Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = cork granules

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2650 KB  
Article
The Impact of Tetraethyl Pyrophosphate (TEPP) Pesticide on the Development and Behavior of Danio rerio: Evaluating the Potential of Cork Granules as a Natural Adsorbent for TEPP Removal from Aqueous Environments
by Fernanda Blini Marengo Malheiros, Lorrainy Victoria Rodrigues de Souza, Angélica Gois Morales, Eduardo Festozo Vicente, Paulo C. Meletti and Carlos Alberto-Silva
Clean Technol. 2025, 7(3), 54; https://doi.org/10.3390/cleantechnol7030054 - 28 Jun 2025
Viewed by 744
Abstract
Toxicological studies of pesticides in animal models provide critical insights into their mechanisms of action, while adsorption strategies offer potential solutions for decontaminating polluted waters. We evaluated toxicity induced by tetraethyl pyrophosphate (TEPP), an organophosphate pesticide and AChE inhibitor, on zebrafish (Danio [...] Read more.
Toxicological studies of pesticides in animal models provide critical insights into their mechanisms of action, while adsorption strategies offer potential solutions for decontaminating polluted waters. We evaluated toxicity induced by tetraethyl pyrophosphate (TEPP), an organophosphate pesticide and AChE inhibitor, on zebrafish (Danio rerio) development and behavior, alongside the efficacy of wine cork granules as a natural adsorbent. TEPP exposure reduced embryo viability following an inverted U-shaped dose–response curve, suggesting non-monotonic neurodevelopmental effects, but did not alter developmental timing or morphology in survivors. In juveniles, TEPP increased preference for dark environments (33% vs. controls) and enhanced swimming endurance approximately 3-fold, indicating disrupted phototaxis and stress responses. Most strikingly, water treated with cork granules retained toxicity, increasing mortality, delaying embryogenesis, and altering behavior. This directly contradicts in vitro adsorption studies that suggested cork’s efficacy. These results demonstrate the high sensitivity of zebrafish to TEPP at nanomolar concentrations, which contrasts with in vitro models that require doses approximately 1000 times higher. Our findings not only highlight TEPP’s ecological risks but also reveal unexpected limitations of cork granules for environmental remediation, urging caution in their application. Full article
(This article belongs to the Special Issue Pollutant Removal from Aqueous Solutions by Adsorptive Biomaterials)
Show Figures

Figure 1

24 pages, 11564 KB  
Article
Effects of Granulated Cork with Bark on the Microstructure and Resistance to Extreme Environmental Conditions of Concrete for Non-Structural Precast Elements
by María Concepción Pacheco Menor, María José Arévalo Caballero, Antonio Macías García and Pedro Serna Ros
Materials 2025, 18(5), 933; https://doi.org/10.3390/ma18050933 - 21 Feb 2025
Cited by 1 | Viewed by 907
Abstract
The building sector is responsible for major environmental impacts. Utilising bio-based raw materials, such as bio-aggregates, in concrete production could address to this environmental challenge. While the physical and mechanical properties of various bio-based concretes have been explored, research on their microstructure and [...] Read more.
The building sector is responsible for major environmental impacts. Utilising bio-based raw materials, such as bio-aggregates, in concrete production could address to this environmental challenge. While the physical and mechanical properties of various bio-based concretes have been explored, research on their microstructure and resistance to extreme conditions is limited. Cork is a light, renewable and biodegradable material. Cork industries produce a considerable number of solid wastes, among them is granulated cork with bark (GCB) that is not adequate to produce agglomerated cork. To reduce this waste volume, it is possible to use GCB as a bio-based aggregate in the production of concrete for applications in non-structural precast elements that are lighter and/or have thermal properties. The influence of GCB on the microstructure and resistance to extreme conditions of concrete for non-structural use is presented here. Concrete mixes with GCB are compared with a concrete mix made with natural aggregates (RC). Replacements of 20% and 30% of natural aggregate (2–5 mm) by GCB were considered. The microstructure shows the good integration of the GCB in the cement matrix. Freeze–thaw and wet–dry cycle tests do not affect the variation in mass and compressive strength of concrete mixes with GCB in comparison to RC mixes, although they do affect its visual appearance and microstructure somewhat. Concrete mixes with GCB present a greater variation in mass and compressive strength, 30% for RC mix and 43–49% for concrete mixes with GCB, under high temperatures. Concrete mixes with GCB did not show spontaneous combustion. Full article
(This article belongs to the Special Issue Advance in Sustainable Construction Materials, Second Volume)
Show Figures

Graphical abstract

21 pages, 2619 KB  
Article
Evaluating Agro-Based Waste Materials for Cyanotoxin Sorption for Future Incorporation in Nature-Based Solution Units (NBSUs)
by Guna Bavithra, Joana Azevedo, Alexandre Campos, C. Marisa R. Almeida and Pedro N. Carvalho
Water 2025, 17(2), 285; https://doi.org/10.3390/w17020285 - 20 Jan 2025
Viewed by 1223
Abstract
Toxic cyanobacterial blooms are a growing environmental problem, persisting in freshwater bodies globally, and potentially hazardous to populations that rely on surface freshwater supplies. Nature-based solution units (NBSUs) are effective and sustainable approaches for water treatment, with sorption being an important process. The [...] Read more.
Toxic cyanobacterial blooms are a growing environmental problem, persisting in freshwater bodies globally, and potentially hazardous to populations that rely on surface freshwater supplies. Nature-based solution units (NBSUs) are effective and sustainable approaches for water treatment, with sorption being an important process. The purpose of this study was to evaluate unmodified agro-based waste materials (rice husks, olive pulp pomace pellets (OP), cork granules) and the benchmark NBSU substrates (biochar, light expanded clay aggregate (LECA), and sand) for their microcystin-LR (MC-LR) and cylindrospermopsin (CYN) sorption potential. The kinetics and sorption mechanism of the two best sorbent materials were studied for future incorporation into NBSUs. Pre-screening of the sorbents showed highest sorption with biochar (>86% MC-LR and >98% CYN) and LECA (78% MC-LR and 80% CYN) and lower sorption with rice husk (<10%), cork (<10%), and sand (<26%). Leaching from OP made them unsuitable for further use. The sorption of both the cyanotoxins onto biochar was rapid (8 h), whereas onto LECA it was steadier (requiring 48 h for equilibrium). The pseudo-second-order kinetic model fit the sorption of both cyanotoxins onto biochar and LECA (R2: 0.94–0.99), suggesting that the sorption rate is limited by chemisorption. The sorption of MC-LR and CYN to biochar and LECA fit the Freundlich and D–R models better, suggesting multilayer sorption, high heterogeneity, and porosity in the sorbents (which was also confirmed by SEM/EDS). The sorption capacity was observed to be higher for biochar (Kf: MC-LR = 0.05, CYN = 0.16) than LECA (Kf: MC-LR = 0.02, CYN = 0.01). Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

20 pages, 5793 KB  
Article
Development of Biodegradable and Recyclable FRLM Composites Incorporating Cork Aggregates for Sustainable Construction Practices
by Dora Pugliese, Valerio Alecci, Mohammad Sadegh Tale Masoule, Ali Ghahremaninezhad, Mario De Stefano and Antonio Nanni
Materials 2024, 17(21), 5232; https://doi.org/10.3390/ma17215232 - 27 Oct 2024
Viewed by 1233
Abstract
Reducing energy consumption in the building sector has driven the search for more sustainable construction methods. This study explores the potential of cork-modified mortars reinforced with basalt fabric, focusing on optimizing both mechanical and hygroscopic properties. Six mortar mixtures were produced using a [...] Read more.
Reducing energy consumption in the building sector has driven the search for more sustainable construction methods. This study explores the potential of cork-modified mortars reinforced with basalt fabric, focusing on optimizing both mechanical and hygroscopic properties. Six mortar mixtures were produced using a breathable structural mortar made from pure natural hydraulic lime, incorporating varying percentages (0–3%) of cork granules (Quercus suber) as lightweight aggregates. Micro-computed tomography was first used to assess the homogeneity of the mixtures, followed by flow tests to evaluate workability. The mixtures were then tested for water absorption, compressive strength, and adhesion to tuff and clay brick surfaces. Adhesion was measured through pull-off tests, to evaluate internal bonding strength. Additionally, this study examined the relationship between surface roughness and bond strength in FRLM composites, revealing that rougher surfaces significantly improved adhesion to clay and tuff bricks. These findings suggest that cork-reinforced mortars offer promising potential for sustainable construction, achieving improved hygroscopic performance, sufficient mechanical strength, internal bonding, and optimized surface adhesion. Full article
(This article belongs to the Special Issue Advance in Sustainable Construction Materials, Second Volume)
Show Figures

Graphical abstract

13 pages, 7337 KB  
Article
Natural Lime–Cork Mortar for the Seismic and Energetic Retrofit of Infill Walls: Design, Materials, and Method
by Rocco Buda and Raffaele Pucinotti
Appl. Sci. 2024, 14(17), 7503; https://doi.org/10.3390/app14177503 - 25 Aug 2024
Cited by 2 | Viewed by 1630
Abstract
Recent seismic events have prompted research into innovative and sustainable materials for strengthening and repairing obsolete and vulnerable buildings. These earthquakes have exposed the high seismic vulnerability of existing reinforced concrete (RC) buildings, particularly in secondary structural elements like infill walls. In addition [...] Read more.
Recent seismic events have prompted research into innovative and sustainable materials for strengthening and repairing obsolete and vulnerable buildings. These earthquakes have exposed the high seismic vulnerability of existing reinforced concrete (RC) buildings, particularly in secondary structural elements like infill walls. In addition to structural issues, these buildings often face significant energy deficiencies, such as thermal bridges, due to inadequate insulation. Traditionally, structural and energy improvements for residential buildings are addressed separately with different methods and protocols. This preliminary study is part of a broader research initiative at the University of Reggio Calabria (Italy), aiming to design an innovative fiber-reinforced plaster using natural, sustainable, and locally produced materials to enhance the energy and structural performance of existing wall infills. The study investigates two plaster matrices made of natural hydraulic lime and silica sand, with 15% and 30% cork granules added. Mechanical and thermophysical tests on multiple specimens were conducted to evaluate their suitability for seismic and energy retrofitting of infill walls. Results indicate that adding cork reduces mechanical strength by approximately 42% at a 30% cork content without compromising its use in seismic retrofitting. Thermophysical tests show improved thermal performance with a higher cork content. These findings suggest that the lime–cork mixture at 30% is effective, offering excellent ductility and serving as a promising alternative to traditional cementitious plaster systems. The next experimental phase will test matrices with varying percentages of gorse fiber. Full article
Show Figures

Figure 1

18 pages, 3931 KB  
Article
Thermophysical Properties of Compressed Earth Blocks Incorporating Natural Materials
by Chiara Turco, Mohammadmahdi Abedi, Elisabete Teixeira and Ricardo Mateus
Energies 2024, 17(9), 2070; https://doi.org/10.3390/en17092070 - 26 Apr 2024
Cited by 6 | Viewed by 3211
Abstract
Building materials are responsible for significant CO2 emissions and energy consumption, both during production and operational phases. Earth as a building material offers a valuable alternative to conventional materials, as it naturally provides high hygrothermal comfort and air quality even with passive [...] Read more.
Building materials are responsible for significant CO2 emissions and energy consumption, both during production and operational phases. Earth as a building material offers a valuable alternative to conventional materials, as it naturally provides high hygrothermal comfort and air quality even with passive conditioning systems. However, disadvantages related to high density, conductivity, and wall thickness prevent its effective inclusion in the mainstream. This research explores enhancing the thermophysical properties of compressed earth blocks (CEBs) by using locally sourced natural materials. The study is framed in the Portuguese context and the natural materials involved are wheat straw (WS) as a by-product of wheat harvesting, cork granules (CGs) from bottle caps, and ground olive stone (GOSs) residues from olive oil production. Blocks were produced with different mixtures of these materials and the thermal response was examined in a hot box apparatus. Best results include a 20 and 26% reduction in thermal conductivity for mixtures with 5v.% CG and 10v.% GOS, respectively, and an associated reduction in bulk density of 3.8 and 5.4%. The proposed approach therefore proves to be effective in improving the key thermophysical characteristics of CEBs. The article includes a comparative analysis of the experimental data from this study with those from the literature. The study contributes to the growing knowledge of sustainable materials, providing insights for researchers and practitioners looking for innovative solutions for low-carbon and energy-efficient materials. Full article
Show Figures

Figure 1

19 pages, 9392 KB  
Article
Eco-Friendly Cork–Polyurethane Biocomposites for Enhanced Impact Performance: Experimental and Numerical Analysis
by Mateusz Dymek, Mariusz Ptak, Paweł Kaczyński, Fábio A. O. Fernandes, Ricardo J. Alves de Sousa, Gabriel F. Serra and Maria Kurańska
Polymers 2024, 16(7), 887; https://doi.org/10.3390/polym16070887 - 24 Mar 2024
Cited by 6 | Viewed by 2057
Abstract
Cork composites are byproducts from wine stopper production, resulting from the agglomeration of cork granules with a thermoset resin. The resulting compound is a versatile and durable material with numerous industrial applications. Due to its unique properties, such as low-density, high-strength, excellent energy [...] Read more.
Cork composites are byproducts from wine stopper production, resulting from the agglomeration of cork granules with a thermoset resin. The resulting compound is a versatile and durable material with numerous industrial applications. Due to its unique properties, such as low-density, high-strength, excellent energy absorption, and good thermal and acoustic insulators, cork composites find room for application in demanding industries such as automotive, construction, and aerospace. However, agglomerated cork typically has a polyurethane matrix derived from petrochemical sources. This study focuses on developing eco-friendly porous polyurethane biocomposites manufactured with the used cooking oil polyol modified with cork. Since cork and polyurethane foam are typically used for impact shock absorption, the manufactured samples were subjected to impact loading. The assessment of crashworthiness is performed through 100 J impact tests. A finite element numerical model was developed to simulate the compression of these new composites under impact, and the model validation was performed. The highest specific absorbed energy was obtained for petrochemical polyol composites with the 3% addition of natural or modified cork. The research conducted in this study showcased the feasibility of substituting certain petrochemical components used for the synthesis of the polyurethane matrix with ecological waste vegetable oil components. Full article
(This article belongs to the Special Issue Polymers and the Environment II)
Show Figures

Graphical abstract

16 pages, 10049 KB  
Article
Oxy-Butane Ablation Testing of Thermal Protection Systems Based on Nanomodified Phenolic Resin Matrix Materials
by George Pelin, Cristina Elisabeta Pelin, Adriana Stefan, Violeta Tsakiris, Alexandra Ana Maria Panait and Emil Costea
Polymers 2023, 15(19), 4016; https://doi.org/10.3390/polym15194016 - 7 Oct 2023
Cited by 4 | Viewed by 2291
Abstract
Two classes of thermal protection systems composed of a carbon-fibre-reinforced (CFRP) layer and an ablative material layer joined with a thermo-resistant ceramic adhesive were developed. The two classes differ in the composition of the ablative material reinforcing compound. In the first class, the [...] Read more.
Two classes of thermal protection systems composed of a carbon-fibre-reinforced (CFRP) layer and an ablative material layer joined with a thermo-resistant ceramic adhesive were developed. The two classes differ in the composition of the ablative material reinforcing compound. In the first class, the ablative material is based on micronic-sized cork granules, and in the second class, the ablative material is reinforced with carbonic felt. For both classes of thermal protection systems, the reinforcement material was impregnated in simple phenolic resin, and nanometric additive, consisting of silicon carbide nanoparticles added in two different weight contents (1 and 2% by weight) relative to the resin. The thermal conductivity for the ablative materials in the thermal protection systems structure was determined. A test facility using oxy-butane flame was developed through which the thermal protection systems developed were tested at extreme temperatures, to simulate some thermal conditions in space applications. The materials were characterised from a morphostructural point of view using optical and scanning electron microscopy after thermal testing. The TPS composed of the carbon-felt-based ablative layer showed improved behaviour compared to the cork-based ablative ones in terms of the temperature increase rate during thermal conductivity testing, mass loss, as well as morphostructural appearance and material erosion after oxy-butane testing. The nSiC-based samples in both sets of TPSs showed improved behaviour compared to the un-filled ones, considering the temperature increase, mass loss, and morphostructure of the eroded material. Full article
(This article belongs to the Special Issue High-Temperature Composite Resin)
Show Figures

Figure 1

17 pages, 6540 KB  
Article
Long-Term Behavior Related to Water Ingress in Mortars Which Combine Expanded and Natural Cork Lightweight Aggregates and Eco-Friendly Cements
by José Marcos Ortega, Fernando G. Branco and Luís Pereira
Buildings 2023, 13(7), 1651; https://doi.org/10.3390/buildings13071651 - 28 Jun 2023
Cited by 4 | Viewed by 2007
Abstract
The water ingress plays an important role in building materials’ degradation. The use of lightweight aggregates is interesting in terms of sustainability, because they reduce the density of cement-based materials, among other advantages. The development and use of new lightweight aggregates, such as [...] Read more.
The water ingress plays an important role in building materials’ degradation. The use of lightweight aggregates is interesting in terms of sustainability, because they reduce the density of cement-based materials, among other advantages. The development and use of new lightweight aggregates, such as cork granulates, is a current research topic. In the present work, water ingress performance of sustainable mortars which combined expanded and natural cork aggregates and cements with slag, fly ash and limestone has been studied. Mortars produced with sand and expanded clay were also prepared. Bulk density, water absorption, drying capacity and gel and capillary pores were studied. Tests were carried out at 28 days and 1 year. A good behavior has been generally observed when an addition was incorporated to the binder, especially slag or fly ash. Regarding the new non-standardized lightweight cork aggregates, mortars with natural cork showed lower water absorption and lower volume of permeable pore space in the long term than mortars with expanded cork. At one year, natural cork mortars had an adequate water absorption performance compared to those with expanded clay, which may be due to the high volume of small capillary pores (100 nm–1 µm) in natural cork mortars. Full article
(This article belongs to the Special Issue Advanced Studies in Concrete Materials)
Show Figures

Figure 1

20 pages, 7203 KB  
Article
A 3D Printing Method of Cement-Based FGM Composites Containing Granulated Cork, Polypropylene Fibres, and a Polyethylene Net Interlayer
by Daniel Pietras, Wojciech Zbyszyński and Tomasz Sadowski
Materials 2023, 16(12), 4235; https://doi.org/10.3390/ma16124235 - 7 Jun 2023
Cited by 9 | Viewed by 2258
Abstract
The increasing popularity of additive manufacturing technologies in the prototyping and building industry requires the application of novel, improved composite materials. In this paper, we propose the use of a novel 3D printing cement-based composite material with natural, granulated cork, and additional reinforcement [...] Read more.
The increasing popularity of additive manufacturing technologies in the prototyping and building industry requires the application of novel, improved composite materials. In this paper, we propose the use of a novel 3D printing cement-based composite material with natural, granulated cork, and additional reinforcement using a continuous polyethylene interlayer net combined with polypropylene fibre reinforcement. Our assessment of different physical and mechanical properties of the used materials during the 3D printing process and after curing verified the applicability of the new composite. The composite exhibited orthotropic properties, and the compressive toughness in the direction of layer stacking was lower than that perpendicular to it, by 29.8% without net reinforcement, 42.6% with net reinforcement, and 42.9% with net reinforcement and an additional freeze–thaw test. The use of the polymer net as a continuous reinforcement led to decreased compressive toughness, lowering it on average by 38.5% for the stacking direction and 23.8% perpendicular to the stacking direction. However, the net reinforcement additionally lowered slumping and elephant’s foot effects. Moreover, the net reinforcement added residual strength, which allowed for the continuous use of the composite material after the failure of the brittle material. Data obtained during the process can be used for further development and improvement of 3D-printable building materials. Full article
Show Figures

Figure 1

27 pages, 1453 KB  
Review
Added-Value Compounds in Cork By-Products: Methods for Extraction, Identification, and Quantification of Compounds with Pharmaceutical and Cosmetic Interest
by Carolina Morais Carriço, Maria Elizabeth Tiritan, Honorina Cidade, Carlos Afonso, Joana Rocha e Silva and Isabel F. Almeida
Molecules 2023, 28(8), 3465; https://doi.org/10.3390/molecules28083465 - 14 Apr 2023
Cited by 9 | Viewed by 3367
Abstract
The growing threat of climatic crisis and fossil fuel extinction has caused a boom in sustainability trends. Consumer demand for so-called eco-friendly products has been steadily increasing, built upon the foundation of environmental protection and safeguarding for future generations. A natural product that [...] Read more.
The growing threat of climatic crisis and fossil fuel extinction has caused a boom in sustainability trends. Consumer demand for so-called eco-friendly products has been steadily increasing, built upon the foundation of environmental protection and safeguarding for future generations. A natural product that has been used for centuries is cork, resulting from the outer bark of Quercus suber L. Currently, its major application is the production of cork stoppers for the wine industry, a process that, although considered sustainable, generates by-products in the form of cork powder, cork granulates, or waste such as black condensate, among others. These residues possess constituents of interest for the cosmetic and pharmaceutical industries, as they exhibit relevant bioactivities, such as anti-inflammatory, antimicrobial, and antioxidant. This interesting potential brings forth the need to develop methods for their extraction, isolation, identification, and quantification. The aim of this work is to describe the potential of cork by-products for the cosmetic and pharmaceutical industry and to assemble the available extraction, isolation, and analytical methods applied to cork by-products, as well the biological assays. To our knowledge, this compilation has never been done, and it opens new avenues for the development of new applications for cork by-products. Full article
Show Figures

Graphical abstract

13 pages, 8894 KB  
Article
Biocomposite Foams with Multimodal Cellular Structures Based on Cork Granulates and Microwave Processed Egg White Proteins
by Giorgio Luciano, Adriano Vignali, Maurizio Vignolo, Roberto Utzeri, Fabio Bertini and Salvatore Iannace
Materials 2023, 16(8), 3063; https://doi.org/10.3390/ma16083063 - 13 Apr 2023
Cited by 4 | Viewed by 2356
Abstract
In an effort to reduce greenhouse gas emission, reduce the consumption of natural resources, and increase the sustainability of biocomposite foams, the present study focuses on the recycling of cork processing waste for the production of lightweight, non-structural, fireproof thermal and acoustic insulating [...] Read more.
In an effort to reduce greenhouse gas emission, reduce the consumption of natural resources, and increase the sustainability of biocomposite foams, the present study focuses on the recycling of cork processing waste for the production of lightweight, non-structural, fireproof thermal and acoustic insulating panels. Egg white proteins (EWP) were used as a matrix model to introduce an open cell structure via a simple and energy-efficient microwave foaming process. Samples with different compositions (ratio of EWP and cork) and additives (eggshells and inorganic intumescent fillers) were prepared with the aim of correlating composition, cellular structures, flame resistance, and mechanical properties. Full article
(This article belongs to the Special Issue Polymer Foams: Materials, Processing and Properties)
Show Figures

Figure 1

16 pages, 3429 KB  
Article
Efficient Wastewater Treatment and Removal of Bisphenol A and Diclofenac in Mesocosm Flow Constructed Wetlands Using Granulated Cork as Emerged Substrate
by Salma Bessadok, Khadija Kraiem, Fatma Arous, Karim Suhail Al Souki, Dorra Tabassi, Safa El Toumi and Atef Jaouani
Toxics 2023, 11(1), 81; https://doi.org/10.3390/toxics11010081 - 15 Jan 2023
Cited by 10 | Viewed by 3429
Abstract
Constructed wetlands (CWs) are considered as low-cost and energy-efficient wastewater treatment systems. Media selection is one of the essential technical keys for their implementation. The purpose of this work was essentially to evaluate the removal efficiency of organic pollution and nitrogen from municipal [...] Read more.
Constructed wetlands (CWs) are considered as low-cost and energy-efficient wastewater treatment systems. Media selection is one of the essential technical keys for their implementation. The purpose of this work was essentially to evaluate the removal efficiency of organic pollution and nitrogen from municipal wastewater (MWW) using different selected media (gravel/gravel amended with granulated cork) in mesocosm horizontal flow constructed wetlands (HFCWs). The results showed that the highest chemical oxygen demand (COD) and ammonium nitrogen removal of 80.53% and 42%, respectively, were recorded in the units filled with gravel amended with cork. The influence of macrophytes (Phragmites australis and Typha angustifolia) was studied and both species showed steeper efficiencies. The system was operated under different hydraulic retention times (HRTs) i.e., 6 h, 24 h, 30 h, and 48 h. The obtained results revealed that the COD removal efficiency was significantly enhanced by up to 38% counter to the ammonium rates when HRT was increased from 6 h to 48 h. Moreover, the removal efficiency of two endocrine-disrupting compounds (EDCs) namely, bisphenol A (BPA) and diclofenac (DCF) was investigated in two selected HFCWs, at 48 h HRT. The achieved results proved the high capacity of cork for BPA and DCF removal with the removal rates of 90.95% and 89.66%, respectively. The results confirmed the role of these engineered systems, especially for EDC removal, which should be further explored. Full article
(This article belongs to the Special Issue Sources and Removal of Organic Pollutants in Wastewater)
Show Figures

Graphical abstract

14 pages, 4159 KB  
Article
Slow Pyrolysis of Quercus cerris Cork: Characterization of Biochars and Pyrolysis Volatiles
by Umut Sen, Marta Martins, Everton Santos, Maria Amelia Lemos, Francisco Lemos and Helena Pereira
Environments 2023, 10(1), 4; https://doi.org/10.3390/environments10010004 - 22 Dec 2022
Cited by 7 | Viewed by 3850
Abstract
Waste cork granules of Quercus cerris bark were subjected to isothermal and non-isothermal slow pyrolysis. The heat of the reaction, as well as the yields and properties of biochar, bio-oil, and pyrolysis gas were investigated by thermogravimetric analysis, FT-IR, CHN elemental analysis, higher [...] Read more.
Waste cork granules of Quercus cerris bark were subjected to isothermal and non-isothermal slow pyrolysis. The heat of the reaction, as well as the yields and properties of biochar, bio-oil, and pyrolysis gas were investigated by thermogravimetric analysis, FT-IR, CHN elemental analysis, higher heating value (HHV) determinations, scanning electron microscopy (SEM), and gas chromatography (GC). The slow pyrolysis was carried out in a semi-batch reactor using an isothermal or a non-isothermal dynamic approach. The results demonstrated that isothermal or non-isothermal slow pyrolysis of cork is a slightly exothermic reaction that produces biochars. The elemental analysis results indicated that non-isothermally produced chars have similar fuel properties compared to isothermally produced chars. The FT-IR results showed that cork suberin undergoes a higher degree of degradation in isothermal chars and aromatization begins in the char structure. Bio-oils are also produced and they consist of C5–C12 hydrocarbons with C8 carbon compounds making up the main fraction. Lighter components, mainly C1–C2 hydrocarbons are collected in the gas phase. The overall results indicate a possible reduced-cost route for the production of cork-based biochars by using non-isothermal slow pyrolysis. Full article
(This article belongs to the Special Issue Preparation and Application of Biochar)
Show Figures

Figure 1

18 pages, 2065 KB  
Article
Valorization of Quercus suber L. Bark as a Source of Phytochemicals with Antimicrobial Activity against Apple Tree Diseases
by Eva Sánchez-Hernández, Vicente González-García, José Casanova-Gascón, Juan J. Barriuso-Vargas, Joaquín Balduque-Gil, Belén Lorenzo-Vidal, Jesús Martín-Gil and Pablo Martín-Ramos
Plants 2022, 11(24), 3415; https://doi.org/10.3390/plants11243415 - 7 Dec 2022
Cited by 13 | Viewed by 3384
Abstract
Cork, an anatomic adaptation of the bark of Quercus suber L. through its suberization process, finds its main application in the production of bottle stoppers. Its processing results in a large waste stream of cork fragments, granulates, and dust, which may be susceptible [...] Read more.
Cork, an anatomic adaptation of the bark of Quercus suber L. through its suberization process, finds its main application in the production of bottle stoppers. Its processing results in a large waste stream of cork fragments, granulates, and dust, which may be susceptible to valorization. The work presented here explored the use of its extracts to inhibit the growth of phytopathogenic microorganisms associated with apple tree diseases. The in vitro antimicrobial activity of cork aqueous ammonia extract was assayed against four fungi, viz. Monilinia fructigena and M. laxa (brown rot), Neofussicoccum parvum (dieback), and Phytophthora cactorum (collar and root rot), and two bacteria, viz. Erwinia amylovora and Pseudomonas syringae pv. syringae, either alone or in combination with chitosan oligomers (COS). Effective concentration values of EC90 in the 675–3450 μg·mL−1 range, depending on the fungal pathogen, were obtained in growth inhibition tests, which were substantially improved for the conjugate complexes (340–801 μg·mL−1) as a result of strong synergism with COS. Similar enhanced behavior was also observed in antibacterial activity assays, with MIC values of 375 and 750 μg·mL−1 for the conjugate complexes against P. syringae pv. syringae and E. amylovora, respectively. This in vitro inhibitory activity was substantially higher than those exhibited by azoxystrobin and fosetyl-Al, which were tested for comparison purposes, and stood out among those reported for other natural compounds in the literature. The observed antimicrobial activity may be mainly attributed to the presence of glycerin and vanillic acid, identified by gas chromatography–mass spectroscopy. In the first step towards in-field application, the COS–Q. suber bark extract conjugate complex was further tested ex situ against P. cactorum on artificially inoculated excised stems of the ‘Garnem’ almond rootstock, achieving high protection at a dose of 3750 μg·mL−1. These results suggest that cork industrial leftovers may, thus, be a promising source of bioactive compounds for integrated pest management. Full article
(This article belongs to the Special Issue Plant Extracts as Biological Protective Agents)
Show Figures

Graphical abstract

Back to TopTop