Thermophysical Properties of Compressed Earth Blocks Incorporating Natural Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Sample Preparation
2.1.1. Soil Characteristics
2.1.2. Natural Hydraulic Lime
2.1.3. Natural Materials
2.1.4. Preparation of the Samples
2.2. Experimental Methods
2.2.1. Physical Characterisation of the Blocks
2.2.2. Thermal Characterisation of the Blocks
3. Results and Discussion
3.1. Physical Properties of the Blocks
3.2. Thermal Properties of the Blocks
3.3. Comparison and Analysis
4. Conclusions
- Further research is warranted to refine the material ratios and manufacturing processes to achieve optimal thermal performance in mixtures incorporating WS. Contrary to the existing literature [67], this study did not observe an improvement in thermal properties.
- Utilising CGs from bottle stoppers showcases the recycling and reusing potential of this natural material. However, concentrations exceeding 5v.% were found to compromise block quality, as evidenced by immediate block crumbling post compaction.
- The inclusion of GOSs in mixtures is a promising alternative for enhancing earth’s insulating properties and overall energy efficiency, while also proposing a sustainable waste management technique. Positive results from their use align with the existing literature [36], marking a significant milestone. Further experimentation in other producing countries would be beneficial.
- The investigation did not reveal a linear correlation between density reduction and thermal conductivity reduction. Two considerations: the introduction of natural materials into the soil matrix, whose properties diverge from those of the soil grains, lead to non-linearities in the heat flux paths. Accurately describing this problem using analytical models is difficult without significant simplifications. On the other hand, numerical approaches employing random discrete-element modelling could simulate the behaviour of the mixed granular medium, albeit with computational cost. Despite low coefficients of determination indicating weak correlations, a certain pattern is still decipherable. Consequently, while more data can increase confidence in navigating the survey space, the creation of a comprehensive database could make it easier to exploit the potential of artificial intelligence.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, L.; Krigsvoll, G.; Johansen, F.; Liu, Y.; Zhang, X. Carbon emission of global construction sector. Renew. Sustain. Energy Rev. 2018, 81, 1906–1916. [Google Scholar] [CrossRef]
- In Focus: Energy Efficiency in Buildings—European Commission, (n.d.). Available online: https://commission.europa.eu/news/focus-energy-efficiency-buildings-2020-02-17_en (accessed on 20 February 2024).
- Buildings and Construction—European Commission, (n.d.). Available online: https://single-market-economy.ec.europa.eu/industry/sustainability/buildings-and-construction_en (accessed on 26 January 2024).
- Ben-Alon, L.; Rempel, A.R. Thermal comfort and passive survivability in earthen buildings. Build. Environ. 2023, 238, 110339. [Google Scholar] [CrossRef]
- Fabbri, A.; Aubert, J.-E.; Bras, A.A.; Faria, P.; Gallipoli, D.; Goffart, J.; McGregor, F.; Perlot-Bascoules, C.; Soudani, L. Hygrothermal and Acoustic Assessment of Earthen Materials. In Testing and Characterisation of Earth-Based Building Materials and Elements; Springer: Cham, Switzerland, 2022; pp. 83–126. [Google Scholar] [CrossRef]
- McGregor, F.; Heath, A.; Maskell, D.; Fabbri, A.; Morel, J.-C. A review on the buffering capacity of earth building materials. Proc. Inst. Civ. Eng.-Constr. Mater. 2016, 169, 241–251. [Google Scholar] [CrossRef]
- Giuffrida, G.; Caponetto, R.; Nocera, F. Hygrothermal properties of raw earth materials: A literature review. Sustainability 2019, 11, 5342. [Google Scholar] [CrossRef]
- Dabaieh, M.; Heinonen, J.; El-Mahdy, D.; Hassan, D.M. A comparative study of life cycle carbon emissions and embodied energy between sun-dried bricks and fired clay bricks. J. Clean. Prod. 2020, 275, 122998. [Google Scholar] [CrossRef]
- Fernandes, J.; Peixoto, M.; Mateus, R.; Gervásio, H. Life cycle analysis of environmental impacts of earthen materials in the Portuguese context: Rammed earth and compressed earth blocks. J. Clean. Prod. 2019, 241, 118286. [Google Scholar] [CrossRef]
- Ben-Alon, L.; Loftness, V.; Harries, K.A.; Hameen, E.C. Integrating Earthen Building Materials and Methods into Mainstream Construction Using Environmental Performance Assessment and Building Policy. IOP Conf. Ser. Earth Environ. Sci. 2019, 323, 012139. [Google Scholar] [CrossRef]
- Bruno, A.W.; Scott, B.; D’Offay-Mancienne, Y.; Perlot, C. Recyclability, durability and water vapour adsorption of unstabilised and stabilised compressed earth bricks. Mater. Struct. 2020, 53, 1–15. [Google Scholar] [CrossRef]
- Mateus, R.; Fernandes, J.; Teixeira, E.R. Environmental Life Cycle Analysis of Earthen Building Materials; Elsevier Ltd.: Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, S.; Quan, D.; Fang, K.; Wang, B.; Ma, Z. Properties of Sustainable Earth Construction Materials: A State-of-the-Art Review. Sustainability 2024, 16, 670. [Google Scholar] [CrossRef]
- Wakil, M.; El Mghari, H.; Kaitouni, S.I.; El Amraoui, R. Thermal energy performance of compressed earth building in two different cities in Moroccan semi-arid climate. Energy Built Environ. 2023, 5, 800–816. [Google Scholar] [CrossRef]
- Goodhew, S.; Griffiths, R. Sustainable earth walls to meet the building regulations. Energy Build. 2005, 37, 451–459. [Google Scholar] [CrossRef]
- Ben-Alon, L.; Loftness, V.; Harries, K.A.; Hameen, E.C.; Bridges, M. Integrating earthen building materials and methods into mainstream construction. J. Green Build. 2020, 15, 87–106. [Google Scholar] [CrossRef]
- Fabbri, A.; Morel, J.-C.; Aubert, J.-E.; Bui, Q.-B.; Gallipoli, D.; Reddy, B.V.V. Testing and Characterisation of Earth-Based Building Materials and Elements; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Fabbri, A.; Morel, J.C.; Aubert, J.-E.; Bui, Q.-B.; Gallipoli, D.; Ventura, A.; Reddy, V.B.V.; Hamard, E.; Pelé-Peltier, A.; Abhilash, H.N. An overview of the remaining challenges of the RILEM TC 274-TCE, testing and characterisation of earth-based building materials and elements. RILEM Tech. Lett. 2021, 6, 150–157. [Google Scholar] [CrossRef]
- 2050 Long-Term Strategy—European Commission, (n.d.). Available online: https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2050-long-term-strategy_en (accessed on 12 April 2024).
- Turco, C.; Paula Junior, A.C.; Teixeira, E.; Mateus, R. Optimisation of Compressed Earth Blocks (CEBs) using natural origin materials: A systematic literature review. Constr. Build. Mater. 2021, 309, 125140. [Google Scholar] [CrossRef]
- Samanth, M.; Bhat, K.S. Conventional and unconventional chemical treatment methods of natural fibres for sustainable biocomposites. Sustain. Chem. Clim. Act. 2023, 3, 100034. [Google Scholar] [CrossRef]
- Li, X.; Tabil, L.G.; Panigrahi, S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. J. Polym. Environ. 2007, 15, 25–33. [Google Scholar] [CrossRef]
- Poorveekan, K.; Ath, K.M.S.; Anburuvel, A.; Sathiparan, N. Investigation of the engineering properties of cementless stabilized earth blocks with alkali-activated eggshell and rice husk ash as a binder. Constr. Build. Mater. 2021, 277, 122371. [Google Scholar] [CrossRef]
- Lejano, B.A.; Gabaldon, R.J.; Go, P.J.; Juan, C.G.; Wong, M. Compressed earth blocks with powdered green mussel shell as partial binder and pig hair as fiber reinforcement. Int. J. GEOMATE 2019, 16, 137–143. [Google Scholar] [CrossRef]
- Nshimiyimana, P.; Messan, A.; Courard, L. Physico-mechanical and hygro-thermal properties of compressed earth blocks stabilized with industrial and agro by-product binders. Materials 2020, 13, 3769. [Google Scholar] [CrossRef]
- Nshimiyimana, P.; Messan, A.; Zhao, Z.; Courard, L. Chemico-microstructural changes in earthen building materials containing calcium carbide residue and rice husk ash. Constr. Build. Mater. 2019, 216, 622–631. [Google Scholar] [CrossRef]
- THE 17 GOALS|Sustainable Development. Available online: https://sdgs.un.org/goals (accessed on 8 April 2024).
- Turco, C.; Funari, M.F.; Teixeira, E.; Mateus, R. Artificial Neural Networks to Predict the Mechanical Properties of Natural Fibre-Reinforced Compressed Earth Blocks (CEBs). Fibers 2021, 9, 78. [Google Scholar] [CrossRef]
- Laborel-Préneron, A.; Aubert, J.E.; Magniont, C.; Tribout, C.; Bertron, A. Plant aggregates and fibers in earth construction materials: A review. Constr. Build. Mater. 2016, 111, 719–734. [Google Scholar] [CrossRef]
- Jannat, N.; Hussien, A.; Abdullah, B.; Cotgrave, A. Application of agro and non-agro waste materials for unfired earth blocks construction: A review. Constr. Build. Mater. 2020, 254, 119346. [Google Scholar] [CrossRef]
- Turco, C.; de Paula Junior, A.; Teixeira, E.; Mateus, R. Authors closure to the Discussion of the Review article “Optimisation of Compressed earth blocks (CEBs) using natural origin materials: A systematic literature review”. Constr. Build. Mater. 2022, 325, 126888. [Google Scholar] [CrossRef]
- Zhang, L. Production of bricks from waste materials–A review. Constr. Build. Mater. 2013, 47, 643–655. [Google Scholar] [CrossRef]
- Minke, G. Building with Earth: Design and Technology of a Sustainable Architecture; De Gruyter: Berlin, Germany, 2009. [Google Scholar]
- Guettala, S.; Bachar, M.; Azzouz, L. Properties of the Compressed-Stabilized Earth Brick Containing Cork Granules. J. Earth Sci. Clim. Chang. 2016, 7, 353. [Google Scholar] [CrossRef]
- Bachar, M.; Azzouz, L.; Rabehi, M.; Mezghiche, B. Characterization of a stabilized earth concrete and the effect of incorporation of aggregates of cork on its thermo-mechanical properties: Experimental study and modeling. Constr. Build. Mater. 2015, 74, 259–267. [Google Scholar] [CrossRef]
- Djadouf, S.; Chelouah, N.; Tahakourt, A. The influence of the addition of ground olive stone on the thermo-mechanical behavior of compressed earth blocks. Mater. Tech. 2020, 108, 1–9. [Google Scholar] [CrossRef]
- LNEC NP 143; Solos. Determinação dos Limites de Consistencia-Soils. Determination of Consistency Limits. LNEC: Lisbon, Portugal, 1969. (In Portuguese)
- LNEC NP-83; Solos. Determinação da Densidade das Partículas-Soils. Determination of Particle Density. LNEC: Lisbon, Portugal, 1965. (In Portuguese)
- E1269-11; Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry. ASTM: West Conshohocken, PA, USA, 2011.
- LNEC E 197; Solos. Ensaio de Compactação-Soils. Compaction Test. LNEC: Lisbon, Portugal, 1966. (In Portuguese)
- NP EN 933-8; Ensaios das Propriedades Geométricas dos Agregados: Parte 8: Determinação do Teor de Finos: Ensaio do Equivalente de Areia-Tests for Geometrical Properties of Aggregates: Part 8: Assessment of Fines: Sand Equivalent Test. IPQ: Caparica, Portugal, 2002. (In Portuguese)
- NP EN 933-9; Ensaios das Propriedades Geométricas dos Agregados: Parte 9: Determinação do teor de Finos: Ensaio do Azul de Metileno-Tests for Geometrical Properties of Aggregates: Part 9: Assessment of Fines: Methylene Blue Test. IPQ: Caparica, Portugal, 2002. (In Portuguese)
- ASTM D 2974; Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils. ASTM International: West Conshohocken, PA, USA, 2014.
- Delgado, M.C.J.; Guerrero, I.C. The selection of soils for unstabilised earth building: A normative review. Constr. Build. Mater. 2007, 21, 237–251. [Google Scholar] [CrossRef]
- Jolyon Ralph, Mindat.org—Mines, Minerals and More, The Hudson Institute of Mineralogy (n.d.). Available online: https://www.mindat.org/ (accessed on 19 February 2024).
- Fo, M. Handbook of Thermogravimetric System of Minerals and Its Use in Geological Practice; Geological Institute of Hungary: Budapest, Hungary, 2011. [Google Scholar]
- Klimesch, D.S.; Ray, A. The use of DTA/TGA to study the effects of ground quartz with different surface areas in autoclaved cement: Quartz pastes. Use of the semi-isothermal thermogravimetric technique. Thermochim. Acta 1997, 306, 159–165. [Google Scholar] [CrossRef]
- Ringdalen, E. Changes in Quartz During Heating and the Possible Effects on Si Production. JOM 2015, 67, 484–492. [Google Scholar] [CrossRef]
- Shanmugavel, D.; Dubey, R.; Ramadoss, R. Use of natural polymer from plant as admixture in hydraulic lime mortar masonry. J. Build. Eng. 2020, 30, 101252. [Google Scholar] [CrossRef]
- Csanády, D.; Fenyvesi, O.; Nagy, B. An empirical model of heat-treated straw bulks’ thermal conductivity based on changes in mass and chemical composition. J. Therm. Anal. Calorim. 2023, 148, 3731–3749. [Google Scholar] [CrossRef]
- Gibson, L.J.; Easterling, E.; Ashby, M.F. The Structure and Mechanics of Cork. Proc. R. Soc. Lond. A Math. Phys. Sci. 1981, 377, 99–117. Available online: https://www.jstor.org/stable/2397034 (accessed on 6 November 2023).
- Motte, J.C.; Delenne, J.Y.; Barron, C.; Dubreucq, É.; Mayer-Laigle, C. Elastic properties of packing of granulated cork: Effect of particle size. Ind. Crops Prod. 2017, 99, 126–134. [Google Scholar] [CrossRef]
- Chanut, J.; Wang, Y.; Cin, I.D.; Ferret, E.; Gougeon, R.D.; Bellat, J.P.; Karbowiak, T. Surface properties of cork: Is cork a hydrophobic material? J. Colloid Interface Sci. 2022, 608, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Martins, C.I.; Gil, V. Processing–Structure–Properties of Cork Polymer Composites. Front. Mater. 2020, 7, 572353. [Google Scholar] [CrossRef]
- Caballero, J.A.; Marcilla, A.; Conesa, J.A. Thermogravimetric analysis of olive stones with sulphuric acid treatment. J. Anal. Appl. Pyrolysis 1997, 44, 75–88. [Google Scholar] [CrossRef]
- Ashour, T.; Korjenic, A.; Korjenic, S.; Wu, W. Thermal conductivity of unfired earth bricks reinforced by agricultural wastes with cement and gypsum. Energy Build. 2015, 104, 139–146. [Google Scholar] [CrossRef]
- Zhang, Y.; Ghaly, A.E.; Li, B. Physical Properties of Wheat Straw Varieties Cultivated Under Different Climatic and Soil Conditions in Three Continents. Am. J. Eng. Appl. Sci. 2012, 5, 98–106. [Google Scholar] [CrossRef]
- Rigassi, V. Compressed Earth Blocks: Manual of Production; Deutsche Development Agency: Bonn, Germany, 1985. [Google Scholar]
- NZS 4298; Materials and Workmanship for Earth Buildings. New Zealand Standard: Wellington, New Zealand, 1998.
- Turco, C.; Junior, A.P.; Jacinto, C.; Fernandes, J.; Teixeira, E.; Mateus, R. Influence of Particle Size on Compressed Earth Blocks Properties and Strategies for Enhanced Performance. Appl. Sci. 2024, 14, 1779. [Google Scholar] [CrossRef]
- ASTM C1363-11; Standard Test Method for Thermal Performance of Building Materials and Envelope Assemblies by Means of a Hot Box Apparatus. American Society for Testing Materials: West Conshohocken, PA, USA, 2014.
- BSI, ISO 9869-1:2014; Thermal Insulation—Building Elements—In Situ Measurement of Thermal Resistance and Thermal Transmittance; Part 1: Heat Flow Meter Method. ISO: Geneva, Switzerland, 2014.
- Teixeira, E.R.; Machado, G.; de, P. Junior, A.; Guarnier, C.; Fernandes, J.; Silva, S.M.; Mateus, R. Mechanical and Thermal Performance Characterisation of Compressed Earth Blocks. Energies 2020, 13, 2978. [Google Scholar] [CrossRef]
- IS 1725; Specification for Soil Based Blocks Used in General Building Constructuion. Indian Standard: New Delhi, India, 1982.
- SLS 1382; Compressed Stabilized Earth Blocks. Sri Lankan Standard: Colombo, Sri Lankan, 2009.
- Ochsner, T. Rain or Shine: An Introduction to Soil Physical Properties and Processes; Oklahoma State University: Stillwater, OK, USA, 2019. [Google Scholar] [CrossRef]
- Laborel-Préneron, A.; Aubert, J.-E.; Magniont, C.; Bertron, A. Influence of straw content on the mechanical and thermal properties of bio-based earth composites. Acad. J. Civ. Eng. 2015, 33. [Google Scholar] [CrossRef]
- Barreca, F.; Fichera, C.R. Use of olive stone as an additive in cement lime mortar to improve thermal insulation. Energy Build. 2013, 62, 507–513. [Google Scholar] [CrossRef]
- Vicente-Navarro, A.S.; Mendívil-Giro, M.; Los Santos-Ortega, J.; Fraile-García, E.; Ferreiro-Cabello, J. Alternative Use of the Waste from Ground Olive Stones in Doping Mortar Bricks for Sustainable Façades. Buildings 2023, 13, 2992. [Google Scholar] [CrossRef]
- He, J.; Jie, Y.; Zhang, J.; Yu, Y.; Zhang, G. Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cem. Concr. Compos. 2013, 37, 108–118. [Google Scholar] [CrossRef]
Characteristics | Test Methods | Standards | |
---|---|---|---|
Consistency limits 1 | wL = 29.5%, wP = 18.5%, IP = 11% | Atterberg limits | NP-143 [37] |
Particle density 1 | 2.71 g/cm3 | Pycnometer test | NP-83 [38] |
Specific heat (at 26.85 °C) 1,2 | 883.93 J/kg°C | DSC | ASTM E1269 [39] |
Maximum dry density | 2.01 g/cm3 | Proctor test | E 197 [40] |
Optimum water content | 12.0% | ||
Sand content | 18.80% | Sand equivalent test | NP EN933-8 [41] |
Activity of clay minerals | 0.67 mg/g | Blue methylene test | NP EN933-9 [42] |
Organic content | 3.50% | Loss on ignition | ASTM D2974 [43] |
Thermal Conductivity [W/mK] | Moisture Content [%] | Bulk Density [g/cm3] | Porosity [%] | Absorption [%] | |
---|---|---|---|---|---|
Wheat straw (WS) | 0.041–0.049 1 [56] | 5.02–7.79% [57] | 0.98–1.77 [57]; 0.104 [29] | – | – |
Cork granules (CGs) | 0.036 [35] | – | 0.70 [35] | 51% [35] | 2.40 [35] |
Olive stones (GOSs) | – | – | 0.65; 0.70 [36] | 83% [36] | 4.60 [36] |
Soil | Hydraulic Lime [v.%] | Natural Material [v.%] | Mixing Water [v.%] | ||
---|---|---|---|---|---|
Reference mixture—REF 1 | REF | 100% | 5% | - | 10% |
Mixtures with addition of wheat straw—WS | WS5 | 100% | 5% | 5% | 13% |
WS10 | 100% | 5% | 10% | 12% | |
WS15 | 100% | 5% | 15% | 11% | |
Mixtures with replacement of soil with cork granules—CGs | CG1 | 99% | 5% | 1% | 16% |
CG3 | 97% | 5% | 3% | 15% | |
CG5 | 95% | 5% | 5% | 14% | |
Mixtures with replacement of soil with ground olive stones—GOSs | GOS10 | 90% | 5% | 10% | 15% |
GOS15 | 85% | 5% | 15% | 14% |
γd [kg/m3] 2 | R-Value [m2K/W] | λ [W/mK] | |
---|---|---|---|
REF | 1831.53 ± 4.72 (0.26%) | 0.231 ± 0.01 (4.13%) | 0.650 ± 0.03 (4.11%) |
WS5 | 1835.31 ± 13.14 (0.72%) | 0.232 ± 0.03 (12.28%) | 0.653 ± 0.09 (13.08%) |
WS10 | 1805.36 ± 68.06 (3.77%) | 0.243 ± 0.04 (14.45%) | 0.625 ± 0.08 (13.60%) |
WS15 | 1816.43 ± 32.24 (1.77%) | 0.236 ± 0.02 (6.35%) | 0.636 ± 0.04 (6.59%) |
CG1 | 1771.21 ± 41.65 (2.35%) | 0.232 ± 0.03 (12.85%) | 0.653 ± 0.08 (12.32%) |
CG3 | 1848.86 ± 76.02 (4.11%) | 0.251 ± 0.02 (7.94%) | 0.600 ± 0.05 (8.32%) |
CG5 | 1748.36 ± 7.21 (0.41%) | 0.289 ± 0.04 (12.15%) | 0.523 ± 0.06 (11.54%) |
GOS10 | 1737.31 ± 16.21 (0.93%) | 0.313 ± 0.01 (4.17%) | 0.479 ± 0.02 (4.14%) |
GOS15 | 1626.84 ± 50.87 (3.13%) | 0.297 ± 0.01 (3.24%) | 0.506 ± 0.02 (3.21%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turco, C.; Abedi, M.; Teixeira, E.; Mateus, R. Thermophysical Properties of Compressed Earth Blocks Incorporating Natural Materials. Energies 2024, 17, 2070. https://doi.org/10.3390/en17092070
Turco C, Abedi M, Teixeira E, Mateus R. Thermophysical Properties of Compressed Earth Blocks Incorporating Natural Materials. Energies. 2024; 17(9):2070. https://doi.org/10.3390/en17092070
Chicago/Turabian StyleTurco, Chiara, Mohammadmahdi Abedi, Elisabete Teixeira, and Ricardo Mateus. 2024. "Thermophysical Properties of Compressed Earth Blocks Incorporating Natural Materials" Energies 17, no. 9: 2070. https://doi.org/10.3390/en17092070
APA StyleTurco, C., Abedi, M., Teixeira, E., & Mateus, R. (2024). Thermophysical Properties of Compressed Earth Blocks Incorporating Natural Materials. Energies, 17(9), 2070. https://doi.org/10.3390/en17092070