Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = copper hexacyanoferrate nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 9618 KB  
Article
Copper Hexacyanoferrates Obtained via Flavocytochrome b2 Assistance: Characterization and Application
by Galina Gayda, Olha Demkiv, Nataliya Stasyuk, Halyna Klepach, Roman Serkiz, Faina Nakonechny, Mykhailo Gonchar and Marina Nisnevitch
Biosensors 2025, 15(3), 157; https://doi.org/10.3390/bios15030157 - 2 Mar 2025
Cited by 1 | Viewed by 1336
Abstract
Artificial enzymes or nanozymes (NZs) are gaining significant attention in biotechnology due to their stability and cost-effectiveness. NZs can offer several advantages over natural enzymes, such as enhanced stability under harsh conditions, longer shelf life, and reduced production costs. The booming interest in [...] Read more.
Artificial enzymes or nanozymes (NZs) are gaining significant attention in biotechnology due to their stability and cost-effectiveness. NZs can offer several advantages over natural enzymes, such as enhanced stability under harsh conditions, longer shelf life, and reduced production costs. The booming interest in NZs is likely to continue as their potential applications expand. In our previous studies, we reported the “green” synthesis of copper hexacyanoferrate (gCuHCF) using the oxidoreductase flavocytochrome b2 (Fcb2). Organic–inorganic micro-nanoparticles were characterized in detail, including their structure, composition, catalytic activity, and electron-mediator properties. An SEM analysis revealed that gCuHCF possesses a flower-like structure well-suited for concentrating and stabilizing Fcb2. As an effective peroxidase (PO) mimic, gCuHCF has been successfully employed for H2O2 detection in amperometric sensors and in several oxidase-based biosensors. In the current study, we demonstrated the uniqueness of gCuHCF that lies in its multifunctionality, serving as a PO mimic, a chemosensor for ammonium ions, a biosensor for L-lactate, and exhibiting perovskite-like properties. This exceptional ability of gCuHCF to enhance fluorescence under blue light irradiation is being reported for the first time. Using gCuHCF as a PO-like NZ, novel oxidase-based sensors were developed, including an optical biosensor for L-arginine analysis and electrochemical biosensors for methanol and glycerol determination. Thus, gCuHCF, synthesized via Fcb2, presents a promising platform for the development of amperometric and optical biosensors, bioreactors, biofuel cells, solar cells, and other advanced devices. The innovative approach of utilizing biocatalysts for nanoparticle synthesis highlights a groundbreaking direction in materials science and biotechnology. Full article
Show Figures

Figure 1

12 pages, 4934 KB  
Article
Resolution of Glycerol, Ethanol and Methanol Employing a Voltammetric Electronic Tongue
by João Pedro Jenson de Oliveira, Marta Bonet-San-Emeterio, Acelino Cardoso de Sá, Xavier Cetó, Leonardo Lataro Paim and Manel del Valle
Chemosensors 2024, 12(9), 173; https://doi.org/10.3390/chemosensors12090173 - 1 Sep 2024
Cited by 1 | Viewed by 2086
Abstract
This paper reports the use of nanoparticles (NPs)-modified voltammetric sensors for the rapid determination of glycerol in the presence of ethanol and methanol, which are used in the transesterification reaction of biodiesel production. Two different modified electrodes have been prepared to form the [...] Read more.
This paper reports the use of nanoparticles (NPs)-modified voltammetric sensors for the rapid determination of glycerol in the presence of ethanol and methanol, which are used in the transesterification reaction of biodiesel production. Two different modified electrodes have been prepared to form the electronic tongue (ET): copper hexacyanoferrate NPs obtained by chemical synthesis and mixed into graphite/epoxy (GEC) electrode, and nickel hydroxide NPs electrodeposited in reduced graphene oxide onto a GEC electrode. The response characteristics of these electrodes were first evaluated by building the respective calibration against glycerol, ethanol, and methanol. The electrodes demonstrated good stability during their analytical characterization, while principal component analysis confirmed the differentiated response against the different alcohols. Finally, the quantification of mixtures of these substances was achieved by a genetic algorithm-artificial neural networks (GA-ANNs) model, showing satisfactory agreement between expected and obtained values. Full article
Show Figures

Figure 1

12 pages, 1790 KB  
Article
Enzyme-Regulated In Situ Formation of Copper Hexacyanoferrate Nanoparticles with Oxidase-Mimetic Behaviour for Colorimetric Detection of Ascorbate Oxidase
by Hao Zhang, Dan-Ni Yang, Yan Li and Feng-Qing Yang
Biosensors 2023, 13(3), 344; https://doi.org/10.3390/bios13030344 - 4 Mar 2023
Cited by 5 | Viewed by 3226
Abstract
In this study, a copper hexacyanoferrate nanoparticle with excellent oxidase-mimetic behaviour has been synthesized through a simple precipitation method. The synthesized copper hexacyanoferrate nanoparticle has intrinsic oxidase-like activity, which can catalyze the chromogenic reaction of 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) through an O2•− reactive oxygen-species-participated [...] Read more.
In this study, a copper hexacyanoferrate nanoparticle with excellent oxidase-mimetic behaviour has been synthesized through a simple precipitation method. The synthesized copper hexacyanoferrate nanoparticle has intrinsic oxidase-like activity, which can catalyze the chromogenic reaction of 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) through an O2•− reactive oxygen-species-participated process. On the other hand, K3[Fe(CN)6] can be reduced by ascorbic acid (AA) to produce K4[Fe(CN)6], thereby inhibiting the formation of the copper hexacyanoferrate nanoparticles. Furthermore, ascorbate oxidase (AAO) can catalyze the oxidation of AA to produce dehydroascorbic acid, which cannot reduce K3[Fe(CN)6]. Thus, a system for an AAO-regulated in situ formation of copper hexacyanoferrate nanoparticles was constructed by coupling a prepared copper hexacyanoferrate nanozyme with AA for the detection of AAO activity. This colorimetric sensing assay shows high sensitivity and selectivity for the detection of AAO activity (the limit of detection is 0.52 U/L) with a linear range of 1.1–35.7 U/L. Finally, the developed method was applied to detect the activity of AAO in normal human serum with a satisfactory sample spiked recovery (87.4–108.8%). In short, this study provides a good strategy for the construction of nanozyme-based multi-enzyme cascade-signal amplification assay. Full article
(This article belongs to the Special Issue Nanozymes for Biosensing II)
Show Figures

Figure 1

21 pages, 26821 KB  
Article
Nanomaterials as Redox Mediators in Laccase-Based Amperometric Biosensors for Catechol Assay
by Olha Demkiv, Galina Gayda, Nataliya Stasyuk, Olena Brahinetz, Mykhailo Gonchar and Marina Nisnevitch
Biosensors 2022, 12(9), 741; https://doi.org/10.3390/bios12090741 - 8 Sep 2022
Cited by 16 | Viewed by 4273
Abstract
Laccase is a copper-containing enzyme that does not require hydrogen peroxide as a co-substrate or additional cofactors for an enzymatic reaction. Nanomaterials of various chemical structures are usually applied to the construction of enzyme-based biosensors. Metals, metal oxides, semiconductors, and composite NPs perform [...] Read more.
Laccase is a copper-containing enzyme that does not require hydrogen peroxide as a co-substrate or additional cofactors for an enzymatic reaction. Nanomaterials of various chemical structures are usually applied to the construction of enzyme-based biosensors. Metals, metal oxides, semiconductors, and composite NPs perform various functions in electrochemical transformation schemes as a platform for the enzyme immobilization, a mediator of an electron transfer, and a signal amplifier. We describe here the development of amperometric biosensors (ABSs) based on laccase and redox-active micro/nanoparticles (hereafter—NPs), which were immobilized on a graphite electrode (GE). For this purpose, we isolated a highly purified enzyme from the fungus Trametes zonatus, and then synthesized bi- and trimetallic NPs of noble and transition metals, as well as hexacyanoferrates (HCF) of noble metals; these were layered onto the surfaces of GEs. The electroactivity of many of the NPs immobilized on the GEs was characterized by cyclic voltammetry (CV) experiments. The most effective mediators of electron transfer were selected as the platform for the development of laccase-based ABSs. As a result, a number of catechol-sensitive ABSs were constructed and characterized. The laccase/CuCo/GE was demonstrated to possess the highest sensitivity to catechol (4523 A·M−1·m−2) among the tested ABSs. The proposed ABSs may be promising for the analysis of phenolic derivatives in real samples of drinking water, wastewater, and food products. Full article
(This article belongs to the Special Issue Recent Progress in Nanomaterial-Enhanced Biosensing)
Show Figures

Figure 1

17 pages, 4082 KB  
Article
Activated Carbon/Transition Metal (Ni, In, Cu) Hexacyanoferrate Nanocomposites for Cesium Adsorption
by Julien Kiener, Lionel Limousy, Mejdi Jeguirim, Jean-Marc Le Meins, Samar Hajjar-Garreau, Gaetan Bigoin and Camélia Matei Ghimbeu
Materials 2019, 12(8), 1253; https://doi.org/10.3390/ma12081253 - 16 Apr 2019
Cited by 38 | Viewed by 5910
Abstract
Transition metal hexacyanoferrate/microporous activated carbon composites were obtained using a simple successive impregnation approach. The effect of metal type (nickel, indium, or copper), and the carbon oxidation on the composite characteristics (porosity, metal structure, and particle size), as well as on the removal [...] Read more.
Transition metal hexacyanoferrate/microporous activated carbon composites were obtained using a simple successive impregnation approach. The effect of metal type (nickel, indium, or copper), and the carbon oxidation on the composite characteristics (porosity, metal structure, and particle size), as well as on the removal efficiency of cesium from aqueous solution was investigated. Successful formation of the desired metal hexacyanoferrate phase was achieved and the size of the metallic nanoparticles and their dispersion in the carbon network was found to depend on the metal type, with the indium and nickel-based materials exhibiting the smallest particle size distribution (< 10 nm). Adsorption tests performed under batch conditions demonstrate that the copper hexacyanoferrate/activated carbon composite present the highest cesium removal capacity from aqueous solution (74.7 mg·g−1) among the three studied metal-based nanocomposites. The carbon oxidation treatment leads to the increase in the number of functional groups to the detriment of the porosity but allows for an improvement in the Cs adsorption capacity. This indicates that the Cs adsorption process is governed by the carbon surface chemistry and not its porosity. Moreover, combining oxidized carbon support with copper hexacyanoferrate induces the highest cesium adsorption capacity (101.5 mg·g−1). This could be related to synergistic effects through two absorption mechanisms, i.e., a cation exchange mechanism of Cs with the metallic hexacyanoferrate phase and Cs adsorption via carbon oxygen surface groups, as demonstrated using X-ray photoelectron spectroscopy (XPS) analyses. Full article
(This article belongs to the Special Issue Materials for Clean Processes in Energy)
Show Figures

Graphical abstract

Back to TopTop