives: Evaluation of stem cell, keratin, retinoic acid metabolism markers and non-coding micro-RNAs (miRNAs) in conjunctival and corneal samples of patients with epithelial basal membrane dystrophy (EBMD), Salzmann nodular degeneration (SND), pterygium and congenital aniridia (CA), to detect similarities and differences in their pathogenesis. Methods: Impression cytology (IC) samples and corneal epithelial samples (CEs) of patients with EBMD, SND, pterygium, congenital aniridia, and healthy control subjects have been analyzed. The IC samples were subjected to qPCR, and the epithelial samples were subjected to qPCR and WB. Limbal epithelial stem cell markers, keratins, retinoic acid metabolism markers, and miRNAs were analyzed. Results: In conjunctival IC samples, PAX6 mRNA expression was significantly lower in EBMD, SND, pterygium, and CA compared to healthy controls (p ≤ 0.02). KRT13 mRNA expression was significantly higher in EBMD, SND, and pterygium (p ≤ 0.018), and FABP5 was increased in pterygium samples (p = 0.007). MiRNA-138-5p was significantly higher in aniridia samples than in normal controls (p = 0.037). In corneal epithelial samples, PAX6 protein, DSG1 mRNA and protein, miRNA-138-5p, and miR-204-5p expression were significantly lower in EBMD, SND, and pterygium samples than in controls (p ≤ 0.02). ALDHA1 mRNA expression was significantly lower (p < 0.0001), and FABP5 mRNA expression was significantly higher (p = 0.014) in pterygium samples than in controls. Conclusions: PAX6, DSG1, miR-138-5p, and miR-204-5p expression is decreased in the corneal epithelium of epithelial basal membrane dystrophy, Salzmann nodular degeneration, and pterygium subjects. In addition, there is a dysregulation of markers of the retinoic acid signaling pathway, such as ADH1A1 and FABP5, in the corneal epithelium of pterygium subjects. These changes may offer therapeutic targets in the treatment of these ocular surface diseases. Full article
(This article belongs to the Special Issue Clinical Updates in Corneal Transplantation)
Show Figures

Figure 1

14 pages, 1750 KiB  
Article
A Novel 13q12 Microdeletion Associated with Familial Syndromic Corneal Opacification
by Jasmine Y. Serpen, William Presley, Adelyn Beil, Stephen T. Armenti, Kayla Johnson, Shahzad I. Mian, Jeffrey W. Innis and Lev Prasov
Genes 2023, 14(5), 1034; https://doi.org/10.3390/genes14051034 - 1 May 2023
Cited by 1 | Viewed by 3046
Abstract
Progressive corneal opacification can result from multiple etiologies, including corneal dystrophies or systemic and genetic diseases. We describe a novel syndrome featuring progressive epithelial and anterior stromal opacification in a brother and sister and their mildly affected father, with all three family members [...] Read more.
Progressive corneal opacification can result from multiple etiologies, including corneal dystrophies or systemic and genetic diseases. We describe a novel syndrome featuring progressive epithelial and anterior stromal opacification in a brother and sister and their mildly affected father, with all three family members having sensorineural hearing loss and two also with tracheomalacia/laryngomalacia. All carried a 1.2 Mb deletion at chromosome 13q12.11, with no other noteworthy co-segregating variants identified on clinical exome or chromosomal microarray. RNAseq analysis from an affected corneal epithelial sample from the proband’s brother revealed downregulation of XPO4, IFT88, ZDHHC20, LATS2, SAP18, and EEF1AKMT1 within the microdeletion interval, with no notable effect on the expression of nearby genes. Pathway analysis showed upregulation of collagen metabolism and extracellular matrix (ECM) formation/maintenance, with no significantly down-regulated pathways. Analysis of overlapping deletions/variants demonstrated that deleterious variants in XPO4 were found in patients with laryngomalacia and sensorineural hearing loss, with the latter phenotype also being a feature of variants in the partially overlapping DFNB1 locus, yet none of these had reported corneal phenotypes. Together, these data define a novel microdeletion-associated syndromic progressive corneal opacification and suggest that a combination of genes within the microdeletion may contribute to ECM dysregulation leading to pathogenesis. Full article
(This article belongs to the Special Issue Genetics of Eye Development and Disease)
Show Figures

Figure 1

18 pages, 3444 KiB  
Article
A Low-Fat/Sucrose Diet Rich in Complex Carbohydrates Reverses High-Fat/Sucrose Diet-Induced Corneal Dysregulation
by Prince K. Akowuah, Carolina Lema, Rolando E. Rumbaut and Alan R. Burns
Int. J. Mol. Sci. 2023, 24(2), 931; https://doi.org/10.3390/ijms24020931 - 4 Jan 2023
Cited by 2 | Viewed by 2522
Abstract
High-fat/sucrose diet feeding in mice causes loss of corneal nerve function and impairs corneal wound healing. While changing to a diet with a low fat/sugar composition and enrichments in complex carbohydrates mitigates the reduction in nerve function, it remains to be determined if [...] Read more.
High-fat/sucrose diet feeding in mice causes loss of corneal nerve function and impairs corneal wound healing. While changing to a diet with a low fat/sugar composition and enrichments in complex carbohydrates mitigates the reduction in nerve function, it remains to be determined if it has an effect on corneal wound healing. In this study, 6-week-old C57BL/6 male mice were fed either a normal diet or a high-fat/sucrose diet for 20 weeks. A third group (diet reversal) was placed on a high-fat/sucrose diet for 10 weeks followed by a normal diet for an additional 10 weeks. A central corneal epithelial abrasion wound was created, and wound closure was monitored. Neutrophil and platelet recruitment was assessed by immunofluorescence microscopy. Mice fed the high-fat/sucrose diet-only had greater adiposity (p < 0.005) than normal diet-only fed mice; diet reversal markedly reduced adiposity. Following corneal abrasion, wound closure was delayed by ~6 h (p ≤ 0.01) and, at 30 h post-wounding, fewer neutrophils reached the wound center and fewer extravascular platelets were present at the limbus (p < 0.05). Diet restored normal wound closure and neutrophil and platelet influx in the injured cornea. These data suggest compositional changes to the diet may be an effective diet-based therapeutic strategy for maintaining or restoring corneal health. Full article
Show Figures

Figure 1

16 pages, 2284 KiB  
Article
Immunomodulatory Effect of Human Lactoferrin on Toll-like Receptors 2 Expression as Therapeutic Approach for Keratoconus
by Uxía Regueiro, Maite López-López, Rubén Varela-Fernández, Tomás Sobrino, Elio Diez-Feijoo and Isabel Lema
Int. J. Mol. Sci. 2022, 23(20), 12350; https://doi.org/10.3390/ijms232012350 - 15 Oct 2022
Cited by 6 | Viewed by 3039
Abstract
Keratoconus (KC) is a corneal disorder whose etiology shares a close relationship with Lactoferrin (LTF) dysregulation and Toll-like Receptors 2 (TLR2) overexpression. This study shows how these two important biomarkers are clinically and molecularly interrelated, increasing knowledge about KC pathophysiology, and opening the [...] Read more.
Keratoconus (KC) is a corneal disorder whose etiology shares a close relationship with Lactoferrin (LTF) dysregulation and Toll-like Receptors 2 (TLR2) overexpression. This study shows how these two important biomarkers are clinically and molecularly interrelated, increasing knowledge about KC pathophysiology, and opening the door to future therapies. In this prospective clinical study, serum and tear LTF concentrations were quantified in 90 KC patients and 60 controls. A correlation analysis with multiple blood and tear immunoinflammatory mediators, and KC-associated tomographic parameters, was performed. An in vitro study using HEK-BlueTMhTLR2 cell cultures was also conducted to determine the expression and functionality of TLR2 under the influence of LTF treatment. As a result, a LTF decreased was observed in KC patients compared to controls (p < 0.0001), evidencing the strong correlation with TLR2 overexpression at systemic and ocular surface level, with inflammatory mediator upregulation and with KC severity. In stimulated cell cultures, TLR2 expression was decreased using 2 mg/mL of LTF. The levels of secreted embryonic alkaline phosphatase (SEAP) and interleukin-8 (IL-8) were also reduced in supernatants after LTF treatment. As conclusions, the dysregulation of LTF and TLR2 in the ocular surface of KC patients contributes to KC severity by maintaining a detrimental chronic immune–inflammatory state. The immunomodulatory properties of LTF on TLR2 expression suggest its potential as a therapeutic approach for KC. Full article
(This article belongs to the Special Issue Dry Eye and Ocular Surface Disorders 4.0)
Show Figures

Figure 1

29 pages, 1414 KiB  
Review
TGF-β Superfamily Signaling in the Eye: Implications for Ocular Pathologies
by Soumaya Hachana and Bruno Larrivée
Cells 2022, 11(15), 2336; https://doi.org/10.3390/cells11152336 - 29 Jul 2022
Cited by 59 | Viewed by 10702
Abstract
The TGF-β signaling pathway plays a crucial role in several key aspects of development and tissue homeostasis. TGF-β ligands and their mediators have been shown to be important regulators of ocular physiology and their dysregulation has been described in several eye pathologies. TGF-β [...] Read more.
The TGF-β signaling pathway plays a crucial role in several key aspects of development and tissue homeostasis. TGF-β ligands and their mediators have been shown to be important regulators of ocular physiology and their dysregulation has been described in several eye pathologies. TGF-β signaling participates in regulating several key developmental processes in the eye, including angiogenesis and neurogenesis. Inadequate TGF-β signaling has been associated with defective angiogenesis, vascular barrier function, unfavorable inflammatory responses, and tissue fibrosis. In addition, experimental models of corneal neovascularization, diabetic retinopathy, proliferative vitreoretinopathy, glaucoma, or corneal injury suggest that aberrant TGF-β signaling may contribute to the pathological features of these conditions, showing the potential of modulating TGF-β signaling to treat eye diseases. This review highlights the key roles of TGF-β family members in ocular physiology and in eye diseases, and reviews approaches targeting the TGF-β signaling as potential treatment options. Full article
(This article belongs to the Special Issue Molecular Regulation in Ocular Physiology and Diseases)
Show Figures

Figure 1

10 pages, 1222 KiB  
Article
Altered Circulating microRNAs in Patients with Diabetic Neuropathy and Corneal Nerve Loss: A Pilot Study
by Adnan Khan, Jennifer Pasquier, Vimal Ramachandran, Georgios Ponirakis, Ioannis N. Petropoulos, Omar Chidiac, Binitha Thomas, Amal Robay, Amin Jayyousi, Jassim Al Suwaidi, Arash Rafii, Robert A. Menzies, Talal K. Talal, Seyed Hani Najafi-Shoushtari, Charbel Abi Khalil and Rayaz A. Malik
J. Clin. Med. 2022, 11(6), 1632; https://doi.org/10.3390/jcm11061632 - 16 Mar 2022
Cited by 8 | Viewed by 3027
Abstract
An alteration in circulating miRNAs may have important diagnostic and therapeutic relevance in diabetic neuropathy. Patients with type 2 diabetes mellitus (T2DM) underwent an assessment of neuropathic symptoms using Douleur Neuropathique 4 (DN4), the vibration perception threshold (VPT) using a Neurothesiometer, sudomotor function [...] Read more.
An alteration in circulating miRNAs may have important diagnostic and therapeutic relevance in diabetic neuropathy. Patients with type 2 diabetes mellitus (T2DM) underwent an assessment of neuropathic symptoms using Douleur Neuropathique 4 (DN4), the vibration perception threshold (VPT) using a Neurothesiometer, sudomotor function using the Sudoscan, corneal nerve morphology using corneal confocal microscopy (CCM) and circulating miRNAs using high-throughput miRNA expression profiling. Patients with T2DM, with (n = 9) and without (n = 7) significant corneal nerve loss were comparable in age, gender, diabetes duration, BMI, HbA1c, eGFR, blood pressure, and lipid profile. The VPT was significantly higher (p < 0.05), and electrochemical skin conductance (p < 0.05), corneal nerve fiber density (p = 0.001), corneal nerve branch density (p = 0.013), and corneal nerve fiber length (p < 0.001) were significantly lower in T2DM patients with corneal nerve loss compared to those without corneal nerve loss. Following a q-PCR-based analysis of total plasma microRNAs, we found that miR-92b-3p (p = 0.008) was significantly downregulated, while miR-22-3p (p = 0.0001) was significantly upregulated in T2DM patients with corneal nerve loss. A network analysis revealed that these miRNAs regulate axonal guidance and neuroinflammation genes. These data support the need for more extensive studies to better understand the role of dysregulated miRNAs’ in diabetic neuropathy. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

20 pages, 4946 KiB  
Review
Autophagy in Extracellular Matrix and Wound Healing Modulation in the Cornea
by Duraisamy Kempuraj and Rajiv R. Mohan
Biomedicines 2022, 10(2), 339; https://doi.org/10.3390/biomedicines10020339 - 1 Feb 2022
Cited by 35 | Viewed by 7331
Abstract
Autophagy is a robust cellular mechanism for disposing of harmful molecules or recycling them to cells, which also regulates physiopathological processes in cornea. Dysregulated autophagy causes inefficient clearance of unwanted proteins and cellular debris, mitochondrial disorganization, defective inflammation, organ dysfunctions, cell death, and [...] Read more.
Autophagy is a robust cellular mechanism for disposing of harmful molecules or recycling them to cells, which also regulates physiopathological processes in cornea. Dysregulated autophagy causes inefficient clearance of unwanted proteins and cellular debris, mitochondrial disorganization, defective inflammation, organ dysfunctions, cell death, and diseases. The cornea accounts for two-thirds of the refraction of light that occurs in the eyes, but is prone to trauma/injury and infection. The extracellular matrix (ECM) is a noncellular dynamic macromolecular network in corneal tissues comprised of collagens, proteoglycans, elastin, fibronectin, laminins, hyaluronan, and glycoproteins. The ECM undergoes remodeling by matrix-degrading enzymes and maintains corneal transparency. Autophagy plays an important role in the ECM and wound healing maintenance. Delayed/dysregulated autophagy impacts the ECM and wound healing, and can lead to corneal dysfunction. Stromal wound healing involves responses from the corneal epithelium, basement membrane, keratocytes, the ECM, and many cytokines and chemokines, including transforming growth factor beta-1 and platelet-derived growth factor. Mild corneal injuries self-repair, but greater injuries lead to corneal haze/scars/fibrosis and vision loss due to disruptions in the ECM, autophagy, and normal wound healing processes. Presently, the precise role of autophagy and ECM remodeling in corneal wound healing is elusive. This review discusses recent trends in autophagy and ECM modulation in the context of corneal wound healing and homeostasis. Full article
(This article belongs to the Special Issue The Various Faces of Autophagy in Human Disease)
Show Figures

Figure 1

14 pages, 2607 KiB  
Article
Dissociation between Corneal and Cardiometabolic Changes in Response to a Time-Restricted Feeding of a High Fat Diet
by Prince K. Akowuah, Aubrey Hargrave, Rolando E. Rumbaut and Alan R. Burns
Nutrients 2022, 14(1), 139; https://doi.org/10.3390/nu14010139 - 29 Dec 2021
Cited by 3 | Viewed by 2490
Abstract
Mice fed a high fat diet (HFD) ab libitum show corneal dysregulation, as evidenced by decreased sensitivity and impaired wound healing. Time-restricted (TR) feeding can effectively mitigate the cardiometabolic effects of an HFD. To determine if TR feeding attenuates HFD-induced corneal dysregulation, this [...] Read more.
Mice fed a high fat diet (HFD) ab libitum show corneal dysregulation, as evidenced by decreased sensitivity and impaired wound healing. Time-restricted (TR) feeding can effectively mitigate the cardiometabolic effects of an HFD. To determine if TR feeding attenuates HFD-induced corneal dysregulation, this study evaluated 6-week-old C57BL/6 mice fed an ad libitum normal diet (ND), an ad libitum HFD, or a time-restricted (TR) HFD for 10 days. Corneal sensitivity was measured using a Cochet-Bonnet aesthesiometer. A corneal epithelial abrasion wound was created, and wound closure was monitored for 30 h. Neutrophil and platelet recruitment were assessed by immunofluorescence microscopy. TR HFD fed mice gained less weight (p < 0.0001), had less visceral fat (p = 0.015), and had reduced numbers of adipose tissue macrophages and T cells (p < 0.05) compared to ad libitum HFD fed mice. Corneal sensitivity was reduced in ad libitum HFD and TR HFD fed mice compared to ad libitum ND fed mice (p < 0.0001). Following epithelial abrasion, corneal wound closure was delayed (~6 h), and neutrophil and platelet recruitment was dysregulated similarly in ad libitum and TR HFD fed mice. TR HFD feeding appears to mitigate adipose tissue inflammation and adiposity, while the cornea remains sensitive to the pathologic effects of HFD feeding. Full article
Show Figures

Figure 1

22 pages, 15840 KiB  
Review
The Role of the Stromal Extracellular Matrix in the Development of Pterygium Pathology: An Update
by Javier Martín-López, Consuelo Pérez-Rico, Selma Benito-Martínez, Bárbara Pérez-Köhler, Julia Buján and Gemma Pascual
J. Clin. Med. 2021, 10(24), 5930; https://doi.org/10.3390/jcm10245930 - 17 Dec 2021
Cited by 11 | Viewed by 3655
Abstract
Pterygium is a benign fibrovascular lesion of the bulbar conjunctiva with frequent involvement of the corneal limbus. Its pathogenesis has been mainly attributed to sun exposure to ultraviolet-B radiation. Obtained evidence has shown that it is a complex and multifactorial process which involves [...] Read more.
Pterygium is a benign fibrovascular lesion of the bulbar conjunctiva with frequent involvement of the corneal limbus. Its pathogenesis has been mainly attributed to sun exposure to ultraviolet-B radiation. Obtained evidence has shown that it is a complex and multifactorial process which involves multiple mechanisms such as oxidative stress, dysregulation of cell cycle checkpoints, induction of inflammatory mediators and growth factors, angiogenic stimulation, extracellular matrix (ECM) disorders, and, most likely, viruses and hereditary changes. In this review, we aim to collect all authors’ experiences and our own, with respect to the study of fibroelastic ECM of pterygium. Collagen and elastin are intrinsic indicators of physiological and pathological states. Here, we focus on an in-depth analysis of collagen (types I and III), as well as the main constituents of elastic fibers (tropoelastin (TE), fibrillins (FBNs), and fibulins (FBLNs)) and the enzymes (lysyl oxidases (LOXs)) that carry out their assembly or crosslinking. All the studies established that changes in the fibroelastic ECM occur in pterygium, based on the following facts: An increase in the synthesis and deposition of an immature form of collagen type III, which showed the process of tissue remodeling. An increase in protein levels in most of the constituents necessary for the development of elastic fibers, except FBLN4, whose biological roles are critical in the binding of the enzyme LOX, as well as FBN1 for the development of stable elastin. There was gene overexpression of TE, FBN1, FBLN5, and LOXL1, while the expression of LOX and FBLN2 and -4 remained stable. In conclusion, collagen and elastin, as well as several constituents involved in elastic fiber assembly are overexpressed in human pterygium, thus, supporting the hypothesis that there is dysregulation in the synthesis and crosslinking of the fibroelastic component, constituting an important pathogenetic mechanism for the development of the disease. Full article
(This article belongs to the Special Issue Treatment of Cornea and Ocular Surface Diseases)
Show Figures

Figure 1

Back to TopTop