Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (154)

Search Parameters:
Keywords = cooperative intelligent transportation systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 2297 KiB  
Article
Secure Cooperative Dual-RIS-Aided V2V Communication: An Evolutionary Transformer–GRU Framework for Secrecy Rate Maximization in Vehicular Networks
by Elnaz Bashir, Francisco Hernando-Gallego, Diego Martín and Farzaneh Shoushtari
World Electr. Veh. J. 2025, 16(7), 396; https://doi.org/10.3390/wevj16070396 - 14 Jul 2025
Viewed by 243
Abstract
The growing demand for reliable and secure vehicle-to-vehicle (V2V) communication in next-generation intelligent transportation systems has accelerated the adoption of reconfigurable intelligent surfaces (RIS) as a means of enhancing link quality, spectral efficiency, and physical layer security. In this paper, we investigate the [...] Read more.
The growing demand for reliable and secure vehicle-to-vehicle (V2V) communication in next-generation intelligent transportation systems has accelerated the adoption of reconfigurable intelligent surfaces (RIS) as a means of enhancing link quality, spectral efficiency, and physical layer security. In this paper, we investigate the problem of secrecy rate maximization in a cooperative dual-RIS-aided V2V communication network, where two cascaded RISs are deployed to collaboratively assist with secure data transmission between mobile vehicular nodes in the presence of eavesdroppers. To address the inherent complexity of time-varying wireless channels, we propose a novel evolutionary transformer-gated recurrent unit (Evo-Transformer-GRU) framework that jointly learns temporal channel patterns and optimizes the RIS reflection coefficients, beam-forming vectors, and cooperative communication strategies. Our model integrates the sequence modeling strength of GRUs with the global attention mechanism of transformer encoders, enabling the efficient representation of time-series channel behavior and long-range dependencies. To further enhance convergence and secrecy performance, we incorporate an improved gray wolf optimizer (IGWO) to adaptively regulate the model’s hyper-parameters and fine-tune the RIS phase shifts, resulting in a more stable and optimized learning process. Extensive simulations demonstrate the superiority of the proposed framework compared to existing baselines, such as transformer, bidirectional encoder representations from transformers (BERT), deep reinforcement learning (DRL), long short-term memory (LSTM), and GRU models. Specifically, our method achieves an up to 32.6% improvement in average secrecy rate and a 28.4% lower convergence time under varying channel conditions and eavesdropper locations. In addition to secrecy rate improvements, the proposed model achieved a root mean square error (RMSE) of 0.05, coefficient of determination (R2) score of 0.96, and mean absolute percentage error (MAPE) of just 0.73%, outperforming all baseline methods in prediction accuracy and robustness. Furthermore, Evo-Transformer-GRU demonstrated rapid convergence within 100 epochs, the lowest variance across multiple runs. Full article
Show Figures

Figure 1

26 pages, 2523 KiB  
Article
Optimization of a Cooperative Truck–Drone Delivery System in Rural China: A Sustainable Logistics Approach for Diverse Terrain Conditions
by Debao Dai, Hanqi Cai and Shihao Wang
Sustainability 2025, 17(14), 6390; https://doi.org/10.3390/su17146390 - 11 Jul 2025
Viewed by 486
Abstract
Driven by the rapid expansion of e-commerce in China, there is a growing demand for high-efficiency, sustainability-oriented logistics solutions in rural regions, particularly for the time-sensitive distribution of perishable agricultural commodities. Traditional logistics systems face considerable challenges in these geographically complex regions due [...] Read more.
Driven by the rapid expansion of e-commerce in China, there is a growing demand for high-efficiency, sustainability-oriented logistics solutions in rural regions, particularly for the time-sensitive distribution of perishable agricultural commodities. Traditional logistics systems face considerable challenges in these geographically complex regions due to limited infrastructure and extended travel distances. To address these issues, this study proposes an intelligent cooperative delivery system that integrates automated drones with conventional trucks, aiming to enhance both operational efficiency and environmental sustainability. A mixed-integer linear programming (MILP) model is developed to account for the diverse terrain characteristics of rural China, including forest, lake, and mountain regions. To optimize distribution strategies, the model incorporates an improved Fuzzy C-Means (FCM) algorithm combined with a hybrid genetic simulated annealing algorithm. The performance of three transportation modes, namely truck-only, drone-only, and truck–drone integrated delivery, was evaluated and compared. Sustainability-related externalities, such as carbon emission costs and delivery delay penalties, are quantitatively integrated into the total transportation cost objective function. Simulation results indicate that the cooperative delivery model is especially effective in lake regions, significantly reducing overall costs while improving environmental performance and service quality. This research offers practical insights into the development of sustainable intelligent transportation systems tailored to the unique challenges of rural logistics. Full article
Show Figures

Figure 1

20 pages, 2004 KiB  
Review
An Overview of Intelligent Transportation Systems in Europe
by Nicolae Cordoș, Irina Duma, Dan Moldovanu, Adrian Todoruț and István Barabás
World Electr. Veh. J. 2025, 16(7), 387; https://doi.org/10.3390/wevj16070387 - 9 Jul 2025
Viewed by 658
Abstract
This paper provides a comprehensive review of the development, deployment and challenges of Intelligent Transport Systems (ITSs) in Europe. Driven by the EU Directive 2010/40/EU, the deployment of ITSs has become essential for improving the safety, efficiency and sustainability of transport. The study [...] Read more.
This paper provides a comprehensive review of the development, deployment and challenges of Intelligent Transport Systems (ITSs) in Europe. Driven by the EU Directive 2010/40/EU, the deployment of ITSs has become essential for improving the safety, efficiency and sustainability of transport. The study examines how ITS technologies, such as automation, real-time traffic data analytics and vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication, have been integrated to improve urban mobility and road safety. In addition, it reviews significant European initiatives and case studies from several cities, which show visible improvements in reducing congestion, reducing CO2 emissions and increasing the use of public transport. The paper highlights, despite progress, major obstacles to widespread adoption, such as technical interoperability, inadequate regulatory frameworks and insufficient data sharing between stakeholders. These issues prevent ITS applications from scaling up and functioning well in EU Member States. To overcome these problems, the study highlights the need for common standards and cooperation frameworks. The research analyses the laws, technological developments and socio-economic effects of ITSs. By promoting sustainable and inclusive mobility, ITSs can contribute to the European Green Deal and climate goals. Finally, the paper presents ITSs as a revolutionary solution for future European transport systems and offers suggestions to improve their interoperability, data governance and policy support. Full article
Show Figures

Graphical abstract

16 pages, 12607 KiB  
Article
On the Capacity of V2X Communication Networks to Support the Delivery of Emerging C-ITS Services: A Case Study on an Irish Motorway
by Arif Hossan, Md Noor-a-Rahim, Cormac J. Sreenan, Piraba Navaratnam, Shobanraj Navaratnarajah, Thomas Allen, David Laoide-Kemp and Aisling O’Driscoll
Information 2025, 16(7), 563; https://doi.org/10.3390/info16070563 - 30 Jun 2025
Viewed by 362
Abstract
Roadside communication networks with Cooperative Intelligent Transport Systems (C-ITSs) offer services that aim to enhance traffic management and road safety.This paper presents a comprehensive scalability study of C-ITSs to support a deployment of Day 1 advisory services on the busiest Irish motorway. Specifically, [...] Read more.
Roadside communication networks with Cooperative Intelligent Transport Systems (C-ITSs) offer services that aim to enhance traffic management and road safety.This paper presents a comprehensive scalability study of C-ITSs to support a deployment of Day 1 advisory services on the busiest Irish motorway. Specifically, the performance of the two standardized C-ITS short-range communication technologies, namely ITS-G5 and C-V2X, are quantified. Both technologies are evaluated while considering different market penetration rates (MPRs), real-world vehicle densities during daily time periods, and data traffic demands linked to real world C-ITS services. The simulation results show that ITS-G5 performs slightly better at shorter distances, and C-V2X performs marginally better at medium and longer distances, benefiting from technology that supports better signal quality and communication robustness. Full article
(This article belongs to the Special Issue Internet of Everything and Vehicular Networks)
Show Figures

Figure 1

17 pages, 1673 KiB  
Article
Model-Driven Clock Synchronization Algorithms for Random Loss of GNSS Time Signals in V2X Communications
by Wei Hu, Jiajie Zhang and Ximing Cheng
Technologies 2025, 13(7), 273; https://doi.org/10.3390/technologies13070273 - 27 Jun 2025
Viewed by 310
Abstract
Onboard Vehicle-to-Everything (V2X) communication technology is being widely implemented in domains such as intelligent driving, vehicle–road cooperation, and smart transportation. Nevertheless, time synchronization in V2X systems suffers from instability due to the random loss of Global Navigation Satellite System (GNSS) Pulse-Per-Second (PPS) signals. [...] Read more.
Onboard Vehicle-to-Everything (V2X) communication technology is being widely implemented in domains such as intelligent driving, vehicle–road cooperation, and smart transportation. Nevertheless, time synchronization in V2X systems suffers from instability due to the random loss of Global Navigation Satellite System (GNSS) Pulse-Per-Second (PPS) signals. To address this challenge, a model-driven local clock correction approach is proposed. Leveraging probability theory and mathematical statistics, models for the randomly lost GNSS PPS signals are developed. High-order polynomials are used to model local clocks. An optimized Kalman-filter-based time compensation algorithm is then devised to compensate for time errors during PPS signal loss. A software-based task-scheduling solution for precision-time synchronization is developed. An experimental testbed was then built to measure both terminal clocks and PPS signals. The proposed algorithm was integrated into the V2X terminals. Results show that the full-value PPS signals follow an exponential distribution. The onboard clock correction algorithm operates stably across three V2X terminals and accurately predicts clock variations. Furthermore, the virtual clocks achieve an average absolute error of 1.1 μs and a standard deviation of 16 μs, meeting the time synchronization requirements for V2X communication in intelligent connected vehicles. Full article
(This article belongs to the Special Issue Smart Transportation and Driving)
Show Figures

Figure 1

27 pages, 1880 KiB  
Article
UAV-Enabled Video Streaming Architecture for Urban Air Mobility: A 6G-Based Approach Toward Low-Altitude 3D Transportation
by Liang-Chun Chen, Chenn-Jung Huang, Yu-Sen Cheng, Ken-Wen Hu and Mei-En Jian
Drones 2025, 9(6), 448; https://doi.org/10.3390/drones9060448 - 18 Jun 2025
Viewed by 687
Abstract
As urban populations expand and congestion intensifies, traditional ground transportation struggles to satisfy escalating mobility demands. Unmanned Electric Vertical Take-Off and Landing (eVTOL) aircraft, as a key enabler of Urban Air Mobility (UAM), leverage low-altitude airspace to alleviate ground traffic while offering environmentally [...] Read more.
As urban populations expand and congestion intensifies, traditional ground transportation struggles to satisfy escalating mobility demands. Unmanned Electric Vertical Take-Off and Landing (eVTOL) aircraft, as a key enabler of Urban Air Mobility (UAM), leverage low-altitude airspace to alleviate ground traffic while offering environmentally sustainable solutions. However, supporting high bandwidth, real-time video applications, such as Virtual Reality (VR), Augmented Reality (AR), and 360° streaming, remains a major challenge, particularly within bandwidth-constrained metropolitan regions. This study proposes a novel Unmanned Aerial Vehicle (UAV)-enabled video streaming architecture that integrates 6G wireless technologies with intelligent routing strategies across cooperative airborne nodes, including unmanned eVTOLs and High-Altitude Platform Systems (HAPS). By relaying video data from low-congestion ground base stations to high-demand urban zones via autonomous aerial relays, the proposed system enhances spectrum utilization and improves streaming stability. Simulation results validate the framework’s capability to support immersive media applications in next-generation autonomous air mobility systems, aligning with the vision of scalable, resilient 3D transportation infrastructure. Full article
Show Figures

Figure 1

33 pages, 917 KiB  
Systematic Review
Publish/Subscribe-Middleware-Based Intelligent Transportation Systems: Applications and Challenges
by Basem Almadani, Ekhlas Hashem, Raneem R. Attar, Farouq Aliyu and Esam Al-Nahari
Appl. Sci. 2025, 15(12), 6449; https://doi.org/10.3390/app15126449 - 8 Jun 2025
Viewed by 583
Abstract
Countries are embracing intelligent transportation systems (ITSs), the application of information and communication technologies to transportation, to address growing challenges in urban mobility, congestion, safety, and sustainability. Architecture Reference for Cooperative and Intelligent Transportation (ARC-IT) is a notable ITS framework comprising Enterprise, Functional, [...] Read more.
Countries are embracing intelligent transportation systems (ITSs), the application of information and communication technologies to transportation, to address growing challenges in urban mobility, congestion, safety, and sustainability. Architecture Reference for Cooperative and Intelligent Transportation (ARC-IT) is a notable ITS framework comprising Enterprise, Functional, Physical, and Communications Views (or layers). This review focuses on the Communications View, examining how publish/subscribe middleware enhances ITS through the communication layer. It identified application areas across ITS infrastructure, transportation modes, and communication technologies, and highlights key challenges. In the infrastructure domain, publish/subscribe middleware enhances responsiveness and real-time processing in systems such as traffic surveillance, VANETs, and road sensor networks, especially when replacing legacy infrastructure is cost-prohibitive. Moreover, the middleware supports scalable, low-latency communication in land, air, and marine modes, enabling public transport coordination, cooperative driving, and UAV integration. At the communications layer, publish/subscribe systems facilitate interoperable, delay-tolerant data dissemination over heterogeneous platforms, including 4G/5G, ICN, and peer-to-peer networks. However, integrating publish/subscribe middleware in ITS has several challenges, including privacy risks, real-time data constraints, fault tolerance, bandwidth limitations, and security vulnerabilities. This paper provides a domain-informed foundation for researchers and practitioners developing resilient, scalable, and interoperable communication systems in next-generation ITSs. Full article
Show Figures

Figure 1

25 pages, 13693 KiB  
Article
IMSBA: A Novel Integrated Sensing and Communication Beam Allocation Based on Multi-Agent Reinforcement Learning for mmWave Internet of Vehicles
by Jinxiang Lai, Deqing Wang and Yifeng Zhao
Appl. Sci. 2025, 15(11), 6069; https://doi.org/10.3390/app15116069 - 28 May 2025
Viewed by 456
Abstract
In a multi-beam communication scenario where Infrastructure-to-Vehicle (I2V) and Vehicle-to-Vehicle (V2V) communications coexist, the limited spectrum of resources force V2V users to reuse the orthogonal frequency bands allocated to I2V, inevitably introducing cross-layer interference between I2V and V2V. Furthermore, the adoption of a [...] Read more.
In a multi-beam communication scenario where Infrastructure-to-Vehicle (I2V) and Vehicle-to-Vehicle (V2V) communications coexist, the limited spectrum of resources force V2V users to reuse the orthogonal frequency bands allocated to I2V, inevitably introducing cross-layer interference between I2V and V2V. Furthermore, the adoption of a multi-beam communication architecture exacerbates beam interference, significantly degrading the overall network’s communication and sensing performance. To address these challenges, this paper proposes an integrated sensing and communication (ISAC) beam allocation algorithm, termed IMSBA, which jointly optimizes beam direction, transmission power, and spectrum resource allocation to effectively mitigate the interference between I2V and V2V while maximizing the overall network performance. Specifically, IMSBA employs a joint optimization framework combining Multi-Agent Proximal Policy Optimization (MAPPO) with a Stackelberg game. Within this framework, MAPPO leverages vehicle perception data to dynamically optimize V2V beam steering and frequency selection, while the Stackelberg game reduces computational complexity through hierarchical decision-making and optimizes the joint power allocation among V2V users. Additionally, the proposed scheme incorporates a V2V cooperative sensing domain-sharing mechanism to enhance system robustness under adverse conditions. The experimental results demonstrated that, compared with existing baseline schemes, IMSBA achieved a 92.5% improvement in V2V energy efficiency while significantly enhancing both communication and sensing performance. This study provides an efficient and practical solution for spectrum-constrained scenarios in millimeter-wave Internet-of-Things (IoT), offering substantial theoretical insights and practical value for the efficient operation of intelligent transportation system (ITSs). Full article
Show Figures

Figure 1

30 pages, 11900 KiB  
Article
Enhancing Mixed Traffic Stability with TD3-Driven Bilateral Control in Autonomous Vehicle Chains
by Kan Liu, Pengpeng Jiao, Weiqi Hong and Yue Chen
Sustainability 2025, 17(11), 4790; https://doi.org/10.3390/su17114790 - 23 May 2025
Viewed by 613
Abstract
This study presents a TD3-driven Bilateral Control Model (TD3-BCM) aimed at improving the stability of mixed traffic flows in autonomous vehicle (AV) chains. By integrating deep reinforcement learning, TD3-BCM optimizes control strategies to reduce traffic oscillations, smooth speed and acceleration fluctuations, and enhance [...] Read more.
This study presents a TD3-driven Bilateral Control Model (TD3-BCM) aimed at improving the stability of mixed traffic flows in autonomous vehicle (AV) chains. By integrating deep reinforcement learning, TD3-BCM optimizes control strategies to reduce traffic oscillations, smooth speed and acceleration fluctuations, and enhance overall system performance. Stability analysis shows that TD3-BCM effectively suppresses traffic fluctuations, with system stability improving from 1.132 to 1.182 as AV penetration increases. At an AV penetration rate of 40%, TD3-BCM surpasses both Cooperative Adaptive Cruise Control (CACC) and traditional Bilateral Control Model (BCM) approaches in terms of traffic efficiency, safety, and energy use—raising trailing vehicle speed by 12.6%, shortening average headway by 19.0%, increasing Time-to-Collision (TTC) by 87.3%, and lowering fuel consumption by 14.8%. When AV penetration reaches 70%, fuel savings rise to 19.7%, accompanied by further improvements in both traffic stability and safety. TD3-BCM provides a scalable and sustainable solution for intelligent transportation systems, particularly in high-penetration AV environments, by significantly enhancing stability, operational efficiency, and road safety. Full article
Show Figures

Figure 1

27 pages, 9692 KiB  
Article
Mitigating Urban Congestion: A Cooperative Reservation Framework for Automated Vehicles
by David Yagüe-Cuevas, Pablo Marín-Plaza, María Paz-Sesmero Lorente, Stephen F. Smith, Araceli Sanchis and José María Armingol Moreno
Appl. Sci. 2025, 15(10), 5347; https://doi.org/10.3390/app15105347 - 10 May 2025
Viewed by 477
Abstract
Today’s urban environments are complex, highly congested traffic scenarios that suffer from multiple unsolved problems such as traffic jams and congestion. These problems pose a significant increase in the risks and probability of traffic accidents in modern cities, which have experienced an enormous [...] Read more.
Today’s urban environments are complex, highly congested traffic scenarios that suffer from multiple unsolved problems such as traffic jams and congestion. These problems pose a significant increase in the risks and probability of traffic accidents in modern cities, which have experienced an enormous growth in the number of vehicles. This work introduces a centralized arbitration framework designed for Cooperative Connected Automated Vehicles (CCAVs) to make real-time decisions and resolve conflicts among various driving strategies or behaviors to facilitate resource reservation based on their collaborative actions. Cooperation and arbitration are two of the most important areas of research that seek to provide tools and mechanisms for the optimization and control of traffic flow at critical locations such as intersections and traffic circles. The approach presented, fully implemented on ROS and capable of constructing a software-defined traffic control environment, is able to supervise in a distributed manner how any CCAV operates with the infrastructure, potentially reducing the number of vehicles waiting and harmonizing the traffic flow. The methodology proposed surpasses traditional driver-in-the-loop cooperation by delivering a higher level of automation for collaborative traffic behavior. This approach demonstrably reduces average waiting time by 13% and increases the total utilization of the traffic emplacement by 70% compared to the classic simulated traffic light model. The solution presented was tested on the Carla simulator, with a complete ROS-based vehicle automation solution that provides promising results for CCAV coordination in complex traffic scenarios through a general framework of behavior-based collaboration. Full article
Show Figures

Figure 1

31 pages, 1214 KiB  
Article
Intra-Technology Enhancements for Multi-Service Multi-Priority Short-Range V2X Communication
by Ihtisham Khalid, Vasilis Maglogiannis, Dries Naudts, Adnan Shahid and Ingrid Moerman
Sensors 2025, 25(8), 2564; https://doi.org/10.3390/s25082564 - 18 Apr 2025
Viewed by 382
Abstract
Cooperative Intelligent Transportation Systems (C-ITSs) are emerging as transformative technologies, paving the way for safe and fully automated driving solutions. As the demand for autonomous vehicles accelerates, the development of advanced Radio Access Technologies capable of delivering reliable, low-latency vehicular communications has become [...] Read more.
Cooperative Intelligent Transportation Systems (C-ITSs) are emerging as transformative technologies, paving the way for safe and fully automated driving solutions. As the demand for autonomous vehicles accelerates, the development of advanced Radio Access Technologies capable of delivering reliable, low-latency vehicular communications has become paramount. Standardized approaches for Vehicular-to-Everything (V2X) communication often fall short in addressing the dynamic and diverse requirements of multi-service, multi-priority systems. Conventional vehicular networks employ static parameters such as Access Category (AC) in IEEE 802.11p-based ITS-G5 and Resource Reservation Interval (RRI) in C-V2X PC5 for prioritizing different V2X services. This static parameter assignment performs unsatisfactorily in dynamic and diverse requirements. To bridge this gap, we propose intelligent Multi-Attribute Decision-Making algorithms for adaptive AC selection in ITS-G5 and RRI adjustment in C-V2X PC5, tailored to the varying priorities of active V2X services. These adaptations are integrated with a priority-aware rate-control mechanism to enhance congestion management. Through extensive simulations conducted using NS3, our proposed strategies demonstrate superior performance compared to standardized methods, achieving improvements in one-way end-to-end latency, Packet Reception Ratio (PRR) and overall communication reliability. Full article
Show Figures

Figure 1

18 pages, 2863 KiB  
Article
Cooperative Intelligent Transport Systems: The Impact of C-V2X Communication Technologies on Road Safety and Traffic Efficiency
by Jingwen Wang, Ivan Topilin, Anastasia Feofilova, Mengru Shao and Yadong Wang
Sensors 2025, 25(7), 2132; https://doi.org/10.3390/s25072132 - 27 Mar 2025
Cited by 4 | Viewed by 1871
Abstract
The advancement of intelligent road transport represents a promising direction in the evolution of transportation systems, aimed at improving road safety and reducing traffic accidents. The integration of artificial intelligence, sensors, and machine vision systems enables autonomous vehicles (AVs) to rapidly adapt to [...] Read more.
The advancement of intelligent road transport represents a promising direction in the evolution of transportation systems, aimed at improving road safety and reducing traffic accidents. The integration of artificial intelligence, sensors, and machine vision systems enables autonomous vehicles (AVs) to rapidly adapt to changes in the road environment, minimizing human error and significantly reducing collision risks. These technologies provide continuous and highly precise control, including adaptive acceleration, braking, and maneuvering, thereby enhancing overall road safety. Connected vehicles utilizing C-V2X (Cellular Vehicle-to-Everything) communication primarily feature real-time operation, safety, and stability. However, communication flaws, such as signal fading, time delays, packet loss, and malicious network attacks, can affect vehicle-to-vehicle interactions in cooperative intelligent transport systems (C-ITSs). This study explores how C-V2X technology, compared to traditional DSRC, improves communication latency and enhances vehicle communication efficiency. Using SUMO simulations, various traffic scenarios were modeled with different autonomous vehicle penetration rates and communication technologies, focusing on traffic conflict rates, travel time, and communication performance. The results demonstrated that C-V2X reduced latency by over 99% compared to DSRC, facilitating faster communication between vehicles and contributing to a 38% reduction in traffic conflicts at 60% AV penetration. Traffic flow and safety improved with increased AV penetration, particularly in congested conditions. While C-V2X offers substantial benefits, challenges such as data packet loss, communication delays, and security vulnerabilities must be addressed to fully realize its potential. Future advancements in 5G and subsequent wireless communication technologies are expected to further reduce latency and enhance the effectiveness of C-ITSs. This study underscores the potential of C-V2X to enhance collision avoidance, alleviate congestion, and improve traffic management, while also contributing to the development of more reliable and efficient transportation systems. The continued refinement of simulation models and collaboration among stakeholders will be crucial to addressing the challenges in CAV integration and realizing the full benefits of connected transportation systems in smart cities. Full article
(This article belongs to the Special Issue IoT and Big Data Analytics for Smart Cities)
Show Figures

Figure 1

18 pages, 1921 KiB  
Article
Efficient Multi-Sensor Fusion for Cooperative Autonomous Vehicles Leveraging C-ITS Infrastructure and Machine Learning
by Jiwon Kwak, Hayoung Jeon and Seokil Song
Sensors 2025, 25(7), 1975; https://doi.org/10.3390/s25071975 - 21 Mar 2025
Viewed by 660
Abstract
The widespread deployment of Cooperative Intelligent Transport Systems (C-ITS) has elevated the need for robust, real-time sensor fusion strategies capable of handling noisy, asynchronous data from multiple infrastructure sensors. In this paper, we propose a two-stage data fusion framework that integrates a grid-based [...] Read more.
The widespread deployment of Cooperative Intelligent Transport Systems (C-ITS) has elevated the need for robust, real-time sensor fusion strategies capable of handling noisy, asynchronous data from multiple infrastructure sensors. In this paper, we propose a two-stage data fusion framework that integrates a grid-based indexing method for efficient duplicate-object detection with a Light Gradient Boosting Machine (LGBM) augmented by an Extended Kalman Filter (EKF). In the first stage, the hybrid EKF–LGBM model mitigates noise, refines object trajectories, and synchronizes sensor streams under varying noise conditions. In the second stage, the grid-based indexing technique rapidly associates objects detected by multiple sensors, merging their measurements into unified state estimates. Extensive experiments—using both synthetic data, where noise scales ranged from 0.5 to 3, and a real-road dataset—confirm that our approach balances near-real-time performance with significantly improved trajectory accuracy. For instance, at a noise scale of 1, the hybrid method outperforms the Unscented Kalman Filter (UKF) while running up to 1.81 times faster, and real-world tests show a 1.54 times RMSE improvement over baseline measurements. By efficiently filtering out noise and minimizing the computational overhead of pairwise comparisons, the proposed system demonstrates practical feasibility with respect to C-ITS applications. Full article
Show Figures

Figure 1

34 pages, 8012 KiB  
Review
Machine Learning for Resilient and Sustainable Cities: A Bibliometric Analysis of Smart Urban Technologies
by Bin Luan and Xinqun Feng
Buildings 2025, 15(7), 1007; https://doi.org/10.3390/buildings15071007 - 21 Mar 2025
Viewed by 742
Abstract
With the acceleration of urbanization, the construction of smart cities has become a global focal point, with machine learning technology playing a crucial role in this process. This study aims to conduct a bibliometric analysis of the published research in the fields of [...] Read more.
With the acceleration of urbanization, the construction of smart cities has become a global focal point, with machine learning technology playing a crucial role in this process. This study aims to conduct a bibliometric analysis of the published research in the fields of smart cities and machine learning, using visualization techniques to reveal the spatiotemporal distribution patterns, research hotspots, and collaborative network structures. The goal is to provide systematic references for academic research and technological innovation in related fields. The results indicate that the development of this field exhibits distinct phases and regional characteristics. From a temporal perspective, research has undergone three stages: initial development, rapid growth, and stable consolidation, with the period from 2017 to 2021 marking a critical phase of rapid expansion. In terms of spatial distribution, countries such as China and the United States are at the forefront of this field, whereas regions like Africa and South America have a relatively low research output due to constraints in research resources and technological infrastructure. A hotspot analysis revealed that research topics are increasingly diverse and dynamically evolving. Issues such as data privacy, cybersecurity, sustainable development, and intelligent transportation have gradually become focal points, reflecting the dual demand of smart city development for technological innovation and green growth. Furthermore, collaboration network analysis indicates that international academic cooperation is becoming increasingly close, with research institutions in China, the United States, and Europe playing a central role in the global collaboration system, thereby promoting technology sharing and interdisciplinary integration. Through a systematic bibliometric analysis, this study identifies key application directions and future development trends in the research on smart cities and machine learning, providing valuable insights for academic research and technological advancements in related fields. Full article
Show Figures

Figure 1

14 pages, 1399 KiB  
Article
Obstacle-Aware Crowd Surveillance with Mobile Robots in Transportation Stations
by Yumin Choi and Hyunbum Kim
Sensors 2025, 25(2), 350; https://doi.org/10.3390/s25020350 - 9 Jan 2025
Viewed by 1025
Abstract
Recent transportation systems are operated by cooperative factors including mobile robots, smart vehicles, and intelligent management. It is highly anticipated that the surveillance using mobile robots can be utilized in complex transportation areas where the high accuracy is required. In this paper, we [...] Read more.
Recent transportation systems are operated by cooperative factors including mobile robots, smart vehicles, and intelligent management. It is highly anticipated that the surveillance using mobile robots can be utilized in complex transportation areas where the high accuracy is required. In this paper, we introduce a crowd surveillance system using mobile robots and intelligent vehicles to provide obstacle avoidance in transportation stations with a consideration of different moving strategies of the robots in an existing 2D area supported by line-based barriers and surveillance formations. Then, we formally define a problem that aims to minimize the distance traveled by a mobile robot, while also considering the speed of the mobile robot and avoiding the risk of collisions when the mobile robot moves to specific locations to fulfill crowd surveillance. To solve this problem, we propose two different schemes to provide improved surveillance that can be used even when considering speed. After that, various ideas are gathered to define conditions, set various settings, and modify them to evaluate their performances. Full article
(This article belongs to the Special Issue Intelligent Service Robot Based on Sensors Technology)
Show Figures

Figure 1

Back to TopTop