Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = copper-doped tin oxide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2714 KiB  
Article
Assessing the Efficacy of Chemical and Green-Synthesized CuO Nanoparticles in Combatting Clinical Candida Species: A Comparative Study
by Hiba Younis Khalaf, Ferid Ben Nasr, Bashar Sadeq Noomi, Sami Mnif and Sami Aifa
Microbiol. Res. 2025, 16(8), 178; https://doi.org/10.3390/microbiolres16080178 - 1 Aug 2025
Viewed by 110
Abstract
The most prevalent growth of Candida cells is based on biofilm development, which causes the intensification of antifungal resistance against a large range of chemicals. Nanoparticles can be synthesized using green methods via various biological extracts and reducing agents to control Candida biofilms. [...] Read more.
The most prevalent growth of Candida cells is based on biofilm development, which causes the intensification of antifungal resistance against a large range of chemicals. Nanoparticles can be synthesized using green methods via various biological extracts and reducing agents to control Candida biofilms. This study aims to compare copper oxide nanoparticles (CuONPs) synthesized through chemical methods and those synthesized using Cinnamomum verum-based green methods against Candida infections and their biofilms isolated from Iraqi patients, with the potential to improve treatment outcomes. The physical and chemical properties of these nanoparticles were characterized using Fourier-transform infrared spectroscopy (FT-IR,) scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). Four strains of Candida were isolated and characterized from Iraqi patients in Tikrit Hospital and selected based on their ability to form biofilm on polystyrene microplates. The activity of green-synthesized CuONPs using cinnamon extract was compared with both undoped and doped (Fe, Sn) chemically synthesized CuONPs. Four pathogenic Candida strains (Candida glabrata, Candida lusitaniae, Candida albicans, and Candida tropicalis) were isolated from Iraqi patients, demonstrating high biofilm formation capabilities. Chemically and green-synthesized CuONPs from Cinnamomum verum showed comparable significant antiplanktonic and antibiofilm activities against all strains. Doped CuONPs with iron or tin demonstrated lower minimum inhibitory concentration (MIC) values, indicating stronger antibacterial activity, but exhibited weaker anti-adhesive properties compared to other nanoparticles. The antiadhesive activity revealed that C. albicans strain seems to produce the most resistant biofilms while C. glabrata strain seems to be more resistant towards the doped CuONPs. Moreover, C. tropicalis was the most sensitive to all the CuONPs. Remarkably, at a concentration of 100 µg/mL, all CuONPs were effective in eradicating preformed biofilms by 47–66%. The findings suggest that CuONPs could be effective in controlling biofilm formation by Candida species resistant to treatment in healthcare settings. Full article
Show Figures

Figure 1

15 pages, 1981 KiB  
Article
Substrate-Dependent Characteristics of CuSbS2 Solar Absorber Layers Grown by Spray Pyrolysis
by Samaneh Shapouri, Elnaz Irani, Payam Rajabi Kalvani, Stefano Pasini, Gianluca Foti, Antonella Parisini and Alessio Bosio
Coatings 2025, 15(6), 683; https://doi.org/10.3390/coatings15060683 - 6 Jun 2025
Viewed by 649
Abstract
Copper antimony sulfide (CuSbS2) is an affordable and eco-friendly solar absorber with an optimal bandgap and high absorption coefficient, and it stands out as a promising candidate for thin-film solar cells. This study investigates the effects of indium tin oxide (ITO), [...] Read more.
Copper antimony sulfide (CuSbS2) is an affordable and eco-friendly solar absorber with an optimal bandgap and high absorption coefficient, and it stands out as a promising candidate for thin-film solar cells. This study investigates the effects of indium tin oxide (ITO), fluorine-doped tin oxide (FTO), and glass substrates on the microstructural, morphological, and optical properties of CuSbS2 (CAS) layers synthesized via spray pyrolysis. X-ray Diffraction (XRD) and Raman spectroscopy analyses revealed that CAS phases formed on ITO and FTO substrates exhibited a phase composition without additional copper phases. However, the CAS layer on glass contained a copper sulfide (CuS) phase, which can be detrimental for solar cell applications. Furthermore, the influences of the substrate morphology and contact angle on the growth mechanisms of CAS layers was examined, highlighting the relationship between the substrate micromorphology and the resultant film characteristics. Advanced image processing techniques applied to Atomic Force Microscopy (AFM) images of the substrate surfaces facilitated a comprehensive comparison with the surface characteristics of the CAS films grown on those substrates. Field Emission Scanning Electron Microscopy (FESEM) indicated that CAS layers on ITO possessed larger grains than FTO, whereas those on FTO exhibited lower roughness with a more uniform grain distribution. Notably, the optical properties of the CAS layers correlated strongly with their microstructural and morphological characteristics. This work highlights the critical influence of substrate choice on the growth and characteristics of CAS layers through a comparative analysis. Full article
Show Figures

Graphical abstract

13 pages, 13568 KiB  
Article
Influence of Copper and Tin Oxidation States on the Phase Evolution of Solution-Processed Ag-Alloyed CZTS Photovoltaic Absorbers
by Abdeljalil Errafyg, Naoufal Ennouhi, Yassine Chouimi and Zouheir Sekkat
Energies 2024, 17(24), 6341; https://doi.org/10.3390/en17246341 - 17 Dec 2024
Viewed by 1151
Abstract
Kesterite-based semiconductors, particularly copper–zinc–tin–sulfide (CZTS), have garnered considerable attention as potential absorber layers in thin-film solar cells because of their abundance, nontoxicity, and cost-effectiveness. In this study, we explored the synthesis of Ag-alloyed CZTS (ACZTS) materials via the sol–gel method and deposited them [...] Read more.
Kesterite-based semiconductors, particularly copper–zinc–tin–sulfide (CZTS), have garnered considerable attention as potential absorber layers in thin-film solar cells because of their abundance, nontoxicity, and cost-effectiveness. In this study, we explored the synthesis of Ag-alloyed CZTS (ACZTS) materials via the sol–gel method and deposited them on a transparent fluorine-doped tin oxide (FTO) back electrode. A key challenge is the selection and manipulation of metal–salt precursors, with a particular focus on the oxidation states of copper (Cu) and tin (Sn) ions. Two distinct protocols, varying the oxidation states of the Cu and Sn ions, were employed to synthesize the ACZTS materials. The transfer from the solution to the precursor film was analyzed, followed by annealing at different temperatures under a sulfur atmosphere to investigate the behavior and growth of these materials during the final stage of annealing. Our results show that the precursor transformation from solution to film is highly sensitive to the oxidation states of these metal ions, significantly influencing the chemical reactions during sol–gel synthesis and subsequent annealing. Furthermore, the formation pathway of the kesterite phase at elevated temperatures differs between the two protocols. Structural, morphological, and optical properties were characterized via X-ray diffraction (XRD), Raman spectroscopy, and scanning electron microscopy (SEM). Our findings highlight the critical role of the Cu and Sn oxidation states in the formation of high-quality kesterite materials. Additionally, we studied a novel approach for controlling the synthesis and phase evolution of kesterite materials via molecular inks, which could provide new opportunities for enhancing the efficiency of thin-film solar cells. Full article
(This article belongs to the Section D1: Advanced Energy Materials)
Show Figures

Figure 1

33 pages, 6495 KiB  
Review
A Review of Transparent Conducting Films (TCFs): Prospective ITO and AZO Deposition Methods and Applications
by Jessica Patel, Razia Khan Sharme, Manuel A. Quijada and Mukti M. Rana
Nanomaterials 2024, 14(24), 2013; https://doi.org/10.3390/nano14242013 - 14 Dec 2024
Cited by 5 | Viewed by 2412
Abstract
This study offers a comprehensive summary of the current states as well as potential future directions of transparent conducting oxides (TCOs), particularly tin-doped indium oxide (ITO), the most readily accessible TCO on the market. Solar cells, flat panel displays (FPDs), liquid crystal displays [...] Read more.
This study offers a comprehensive summary of the current states as well as potential future directions of transparent conducting oxides (TCOs), particularly tin-doped indium oxide (ITO), the most readily accessible TCO on the market. Solar cells, flat panel displays (FPDs), liquid crystal displays (LCDs), antireflection (AR) coatings for airbus windows, photovoltaic and optoelectronic devices, transparent p–n junction diodes, etc. are a few of the best uses for this material. Other conductive metals that show a lot of promise as substitutes for traditional conductive materials include copper, zinc oxide, aluminum, silver, gold, and tin. These metals are also utilized in AR coatings. The optimal deposition techniques for creating ITO films under the current conditions have been determined to be DC (direct current) and RF (radio frequency) MS (magnetron sputtering) deposition, both with and without the introduction of Ar gas. When producing most types of AR coatings, it is necessary to obtain thicknesses of at least 100 nm and minimum resistivities on the order of 10−4 Ω cm. For AR coatings, issues related to less-conductive materials than ITO have been considered. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

14 pages, 4005 KiB  
Article
Characterization of the TCO Layer on a Glass Surface for PV IInd and IIIrd Generation Applications
by Paweł Kwaśnicki, Anna Gronba-Chyła, Agnieszka Generowicz, Józef Ciuła, Agnieszka Makara and Zygmunt Kowalski
Energies 2024, 17(13), 3122; https://doi.org/10.3390/en17133122 - 25 Jun 2024
Cited by 4 | Viewed by 2152
Abstract
In the dynamic field of photovoltaic technology, the pursuit of efficiency and sustainability has led to continuous novelty, shaping the landscape of solar energy solutions. One of the key elements affecting the efficiency of photovoltaic cells of IInd and IIIrd generation [...] Read more.
In the dynamic field of photovoltaic technology, the pursuit of efficiency and sustainability has led to continuous novelty, shaping the landscape of solar energy solutions. One of the key elements affecting the efficiency of photovoltaic cells of IInd and IIIrd generation is the presence of transparent conductive oxide (TCO) layers, which are key elements impacting the efficiency and durability of solar panels, especially for DSSC, CdTe, CIGS (copper indium gallium diselenide) or organic, perovskite and quantum dots. TCO with low electrical resistance, high mobility, and high transmittance in the VIS–NIR region is particularly important in DSSC, CIGS, and CdTe solar cells, working as a window and electron transporting layer. This layer must form an ohmic contact with the adjacent layers, typically the buffer layer (such as CdS or ZnS), to ensure efficient charge collection Furthermore it ensures protection against oxidation and moisture, which is especially important when transporting the active cell structure to further process steps such as lamination, which ensures the final seal. Transparent conductive oxide layers, which typically consist of materials such as indium tin oxide (ITO) or alternatives such as fluorine-doped tin oxide (FTO), serve dual purposes in photovoltaic applications. Primarily located as the topmost layer of solar cells, TCOs play a key role in transmitting sunlight while facilitating the efficient collection and transport of generated electrical charges. This complex balance between transparency and conductivity highlights the strategic importance of TCO layers in maximizing the performance and durability of photovoltaic systems. As the global demand for clean energy increases and the photovoltaic industry rapidly develops, understanding the differential contribution of TCO layers becomes particularly important in the context of using PV modules as building-integrated elements (BIPV). The use of transparent or semi-transparent modules allows the use of building glazing, including windows and skylights. In addition, considering the dominant position of the Asian market in the production of cells and modules based on silicon, the European market is intensifying work aimed at finding a competitive PV technology. In this context, thin-film, organic modules may prove competitive. For this purpose, in this work, we focused on the electrical parameters of two different thicknesses of a transparent FTO layer. First, the influence of the FTO layer thickness on the transmittance over a wide range was verified. Next, the chemical composition was determined, and key electrical parameters, including carrier mobility, resistivity, and the Hall coefficient, were determined. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

11 pages, 2914 KiB  
Article
Exploring Cu-Doping for Performance Improvement in Sb2Se3 Photovoltaic Solar Cells
by Giulia Spaggiari, Danilo Bersani, Davide Calestani, Edmondo Gilioli, Enos Gombia, Francesco Mezzadri, Michele Casappa, Francesco Pattini, Giovanna Trevisi and Stefano Rampino
Int. J. Mol. Sci. 2022, 23(24), 15529; https://doi.org/10.3390/ijms232415529 - 8 Dec 2022
Cited by 13 | Viewed by 2872
Abstract
Copper-doped antimony selenide (Cu-doped Sb2Se3) thin films were deposited as absorber layers in photovoltaic solar cells using the low-temperature pulsed electron deposition (LT-PED) technique, starting from Sb2Se3 targets where part of the Sb was replaced with [...] Read more.
Copper-doped antimony selenide (Cu-doped Sb2Se3) thin films were deposited as absorber layers in photovoltaic solar cells using the low-temperature pulsed electron deposition (LT-PED) technique, starting from Sb2Se3 targets where part of the Sb was replaced with Cu. From a crystalline point of view, the best results were achieved for thin films with about Sb1.75Cu0.25Se3 composition. In order to compare the results with those previously obtained on undoped thin films, Cu-doped Sb2Se3 films were deposited both on Mo- and Fluorine-doped Tin Oxide (FTO) substrates, which have different influences on the film crystallization and grain orientation. From the current-voltage analysis it was determined that the introduction of Cu in the Sb2Se3 absorber enhanced the open circuit voltage (VOC) up to remarkable values higher than 500 mV, while the free carrier density became two orders of magnitude higher than in pure Sb2Se3-based solar cells. Full article
(This article belongs to the Special Issue Advancements in Solar Cells and Materials for Photovoltaics)
Show Figures

Figure 1

19 pages, 3657 KiB  
Article
Copper–Cerium–Tin Oxide Catalysts for Preferential Oxidation of CO in Hydrogen: Effects of Synthesis Method and Copper Content
by Igor Yu. Kaplin, Ekaterina S. Lokteva, Artem V. Tikhonov, Konstantin I. Maslakov, Oksana Ya. Isaikina and Elena V. Golubina
Catalysts 2022, 12(12), 1575; https://doi.org/10.3390/catal12121575 - 3 Dec 2022
Cited by 7 | Viewed by 2528
Abstract
Copper was incorporated into the Ce-Sn and comparative Ce-Zr oxide supports by one-pot precipitation in the presence of CTAB template and by the impregnation of templated Ce-Sn and Ce-Zr oxides. The synthesized Cu-Ce-Sn and Cu-Ce-Zr catalysts were tested in the continuous-flow preferential oxidation [...] Read more.
Copper was incorporated into the Ce-Sn and comparative Ce-Zr oxide supports by one-pot precipitation in the presence of CTAB template and by the impregnation of templated Ce-Sn and Ce-Zr oxides. The synthesized Cu-Ce-Sn and Cu-Ce-Zr catalysts were tested in the continuous-flow preferential oxidation of CO in hydrogen excess. The one-pot synthesized tin- and zirconium-doped catalysts demonstrated better CO conversion and CO2 selectivity than their impregnated counterparts. For the tin-modified ternary system that showed the best catalytic performance, the copper content was further optimized. The structure, reducibility, surface chemical state and textural properties of the catalysts were analyzed by SEM-EDX, XRD, H2-TPR, Raman spectroscopy, XPS and TEM. The nonmonotonic changes in the specific surface area, Cu+/Cu2+ ratio and ratio of lattice and non-lattice oxygen with increasing the Cu content are discussed in terms of copper distribution in the catalysts. The influence of the interaction between copper oxide species and the cerium–tin/cerium–zirconium oxide support on the performance of the ternary catalysts was thoroughly analyzed and discussed. Full article
(This article belongs to the Special Issue Synthesis and Applications of Copper-Based Catalysts)
Show Figures

Graphical abstract

15 pages, 4178 KiB  
Article
Multi-Layered Sol–Gel Spin-Coated CuO Nanofilm Characteristic Enhancement by Sn Doping Concentration
by Naoual Al Armouzi, Mohamed Manoua, Hikmat S. Hilal, Ahmed Liba and Mustapha Mabrouki
Processes 2022, 10(7), 1277; https://doi.org/10.3390/pr10071277 - 29 Jun 2022
Cited by 9 | Viewed by 2820
Abstract
CuO films, with their many features, attract special attention for applications in various optoelectronics. In their pristine form, CuO films suffer from low conductivity, which limits their application. Modification, especially by doping, is thus needed. The effects of tin (Sn) doping on the [...] Read more.
CuO films, with their many features, attract special attention for applications in various optoelectronics. In their pristine form, CuO films suffer from low conductivity, which limits their application. Modification, especially by doping, is thus needed. The effects of tin (Sn) doping on the structure, morphology, and optical and, more importantly, electrical properties of multi-layered copper oxide (CuO) films deposited onto tin-doped indium oxide (ITO)/glass substrates by sol–gel spin coating are examined here. The multi-layered films were characterized with X-ray diffraction (XRD), atomic force microscopy (AFM), electronic absorption (UV-Visible) spectra, and four probe methods. The results confirmed the substitution of Cu2+ ions by Sn4+ ions in the CuO crystallites without altering their monoclinic structure. The measured crystallite size values decreased with increased doping concentration, indicating increased imperfection. This applies to both 5- and 10-layered CuO films. The doping concentration affected other film characteristics, namely, surface morphology and electrical conductivity, in each layered film. Among various systems, the 10-layered film, with 1.5 at% Sn, exhibited optimal properties in terms of higher uniformity (mean square root surface roughness 41 nm) and higher conductivity (50.3 × 10−3·Ω−1·cm−1). Full article
(This article belongs to the Special Issue Advances in Sol-Gel Processes)
Show Figures

Figure 1

13 pages, 3644 KiB  
Article
Facile Modification of Flexible Electrodes via Laser Transfer
by Florin Andrei, Iulian Boerasu, Mihaela Filipescu and Alexandra Palla-Papavlu
Materials 2022, 15(7), 2488; https://doi.org/10.3390/ma15072488 - 28 Mar 2022
Cited by 2 | Viewed by 2179
Abstract
In this work, we report the modification of commercially available electrochemical electrodes with tin oxide (SnO2) and Pd doped SnO2 (Pd-SnO2) via pulsed laser-induced forward transfer (LIFT). The pulsed light irradiation working as in situ pulsed photo-thermal treatment [...] Read more.
In this work, we report the modification of commercially available electrochemical electrodes with tin oxide (SnO2) and Pd doped SnO2 (Pd-SnO2) via pulsed laser-induced forward transfer (LIFT). The pulsed light irradiation working as in situ pulsed photo-thermal treatment allows for the transfer of SnO2 and Pd-SnO2 from UV absorbing metal complex precursors onto flexible, commercially available screen-printed electrodes. The laser transfer conditions are optimized and the material transferred under different conditions is evaluated morphologically and chemically, and its functionality is tested against the detection of copper ions. For example, by applying laser fluences in the range 100–250 mJ/cm2, the shape and the size of the transferred features ranges from nano-polyhedrons to near corner-grown cubic Pd-SnO2 or near cubic Pd-SnO2. In addition, the EDX analysis is consistent with the XPS findings, i.e., following laser transfer, Pd amounts lower than 0.5% are present in the Pd-SnO2 pixels. First sensing tests were carried out and the transferred Pd-SnO2 proved to enhance the cathodic peak when exposed to Cu(II) ions. This photo-initiated fabrication technology opens a promising way for the low-cost and high-throughput manufacturing of metal oxides as well as for electrodes for heavy metal ion detection. Full article
(This article belongs to the Special Issue Thin Layers Synthesis by Laser Methods)
Show Figures

Figure 1

13 pages, 4202 KiB  
Article
Annealing Effect on One Step Electrodeposited CuSbSe2 Thin Films
by Khadija Abouabassi, Lahoucine Atourki, Andrea Sala, Mouaad Ouafi, Lahcen Boulkaddat, Abderrahim Ait Hssi, Nabil Labchir, Khalid Bouabid, Abdelmajid Almaggoussi, Edmondo Gilioli and Ahmed Ihlal
Coatings 2022, 12(1), 75; https://doi.org/10.3390/coatings12010075 - 9 Jan 2022
Cited by 13 | Viewed by 2685
Abstract
The purpose of this work is to study the influence of the annealing temperature on the structural, morphological, compositional and optical properties of CuSbSe2 thin films electrodeposited in a single step. CuSbSe2 thin films were grown on fluorine-doped tin oxide (FTO)/glass [...] Read more.
The purpose of this work is to study the influence of the annealing temperature on the structural, morphological, compositional and optical properties of CuSbSe2 thin films electrodeposited in a single step. CuSbSe2 thin films were grown on fluorine-doped tin oxide (FTO)/glass substrates using the aqueous electrodeposition technique, then annealed in a tube furnace under nitrogen at temperatures spanning from 250 to 500 °C. The resulting films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis, Raman spectroscopy and UV-Vis spectrophotometer. The annealing temperature plays a fundamental role on the films structural properties; in the range 250–350 °C the formation of pure CuSbSe2 phase from electrodeposited binary selenides occurs. From 400 to 500 °C, CuSbSe2 undergoes a preferential phase orientation change, as well as the increasing formation of copper-rich phases such as Cu3SbSe3 and Cu3SbSe4 due to the partial decomposition of CuSbSe2 and to the antimony losses. Full article
Show Figures

Figure 1

19 pages, 6531 KiB  
Article
Study of a Lead-Free Perovskite Solar Cell Using CZTS as HTL to Achieve a 20% PCE by SCAPS-1D Simulation
by Ana C. Piñón Reyes, Roberto C. Ambrosio Lázaro, Karim Monfil Leyva, José A. Luna López, Javier Flores Méndez, Aurelio H. Heredia Jiménez, Ana L. Muñoz Zurita, Francisco Severiano Carrillo and Esteban Ojeda Durán
Micromachines 2021, 12(12), 1508; https://doi.org/10.3390/mi12121508 - 1 Dec 2021
Cited by 49 | Viewed by 6338
Abstract
In this paper, a n-i-p planar heterojunction simulation of Sn-based iodide perovskite solar cell (PSC) is proposed. The solar cell structure consists of a Fluorine-doped tin oxide (FTO) substrate on which titanium oxide (TiO2) is placed; this material will [...] Read more.
In this paper, a n-i-p planar heterojunction simulation of Sn-based iodide perovskite solar cell (PSC) is proposed. The solar cell structure consists of a Fluorine-doped tin oxide (FTO) substrate on which titanium oxide (TiO2) is placed; this material will act as an electron transporting layer (ETL); then, we have the tin perovskite CH3NH3SnI3 (MASnI3) which is the absorber layer and next a copper zinc and tin sulfide (CZTS) that will have the function of a hole transporting layer (HTL). This material is used due to its simple synthesis process and band tuning, in addition to presenting good electrical properties and stability; it is also a low-cost and non-toxic inorganic material. Finally, gold (Au) is placed as a back contact. The lead-free perovskite solar cell was simulated using a Solar Cell Capacitance Simulator (SCAPS-1D). The simulations were performed under AM 1.5G light illumination and focused on getting the best efficiency of the solar cell proposed. The thickness of MASnI3 and CZTS, band gap of CZTS, operating temperature in the range between 250 K and 350 K, acceptor concentration and defect density of absorber layer were the parameters optimized in the solar cell device. The simulation results indicate that absorber thicknesses of 500 nm and 300 nm for CZTS are appropriate for the solar cell. Further, when optimum values of the acceptor density (NA) and defect density (Nt), 1016 cm−3 and 1014 cm−3, respectively, were used, the best electrical values were obtained: Jsc of 31.66 mA/cm2, Voc of 0.96 V, FF of 67% and PCE of 20.28%. Due to the enhanced performance parameters, the structure of the device could be used in applications for a solar energy harvesting system. Full article
(This article belongs to the Special Issue Thin Film Materials Integration for Harvesting Energy Devices)
Show Figures

Figure 1

10 pages, 2554 KiB  
Article
Copper Oxide Decorated Zinc Oxide Nanostructures for the Production of a Non-Enzymatic Glucose Sensor
by Chung-En Cheng, Sripansuang Tangsuwanjinda, Hsin-Ming Cheng and Po-Han Lee
Coatings 2021, 11(8), 936; https://doi.org/10.3390/coatings11080936 - 4 Aug 2021
Cited by 17 | Viewed by 4770
Abstract
The glucose concentration in human blood can have a worrisome impact on human health, so the distribution of blood glucose contaminants in the human body is an important indicator that can be used to monitor diabetes. Diabetes affects many parts of the human [...] Read more.
The glucose concentration in human blood can have a worrisome impact on human health, so the distribution of blood glucose contaminants in the human body is an important indicator that can be used to monitor diabetes. Diabetes affects many parts of the human body, such as neurological impairment, erectile dysfunction, and hardening of the arteries resulting in organ loss. In this study, cyclic voltammetry (CV) was used to process the electrical properties of a solution by preparing electrodes with CuO nanoparticles modified ZnO tetrapod nanostructures deposited on fluorine-doped tin oxide glass (CuO/ZnO/FTO). The measurements were processed in glucose solutions of different concentrations purposing for developing the sensitivity of the sensor. Different immersion times in the precursor copper sulfate solution were also used for preparing the electrode and carried out for electrochemical studies to adjust the electrode capability. The modified electrode, which was immersed in copper sulfate for 30 s, was efficient in detecting glucose molecules in different concentrations at the potential of +0.6 V. The rising slope is strongly and positively correlated with the concentration of glucose. One of the significant results is the indication that glucose concentration is linearly proportional to the current value of CV. After the measurement test with the addition of interference, the sensor can still identify the glucose concentration in the solution without being affected. This result proves that the sensor has considerable potential for developing into a high-performance non-enzymatic glucose sensor. Full article
(This article belongs to the Special Issue Surface Modification of Nanostructured Materials)
Show Figures

Figure 1

12 pages, 1873 KiB  
Article
Nanostructured Hybrid Metal Mesh as Transparent Conducting Electrodes: Selection Criteria Verification in Perovskite Solar Cells
by John Mohanraj, Chetan R. Singh, Tanaji P. Gujar, C. David Heinrich and Mukundan Thelakkat
Nanomaterials 2021, 11(7), 1783; https://doi.org/10.3390/nano11071783 - 9 Jul 2021
Cited by 6 | Viewed by 4005
Abstract
Nanostructured metal mesh structures demonstrating excellent conductivity and high transparency are one of the promising transparent conducting electrode (TCE) alternatives for indium tin oxide (ITO). Often, these metal nanostructures are to be employed as hybrids along with a conducting filler layer to collect [...] Read more.
Nanostructured metal mesh structures demonstrating excellent conductivity and high transparency are one of the promising transparent conducting electrode (TCE) alternatives for indium tin oxide (ITO). Often, these metal nanostructures are to be employed as hybrids along with a conducting filler layer to collect charge carriers from the network voids and to minimize current and voltage losses. The influence of filler layers on dictating the extent of such ohmic loss is complex. Here, we used a general numerical model to correlate the sheet resistance of the filler, lateral charge transport distance in network voids, metal mesh line width and ohmic losses in optoelectronic devices. To verify this correlation, we prepared gold or copper network electrodes with different line widths and different filler layers, and applied them as TCEs in perovskite solar cells. We show that the photovoltaic parameters scale with the hybrid metal network TCE properties and an Au-network or Cu-network with aluminum-doped zinc oxide (AZO) filler can replace ITO very well, validating our theoretical predictions. Thus, the proposed model could be employed to select an appropriate filler layer for a specific metal mesh electrode geometry and dimensions to overcome the possible ohmic losses in optoelectronic devices. Full article
(This article belongs to the Special Issue Nanomaterial Electrodes)
Show Figures

Graphical abstract

13 pages, 3143 KiB  
Article
A Hybrid Hole Transport Layer for Perovskite-Based Solar Cells
by Joseph Asare, Dahiru M. Sanni, Benjamin Agyei-Tuffour, Ernest Agede, Oluwaseun Kehinde Oyewole, Aditya S. Yerramilli and Nutifafa Y. Doumon
Energies 2021, 14(7), 1949; https://doi.org/10.3390/en14071949 - 1 Apr 2021
Cited by 13 | Viewed by 4423
Abstract
This paper presents the effect of a composite poly(3,4-ethylenedioxythiophene) polystyrene sulfonate PEDOT:PSS and copper-doped nickel oxide (Cu:NiOx) hole transport layer (HTL) on the performance of perovskite solar cells (PSCs). Thin films of Cu:NiOx were spin-coated onto fluorine-doped tin oxide (FTO) [...] Read more.
This paper presents the effect of a composite poly(3,4-ethylenedioxythiophene) polystyrene sulfonate PEDOT:PSS and copper-doped nickel oxide (Cu:NiOx) hole transport layer (HTL) on the performance of perovskite solar cells (PSCs). Thin films of Cu:NiOx were spin-coated onto fluorine-doped tin oxide (FTO) glass substrates using a blend of nickel acetate tetrahydrate, 2-methoxyethanol and monoethanolamine (MEA) and copper acetate monohydrate. The prepared solution was stirred at 65 °C for 4 h and spin-coated onto the FTO substrates at 3000 rpm for 30 s in a nitrogen glovebox. The Cu:NiOx/FTO/glass structure was then annealed in air at 400 °C for 30 min. A mixture of PEDOT:PSS and isopropyl alcohol (IPA) (in 1:0.05 wt%) was spun onto the Cu:NiOx/FTO/glass substrate at 4000 rpm for 60 s. The multilayer structure was annealed at 130 °C for 15 min. Subsequently, the perovskite precursor (0.95 M) of methylammonium iodide (MAI) to lead acetate trihydrate (Pb(OAc)2·3H2O) was spin-coated at 4000 rpm for 200 s and thermally annealed at 80 °C for 12 min. The inverted planar perovskite solar cells were then fabricated by the deposition of a photoactive layer (CH3NH3PbI3), [6,6]-phenyl C61-butyric acid methyl ester (PCBM), and a Ag electrode. The mechanical behavior of the device during the fabrication of the Cu:NiOx HTL was modeled with finite element simulations using Abaqus/Complete Abaqus Environment CAE. The results show that incorporating Cu:NiOx into the PSC device improves its density–voltage (J–V) behavior, giving an enhanced photoconversion efficiency (PCE) of ~12.8% from ~9.8% and ~11.5% when PEDOT:PSS-only and Cu:NiOx-only are fabricated, respectively. The short circuit current density Jsc for the 0.1 M Cu:NiOx and 0.2 M Cu:NiOx-based devices increased by 18% and 9%, respectively, due to the increase in the electrical conductivity of the Cu:NiOx which provides room for more charges to be extracted out of the absorber layer. The increases in the PCEs were due to the copper-doped nickel oxide blend with the PEDOT:PSS which enhanced the exciton density and charge transport efficiency leading to higher electrical conductivity. The results indicate that the devices with the copper-doped nickel oxide hole transport layer (HTL) are slower to degrade compared with the PEDOT:PSS-only-based HTL. The finite element analyses show that the Cu:NiOx layer would not extensively deform the device, leading to improved stability and enhanced performance. The implications of the results are discussed for the design of low-temperature solution-processed PSCs with copper-doped nickel oxide composite HTLs. Full article
(This article belongs to the Special Issue Advanced Polymer and Perovskite Solar Cells)
Show Figures

Figure 1

11 pages, 3322 KiB  
Article
Superstrate Structured FTO/TiO2/In2S3/Cu2ZnSnS4 Solar Cells Fabricated by a Spray Method with Aqueous Solutions
by Dongho Lee and JungYup Yang
Coatings 2020, 10(6), 548; https://doi.org/10.3390/coatings10060548 - 7 Jun 2020
Cited by 11 | Viewed by 4040
Abstract
Copper Zinc Tin Sulfide (C2ZTS4) solar cells have become a fascinating research topic due to several advantages of the C2ZTS4 absorber layer, such as having non-toxic and abundantly available components. Superstrate structured C2ZTS4 [...] Read more.
Copper Zinc Tin Sulfide (C2ZTS4) solar cells have become a fascinating research topic due to several advantages of the C2ZTS4 absorber layer, such as having non-toxic and abundantly available components. Superstrate structured C2ZTS4 solar cells were fabricated on the top of a fluorine-doped tin oxide (FTO) substrate with a spray pyrolysis method from the window layer to the absorber layer. Titanium dioxide (TiO2) and indium sulfide (In2S3) were used as the window and buffer layer, respectively. The source materials for the C2ZTS4 and buffer layers were all aqueous-based solutions. The metallic component ratio, Cu/(Zn + Sn), and the sulfur concentration in the solutions were systematically investigated. The optimum ratio of Cu/(Zn + Sn) in the film is about 0.785, while 0.18 M thiourea in the solution is the best condition for high performance. The C2ZTS4 layers deposited at lower temperatures (<360 °C) yielded a low quality resulting in low current density (JSC). On the other hand, the C2ZTS4 layers deposited at high temperature (~400 °C) showed a low fill factor (FF) without degradation of the open-circuit voltage (VOC) and JSC due to the junction degradation and high contact resistance between the absorber layer and metal contact. The best cell efficiency, VOC, JSC, and fill factor achieved were 3.34%, 383 mV, 24.6 mA/cm2, and 37.7%, respectively. Full article
(This article belongs to the Special Issue Functional Thin Films: Design, Fabrication and Applications)
Show Figures

Figure 1

Back to TopTop