Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = copper-associated cell death

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 18076 KiB  
Article
Oxidized Albumin Induces Renal Tubular Cell Death and Promotes the Progression of Renal Diseases Through Ferroptosis
by Yingyu Zhang, Rui Jiang, Zhuheng Shi, Yang Sui, Jie Cheng, Mika Suda, Manabu Niimi, Kun Gao, Jianglin Fan and Jian Yao
Int. J. Mol. Sci. 2025, 26(13), 5924; https://doi.org/10.3390/ijms26135924 - 20 Jun 2025
Viewed by 421
Abstract
Oxidative stress plays a crucial role in disease pathogenesis. While reactive oxygen species (ROS) directly cause cellular injury, emerging evidence suggests oxidatively modified proteins like albumin may also contribute significantly to tissue damage. Although oxidized albumin (ox-Alb) is linked to renal pathology, the [...] Read more.
Oxidative stress plays a crucial role in disease pathogenesis. While reactive oxygen species (ROS) directly cause cellular injury, emerging evidence suggests oxidatively modified proteins like albumin may also contribute significantly to tissue damage. Although oxidized albumin (ox-Alb) is linked to renal pathology, the direct effects and mechanisms of ox-Alb on renal cell injury remain unclear. This study was created to address these questions. In mouse models of renal injury initiated by vitamin C/copper or ischemia/reperfusion, levels of serum ox-Alb were significantly elevated. The treatment of albumin with copper/vitamin C increased Alb carbonylation and reduced the number of sulfhydryl groups, causing Alb oxidation. In cultured renal tubular epithelial NRK-52E cells, ox-Alb triggered cell death, associated with increased intracellular albumin accumulation—enhanced cellular protein carbonylation, and p38 MAPK activation. Notably, ox-Alb induced ferroptosis, evidenced by decreased GPX4 and xCT, increased ACSL4, elevated iron and lipid peroxidation, and suppression by deferoxamine and liproxstatin-1. In vivo, administration of ox-Alb exacerbated doxorubicin-induced nephropathy, as indicated by the elevated BUN, creatinine, and proteinuria, and intensified renal ferroptotic responses, including altered GPX4 and ACSL4. Our findings demonstrate that ox-Alb induces renal cell ferroptosis and promotes renal disease progression, suggesting its pivotal pathogenic role in oxidative stress-related kidney diseases. Full article
(This article belongs to the Special Issue Molecular Mechanisms in Kidney Disease)
Show Figures

Figure 1

24 pages, 3173 KiB  
Article
Longitudinal Evaluation of the Detection Potential of Serum Oligoelements Cu, Se and Zn for the Diagnosis of Alzheimer’s Disease in the 3xTg-AD Animal Model
by Olivia F. M. Dias, Nicole M. E. Valle, Javier B. Mamani, Cicero J. S. Costa, Arielly H. Alves, Fernando A. Oliveira, Gabriel N. A. Rego, Marta C. S. Galanciak, Keithy Felix, Mariana P. Nucci and Lionel F. Gamarra
Int. J. Mol. Sci. 2025, 26(8), 3657; https://doi.org/10.3390/ijms26083657 - 12 Apr 2025
Viewed by 645
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of β-amyloid (Aβ) and hyperphosphorylated tau, leading to neuroinflammation, oxidative stress, and neuronal death. Early detection of AD remains a challenge, as clinical manifestations only emerge in the advanced stages, limiting [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of β-amyloid (Aβ) and hyperphosphorylated tau, leading to neuroinflammation, oxidative stress, and neuronal death. Early detection of AD remains a challenge, as clinical manifestations only emerge in the advanced stages, limiting therapeutic interventions. Minimally invasive biomarkers are essential for early identification and monitoring of disease progression. This study aims to evaluate the sensitivity of the relationship between serum oligoelement levels as biomarkers and the monitoring of AD progression in the 3xTg-AD model. Transgenic 3xTg-AD mice and C57BL/6 controls were evaluated over 12 months through serum oligoelement quantification using inductively coupled plasma mass spectrometry (ICP-MS), Aβ deposition via immunohistochemistry, and cognitive assessments using memory tests (Morris water maze and novel object recognition test), as well as spontaneous locomotion analysis using the open field test. The results demonstrated that oligoelements (copper, zinc, and selenium) were sensitive in detecting alterations in the AD group, preceding cognitive and motor deficits. Immunohistochemistry was performed for qualitative purposes, confirming the presence of β-amyloid in the CNS of transgenic animals. Up to the third month, labeling was moderate and restricted to neuronal cell bodies; from the fifth month onward, evident extracellular deposits emerged. Behavioral assessment indicated impairments in spatial and episodic memory, as well as altered locomotor patterns in AD mice. These findings reinforce that oligoelement variations may be associated with neurodegenerative processes, including oxidative stress and synaptic dysfunction. Thus, oligoelement analysis emerges as a promising approach for the early diagnosis of AD and the monitoring of disease progression, potentially contributing to the development of new therapeutic strategies. Full article
Show Figures

Figure 1

15 pages, 1528 KiB  
Article
Anti-Cancer Stem Cell Properties of Square Planar Copper(II) Complexes with Vanillin Schiff Base Ligands
by Yihan Wang, Kuldip Singh, Chunxin Lu and Kogularamanan Suntharalingam
Molecules 2025, 30(7), 1636; https://doi.org/10.3390/molecules30071636 - 6 Apr 2025
Viewed by 676
Abstract
Current breast cancer therapies are unable to positively impact the lives of a significant proportion of diagnosed patients (24% based on 10-year survival rate). Breast cancer relapse and metastasis, the leading cause of breast cancer-associated deaths, is linked to the existence of breast [...] Read more.
Current breast cancer therapies are unable to positively impact the lives of a significant proportion of diagnosed patients (24% based on 10-year survival rate). Breast cancer relapse and metastasis, the leading cause of breast cancer-associated deaths, is linked to the existence of breast cancer stem cells (CSCs). Redox-modulating metal complexes have been used to perturb the redox balance in breast CSCs and effect cell death. Here, we sought to expand this promising class of anti-breast CSC agents. Specifically, we report the synthesis, and anti-breast CSC properties of a series of copper(II) complexes bearing regioisomeric vanillin Schiff base ligands (14). X-ray crystallography studies show that the copper(II) complexes 14 adopt square planar geometries with the copper(II) centre coordinated to two vanillin Schiff base ligands. The most effective copper(II) complex within the series 4 displays low micromolar potency towards breast CSCs, up to 4.6-fold higher than salinomycin and cisplatin. Mechanistic studies indicate that copper(II) complex 4 elevates reactive oxygen species levels in breast CSCs, leading to activation of the JNK/p38 pathway and caspase-dependent apoptosis. Overall, this work expands the library of anti-breast CSC copper(II) complexes and provides insight into their mode of action. Full article
Show Figures

Figure 1

23 pages, 4971 KiB  
Article
Common Regulatory Mechanisms Mediated by Cuproptosis Genes in Inflammatory Bowel Disease and Major Depressive Disorder
by Jiyuan Shi, Qianyi Wu, Mengmeng Sang and Liming Mao
Genes 2025, 16(3), 339; https://doi.org/10.3390/genes16030339 - 14 Mar 2025
Cited by 1 | Viewed by 885
Abstract
Background: The prevalence of major depressive disorder (MDD) among patients with inflammatory bowel disease (IBD) is significantly higher compared to the general population, suggesting a potential link between their pathogeneses. Cuproptosis, defined as cell death caused by intracellular copper accumulation, has not been [...] Read more.
Background: The prevalence of major depressive disorder (MDD) among patients with inflammatory bowel disease (IBD) is significantly higher compared to the general population, suggesting a potential link between their pathogeneses. Cuproptosis, defined as cell death caused by intracellular copper accumulation, has not been thoroughly investigated in the context of IBD and MDD. This study aims to uncover the molecular mechanisms of cuproptosis-related genes (CRGs) in both conditions and to explore novel therapeutic strategies by the modulation of CRGs. Methods: In this study, we identified differentially expressed CRGs between normal and disease samples. We calculated the correlation among CRGs and between CRGs and immune cell infiltrations across various tissues. Four machine learning algorithms were employed to identify key CRGs associated with IBD and MDD. Additionally, drug sensitivity, molecular docking, and molecular dynamics simulations were conducted to predict therapeutic drugs for IBD and MDD. Results: We identified DLD, DLAT, DLST, PDHB, and DBT as common DE-CRGs, and DLD, LIAS, SLC31A1, SCO2, and CDKN2A as key CRGs associated with both IBD and MDD. Consequently, DLD was recognized as a shared biomarker in both diseases. A total of 37 potential therapeutic drugs were identified for IBD and MDD. Based on the molecular docking and molecular dynamics simulation analyses, barasertib and NTP-TAE684, which target DLAT, were predicted to be the most effective compounds. Conclusions: These findings have substantially enhanced our understanding of the similarities and differences in the regulatory mechanisms of CRGs within brain–gut axis diseases. Key biomarkers have been identified, and potential therapeutic drugs have been predicted to effectively target IBD and MDD. Full article
(This article belongs to the Special Issue Machine Learning in Cancer and Disease Genomics)
Show Figures

Figure 1

16 pages, 3213 KiB  
Article
Epigallocatechin Gallate Promotes Cuproptosis via the MTF1/ATP7B Axis in Hepatocellular Carcinoma
by Yuhan Fu, Lirui Hou, Kai Han, Chong Zhao, Hongbo Hu and Shutao Yin
Cells 2025, 14(6), 391; https://doi.org/10.3390/cells14060391 - 7 Mar 2025
Cited by 3 | Viewed by 1167
Abstract
Background: Cuproptosis is a form of copper-dependent non-apoptotic cell death. Cancer cells that prefer to use aerobic glycolysis for energy generation are commonly insensitive to cuproptosis, which hinders its application for cancer treatment. Epigallocatechin gallate (EGCG) possesses diverse pharmacological activities. However, the association [...] Read more.
Background: Cuproptosis is a form of copper-dependent non-apoptotic cell death. Cancer cells that prefer to use aerobic glycolysis for energy generation are commonly insensitive to cuproptosis, which hinders its application for cancer treatment. Epigallocatechin gallate (EGCG) possesses diverse pharmacological activities. However, the association between EGCG and cuproptosis has not been studied. Methods: The cell viability, proliferation, and cuproptosis-related protein levels were detected to investigate whether EGCG enhances the sensitivity of HCC cells to cuproptosis. The intracellular copper level, related copper metabolism proteins, and gene expression were detected to explore the mechanisms. In addition, a nude mouse xenograft model was established to determine the effects of EGCG on cuproptosis in tumor tissues. Results: The combination of EGCG and copper ionophores significantly enhanced the mortality of HCC cells and heightened the sensitivity of HCC cells to cuproptosis. There was a notable reduction in the expression of copper export protein copper-transporting P-type ATPase (ATP7B). EGCG effectively suppressed metal regulatory transcription factor (MTF1) expression and subsequently hindered the transcriptional regulation of ATP7B. EGCG also facilitated the intratumoral accumulation of copper and augmented susceptibility to cuproptosis in vivo. Conclusions: EGCG can increase the sensitivity of hepatocellular carcinoma cells to cuproptosis by promoting intracellular copper accumulation through the MTF1/ATP7B axis. Full article
Show Figures

Figure 1

18 pages, 1356 KiB  
Review
Modulating Polyphenol Activity with Metal Ions: Insights into Dermatological Applications
by Oana Cioanca, Ionut-Iulian Lungu, Denisa Batir-Marin, Andreea Lungu, George-Alexandru Marin, Riana Huzum, Alina Stefanache, Nazim Sekeroglu and Monica Hancianu
Pharmaceutics 2025, 17(2), 194; https://doi.org/10.3390/pharmaceutics17020194 - 4 Feb 2025
Cited by 4 | Viewed by 1555
Abstract
Background: The skin represents the first barrier of defense, and its integrity is crucial for overall health. Skin wounds present a considerable risk seeing how their progression is rapid and sometimes they are caused by comorbidities like diabetes and venous diseases. Nutraceutical combinations [...] Read more.
Background: The skin represents the first barrier of defense, and its integrity is crucial for overall health. Skin wounds present a considerable risk seeing how their progression is rapid and sometimes they are caused by comorbidities like diabetes and venous diseases. Nutraceutical combinations like the ones between polyphenols and metal ions present considerable applications thanks to their increased bioavailability and their ability to modulate intrinsic molecular pathways. Methods: The research findings presented in this paper are based on a systematic review of the current literature with an emphasis on nanotechnology and regenerative medicine strategies that incorporate polyphenols and metallic nanoparticles (NPs). The key studies which described the action mechanisms, efficacy, and safety of these hybrid formulations were reviewed. Results: Nanocomposites of polyphenol and metal promote healing by activating signaling pathways such as PI3K/Akt and ERK1/2, which in turn improve fibroblast migration and proliferation. Nanoparticles of silver and copper have antibacterial, angiogenesis-promoting, inflammation-modulating capabilities. With their ability to induce apoptosis and restrict cell growth, these composites have the potential to cure skin malignancies in addition to facilitating wound healing. Conclusions: Nanocomposites of polyphenols and metals provide hope for the treatment of cancer and chronic wounds. Their antimicrobial capabilities, capacity to modulate inflammatory responses, and enhancement of fibroblast activity all point to their medicinal potential. Furthermore, these composites have the ability to decrease inflammation associated with tumors while simultaneously inducing cell death in cancer cells. Clarifying their mechanisms, guaranteeing stability, and enhancing effective delivery techniques for clinical usage should be the focus of future studies. Full article
(This article belongs to the Special Issue Nano-Based Delivery Systems for Topical Applications)
Show Figures

Figure 1

20 pages, 4455 KiB  
Article
Copper-Induced Neurodegenerative Disorders and Therapeutic Potential of Curcumin-Loaded Nanoemulsion
by Govind Hake, Akshada Mhaske, Rahul Shukla and Swaran Jeet Singh Flora
Toxics 2025, 13(2), 108; https://doi.org/10.3390/toxics13020108 - 29 Jan 2025
Cited by 3 | Viewed by 1111
Abstract
Copper accumulation in neurons induces oxidative stress, disrupts mitochondrial activity, and accelerates neuronal death, which is central to the pathophysiology of neurodegenerative diseases like Wilson disease. Standard treatments for copper toxicity, such as D-penicillamine, trientine, and chloroquine, are frequently associated with severe side [...] Read more.
Copper accumulation in neurons induces oxidative stress, disrupts mitochondrial activity, and accelerates neuronal death, which is central to the pathophysiology of neurodegenerative diseases like Wilson disease. Standard treatments for copper toxicity, such as D-penicillamine, trientine, and chloroquine, are frequently associated with severe side effects, creating a need for safer therapeutic alternatives. To address this, we developed a curcumin-loaded nanoemulsion (CUR-NE) using the spontaneous emulsification technique, aimed at enhancing the bioavailability and therapeutic efficacy of curcumin. The optimized nanoemulsion displayed a particle size of 76.42 nm, a zeta potential of −20.4 mV, and a high encapsulation efficiency of 93.69%, with a stable and uniform structure. The in vitro tests on SH-SY5Y neuroblastoma cells demonstrated that CUR-NE effectively protected against copper-induced toxicity, promoting significant cellular uptake. Pharmacokinetic studies revealed that CUR-NE exhibited a longer half-life and extended circulation time compared to free curcumin. Additionally, pharmacodynamic evaluations, including biochemical assays and histopathological analysis, confirmed that CUR-NE provided superior neuroprotection in copper overload conditions. These results emphasize the ability of CUR-NE to augment the therapeutic effects of curcumin, presenting a novel approach for managing copper-induced neurodegeneration. The study highlights the effectiveness of nanoemulsion-based delivery platforms in improving chelation treatments for neurological diseases. Full article
Show Figures

Figure 1

26 pages, 2595 KiB  
Review
Mechanisms of Copper-Induced Autophagy and Links with Human Diseases
by Yuanyuan Fu, Shuyan Zeng, Zhenlin Wang, Huiting Huang, Xin Zhao and Min Li
Pharmaceuticals 2025, 18(1), 99; https://doi.org/10.3390/ph18010099 - 15 Jan 2025
Cited by 2 | Viewed by 1608
Abstract
As a structural and catalytic cofactor, copper is involved in many biological pathways and is required for the biochemistry of all living organisms. However, excess intracellular copper can induce cell death due to its potential to catalyze the generation of reactive oxygen species, [...] Read more.
As a structural and catalytic cofactor, copper is involved in many biological pathways and is required for the biochemistry of all living organisms. However, excess intracellular copper can induce cell death due to its potential to catalyze the generation of reactive oxygen species, thus copper homeostasis is strictly regulated. And the deficiency or accumulation of intracellular copper is connected with various pathological conditions. Since the success of platinum-based compounds in the clinical treatment of various types of neoplasias, metal-based drugs have shown encouraging perspectives for drug development. Compared to platinum, copper is an essential intracellular trace element that may have better prospects for drug development than platinum. Recently, the potential therapeutic role of copper-induced autophagy in chronic diseases such as Parkinson’s, Wilson’s, and cardiovascular disease has already been demonstrated. In brief, copper ions, numerous copper complexes, and copper-based nano-preparations could induce autophagy, a lysosome-dependent process that plays an important role in various human diseases. In this review, we not only focus on the current advances in elucidating the mechanisms of copper or copper-based compounds/preparations on the regulation of autophagy but also outline the association between copper-induced autophagy and human diseases. Full article
Show Figures

Figure 1

18 pages, 5974 KiB  
Article
Prognostic Significance and Immune Landscape of a Cuproptosis-Related LncRNA Signature in Ovarian Cancer
by Min Zhou, Jianming Tang, Guotao Huang and Li Hong
Biomedicines 2024, 12(11), 2640; https://doi.org/10.3390/biomedicines12112640 - 19 Nov 2024
Cited by 2 | Viewed by 1303
Abstract
Background: Cuproptosis is a copper-induced mitochondrial cell death, and regulating cuproptosis is becoming a rising cancer treatment modality. Here, we attempted to establish a cuproptosis-associated lncRNAs (CRLs) signature (CRlncSig) to predict the survival, immune landscape, and treatment response in ovarian cancer (OC) patients. [...] Read more.
Background: Cuproptosis is a copper-induced mitochondrial cell death, and regulating cuproptosis is becoming a rising cancer treatment modality. Here, we attempted to establish a cuproptosis-associated lncRNAs (CRLs) signature (CRlncSig) to predict the survival, immune landscape, and treatment response in ovarian cancer (OC) patients. Methods: A series of statistical analyses were used to identify the key CRLs that are closely related to the prognosis, and a prognostic CRlncSig was constructed. The predictive accuracy of the CRlncSig was further validated in an independent Gene Expression Omnibus (GEO) set. Then, we compared the immune cell infiltration, immune checkpoints, tumor microenvironment (TME), tumor mutational burden (TMB), drug sensitivity, and efficacy of immunotherapy between the two subgroups. We further built a nomogram integrating the CRlncSig and different clinical traits to enhance the clinical application of the CRlncSig. Results: Nine hub CRLs, namely RGMB-AS1, TYMSOS, DANCR, LINC00702, LINC00240, LINC00996, DNM1P35, LINC00892, and TMEM254-AS1, were correlated with the overall survival (OS) of OC and a prognostic CRlncSig was established. The CRlncSig classified OC patients into two risk groups with strikingly different survival probabilities. The time-dependent ROC (tdROC) curves demonstrated good predictive ability in both the training cohort and an independent validation cohort. Multivariate analysis confirmed the independent predictive performance of the CRlncSig. We constructed a nomogram based on the CRlncSig, which can predict the prognosis of OC patients. The high-risk score was characterized by decreased immune cell infiltration and activation of stroma, while activation of immunity was observed in the low-risk subgroup. Moreover, patients in low-risk subgroups had more Immunophenoscore (IPS) and fewer immune escapes compared to high-risk subgroups. Finally, an immunotherapeutic cohort confirmed the value of the CRlncSig in predicting immunotherapy outcomes. Conclusions: The developed CRlncSig may be promising for the clinical prediction of OC patient outcomes and immunotherapeutic responses. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

27 pages, 5238 KiB  
Review
Deciphering the Role of Copper Homeostasis in Atherosclerosis: From Molecular Mechanisms to Therapeutic Targets
by Xuzhen Lv, Liyan Zhao, Yuting Song, Wen Chen and Qinhui Tuo
Int. J. Mol. Sci. 2024, 25(21), 11462; https://doi.org/10.3390/ijms252111462 - 25 Oct 2024
Cited by 5 | Viewed by 8782
Abstract
Cardiovascular disease (CVD) is a leading cause of death globally, with atherosclerosis (AS) playing a central role in its pathogenesis as a chronic inflammatory condition. Copper, an essential trace element in the human body, participates in various biological processes and plays a significant [...] Read more.
Cardiovascular disease (CVD) is a leading cause of death globally, with atherosclerosis (AS) playing a central role in its pathogenesis as a chronic inflammatory condition. Copper, an essential trace element in the human body, participates in various biological processes and plays a significant role in the cardiovascular system. Maintaining normal copper homeostasis is crucial for cardiovascular health, and dysregulation of copper balance is closely associated with the development of CVD. When copper homeostasis is disrupted, it can induce cell death, which has been proposed to be a novel form of “cuproptosis”, distinct from traditional programmed cell death. This new form of cell death is closely linked to the occurrence and progression of AS. This article elaborately describes the physiological mechanisms of copper homeostasis and explores its interactions with signaling pathways related to AS. Additionally, we focus on the process and mechanism of cell death induced by imbalances in copper homeostasis and summarize the relationship between copper homeostasis-related genes and AS. We also emphasize potential therapeutic approaches, such as copper balance regulators and nanotechnology interventions, to adjust copper levels in the body, providing new ideas and strategies for the prevention and treatment of CVD. Full article
(This article belongs to the Special Issue Molecular Pharmacology of Cardiovascular Disease, 2nd Edition)
Show Figures

Figure 1

17 pages, 5871 KiB  
Article
DNA Damage, Cell Death, and Alteration of Cell Proliferation Insights Caused by Copper Oxide Nanoparticles Using a Plant-Based Model
by Sazada Siddiqui
Biology 2024, 13(10), 805; https://doi.org/10.3390/biology13100805 - 9 Oct 2024
Cited by 3 | Viewed by 1483
Abstract
The speedy growth of copper oxide nanoparticle (CuO NP) manufacturing due to their wide application in industries has caused concerns due to their increased discharge into the environment from both purposeful and accidental sources. Their presence at an elevated concentration in the environment [...] Read more.
The speedy growth of copper oxide nanoparticle (CuO NP) manufacturing due to their wide application in industries has caused concerns due to their increased discharge into the environment from both purposeful and accidental sources. Their presence at an elevated concentration in the environment can cause potential hazards to the plant kingdom, specifically to staple food crops. However, limited research is available to determine the consequences of CuO NPs. The present study aimed to assess the morphological and cytological changes induced by CuO NPs on Pisum sativum L., a key staple food crop. Seeds of Pisum sativum were exposed to various concentrations of CuO NPs (0, 25, 50, 75, 100, and 125 ppm) for 2 h, and their effects on seed germination (SG), radicle length (RL), cell proliferation kinetics (CPK), mitotic index (MI), cell death (CD), micronucleus frequency (MNF), and chromosomal aberration frequency (CAF) were studied. The results indicate a significant reduction in SG, RL, CPK, and MI and a significant dose-dependent increase in CD, MNF, and CAF. CuO NP treatment has led to abnormal meiotic cell division, increased incidence of micronucleus frequency, and chromosomal aberration frequency. Additionally, the CuO NP-treated groups showed an increase in the percentage of aberrant meiotic cells such as laggard (LG), double bridge (DB), stickiness (STC), clumped nuclei (CNi), precocious separation (PS), single bridge (SB), and secondary association (SA). CuO NP treatment led to reductions in SG as follows: 55% at 24 h, 60.10% at 48 h, and 65% at 72 h; reductions in RL as follows: 0.55 ± 0.021 cm at 24 h, 0.67 ± 0.01 cm at 48 h, and 0.99 ± 0.02 cm at 72 h; reductions in CPK as follows: 34.98% at prophase, 7.90% at metaphase, 3.5% at anaphase, and 0.97% at telophase. It also led to a 57.45% increase in CD, a 39.87% reduction in MI, and a 60.77% increase in MNF at a higher concentration of 125 ppm. The findings of this study clearly show that CuO NPs have a genotoxic effect on the food crop plant Pisum sativum. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

14 pages, 5888 KiB  
Article
Comprehensive Analysis of Characteristics of Cuproptosis-Related LncRNAs Associated with Prognosis of Lung Adenocarcinoma and Tumor Immune Microenvironment
by Feihong Chen, Xin Wen, Jiani Wu, Min Feng and Shicheng Feng
Pharmaceuticals 2024, 17(9), 1244; https://doi.org/10.3390/ph17091244 - 21 Sep 2024
Cited by 1 | Viewed by 1204
Abstract
As a novel discovered mechanism of cell death, cuproptosis is copper-dependent and induces protein toxicity related to advanced tumors, disease prognosis, and human innate and adaptive immune response. However, it has not yet been fully established how the prognosis of lung adenocarcinoma (LUAD) [...] Read more.
As a novel discovered mechanism of cell death, cuproptosis is copper-dependent and induces protein toxicity related to advanced tumors, disease prognosis, and human innate and adaptive immune response. However, it has not yet been fully established how the prognosis of lung adenocarcinoma (LUAD) is related to the immune microenvironment of cuproptosis-related lncRNAs using several bioinformatic techniques. In the study, 19 genes related to cuproptosis were collected. Subsequently, 783 lncRNAs related to the co-expression of cuproptosis were obtained. Moreover, the Cox model revealed and constructed four lncRNA (AC012020.1, AC114763.1, AL161431.1, AC010260.1) prognostic markers related to cuproptosis. Based on the median risk score (RS) values, patients were categorized into two groups: high risk and low risk. The Kaplan–Meier (KM) survival curve depicted a statistically significant overall survival (OS) rate among two groups. Principal component analysis (PCA) and receiver operator characteristic curve (ROC) proved that the model had promising ability in prognosis. The analysis of univariate and multivariate Cox regression revealed that RS served as an independent prognostic factor. Moreover, multivariate Cox regression was employed for the establishment of a nomogram of prognostic indicators. The tumor mutational burden (TMB) depicted a considerable difference between the two risk groups. The immunotherapy response of LUAD patients with high risk was improved compared to low risk patients. The study also revealed that drug sensitivity associated with LUAD was significantly linked to RS. The findings could be helpful to establish a good diagnosis, prognosis, and management regime for patients with LUAD. Full article
(This article belongs to the Special Issue Data-Driven Biomarker and Drug Discovery for Complex Disease)
Show Figures

Figure 1

39 pages, 2843 KiB  
Review
Wilson’s Disease—Crossroads of Genetics, Inflammation and Immunity/Autoimmunity: Clinical and Molecular Issues
by Grażyna Gromadzka, Julia Czerwińska, Elżbieta Krzemińska, Adam Przybyłkowski and Tomasz Litwin
Int. J. Mol. Sci. 2024, 25(16), 9034; https://doi.org/10.3390/ijms25169034 - 20 Aug 2024
Cited by 10 | Viewed by 4592
Abstract
Wilson’s disease (WD) is a rare, autosomal recessive disorder of copper metabolism caused by pathogenic mutations in the ATP7B gene. Cellular copper overload is associated with impaired iron metabolism. Oxidative stress, cuproptosis, and ferroptosis are involved in cell death in WD. The clinical [...] Read more.
Wilson’s disease (WD) is a rare, autosomal recessive disorder of copper metabolism caused by pathogenic mutations in the ATP7B gene. Cellular copper overload is associated with impaired iron metabolism. Oxidative stress, cuproptosis, and ferroptosis are involved in cell death in WD. The clinical picture of WD is variable. Hepatic/neuropsychiatric/other symptoms may manifest in childhood/adulthood and even old age. It has been shown that phenotypic variability may be determined by the type of ATP7B genetic variants as well as the influence of various genetic/epigenetic, environmental, and lifestyle modifiers. In 1976, immunological abnormalities were first described in patients with WD. These included an increase in IgG and IgM levels and a decrease in the percentage of T lymphocytes, as well as a weakening of their bactericidal effect. Over the following years, it was shown that there is a bidirectional relationship between copper and inflammation. Changes in serum cytokine concentrations and the relationship between cytokine gene variants and the clinical course of the disease have been described in WD patients, as well as in animal models of this disease. Data have also been published on the occurrence of antinuclear antibodies (ANAs), antineutrophil cytoplasmic antibodies (ANCAs), anti-muscle-specific tyrosine kinase antibodies, and anti-acetylcholine receptor antibodies, as well as various autoimmune diseases, including systemic lupus erythematosus (SLE), myasthenic syndrome, ulcerative colitis, multiple sclerosis (MS), polyarthritis, and psoriasis after treatment with d-penicillamine (DPA). The occurrence of autoantibodies was also described, the presence of which was not related to the type of treatment or the form of the disease (hepatic vs. neuropsychiatric). The mechanisms responsible for the occurrence of autoantibodies in patients with WD are not known. It has also not been clarified whether they have clinical significance. In some patients, WD was differentiated or coexisted with an autoimmune disease, including autoimmune hepatitis or multiple sclerosis. Various molecular mechanisms may be responsible for immunological abnormalities and/or the inflammatory processes in WD. Their better understanding may be important for explaining the reasons for the diversity of symptoms and the varied course and response to therapy, as well as for the development of new treatment regimens for WD. Full article
Show Figures

Figure 1

23 pages, 1257 KiB  
Review
The Role of Glia in Wilson’s Disease: Clinical, Neuroimaging, Neuropathological and Molecular Perspectives
by Grażyna Gromadzka, Anna Wilkaniec, Beata Tarnacka, Krzysztof Hadrian, Maria Bendykowska, Adam Przybyłkowski and Tomasz Litwin
Int. J. Mol. Sci. 2024, 25(14), 7545; https://doi.org/10.3390/ijms25147545 - 9 Jul 2024
Cited by 4 | Viewed by 3030
Abstract
Wilson’s disease (WD) is inherited in an autosomal recessive manner and is caused by pathogenic variants of the ATP7B gene, which are responsible for impaired copper transport in the cell, inhibition of copper binding to apoceruloplasmin, and biliary excretion. This leads to the [...] Read more.
Wilson’s disease (WD) is inherited in an autosomal recessive manner and is caused by pathogenic variants of the ATP7B gene, which are responsible for impaired copper transport in the cell, inhibition of copper binding to apoceruloplasmin, and biliary excretion. This leads to the accumulation of copper in the tissues. Copper accumulation in the CNS leads to the neurological and psychiatric symptoms of WD. Abnormalities of copper metabolism in WD are associated with impaired iron metabolism. Both of these elements are redox active and may contribute to neuropathology. It has long been assumed that among parenchymal cells, astrocytes have the greatest impact on copper and iron homeostasis in the brain. Capillary endothelial cells are separated from the neuropil by astrocyte terminal legs, putting astrocytes in an ideal position to regulate the transport of iron and copper to other brain cells and protect them if metals breach the blood–brain barrier. Astrocytes are responsible for, among other things, maintaining extracellular ion homeostasis, modulating synaptic transmission and plasticity, obtaining metabolites, and protecting the brain against oxidative stress and toxins. However, excess copper and/or iron causes an increase in the number of astrocytes and their morphological changes observed in neuropathological studies, as well as a loss of the copper/iron storage function leading to macromolecule peroxidation and neuronal loss through apoptosis, autophagy, or cuproptosis/ferroptosis. The molecular mechanisms explaining the possible role of glia in copper- and iron-induced neurodegeneration in WD are largely understood from studies of neuropathology in Parkinson’s disease and Alzheimer’s disease. Understanding the mechanisms of glial involvement in neuroprotection/neurotoxicity is important for explaining the pathomechanisms of neuronal death in WD and, in the future, perhaps for developing more effective diagnostic/treatment methods. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

22 pages, 35017 KiB  
Review
Transition Metal Oxide Nanomaterials: New Weapons to Boost Anti-Tumor Immunity Cycle
by Wanyi Liu, Xueru Song, Qiong Jiang, Wenqi Guo, Jiaqi Liu, Xiaoyuan Chu and Zengjie Lei
Nanomaterials 2024, 14(13), 1064; https://doi.org/10.3390/nano14131064 - 21 Jun 2024
Cited by 7 | Viewed by 2207
Abstract
Semiconductor nanomaterials have emerged as a significant factor in the advancement of tumor immunotherapy. This review discusses the potential of transition metal oxide (TMO) nanomaterials in the realm of anti-tumor immune modulation. These binary inorganic semiconductor compounds possess high electron mobility, extended ductility, [...] Read more.
Semiconductor nanomaterials have emerged as a significant factor in the advancement of tumor immunotherapy. This review discusses the potential of transition metal oxide (TMO) nanomaterials in the realm of anti-tumor immune modulation. These binary inorganic semiconductor compounds possess high electron mobility, extended ductility, and strong stability. Apart from being primary thermistor materials, they also serve as potent agents in enhancing the anti-tumor immunity cycle. The diverse metal oxidation states of TMOs result in a range of electronic properties, from metallicity to wide-bandgap insulating behavior. Notably, titanium oxide, manganese oxide, iron oxide, zinc oxide, and copper oxide have garnered interest due to their presence in tumor tissues and potential therapeutic implications. These nanoparticles (NPs) kickstart the tumor immunity cycle by inducing immunogenic cell death (ICD), prompting the release of ICD and tumor-associated antigens (TAAs) and working in conjunction with various therapies to trigger dendritic cell (DC) maturation, T cell response, and infiltration. Furthermore, they can alter the tumor microenvironment (TME) by reprogramming immunosuppressive tumor-associated macrophages into an inflammatory state, thereby impeding tumor growth. This review aims to bring attention to the research community regarding the diversity and significance of TMOs in the tumor immunity cycle, while also underscoring the potential and challenges associated with using TMOs in tumor immunotherapy. Full article
(This article belongs to the Special Issue Advances in Wide-Bandgap Semiconductor Nanomaterials)
Show Figures

Figure 1

Back to TopTop