Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = cooperative intelligent transport system (C-ITS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 12607 KiB  
Article
On the Capacity of V2X Communication Networks to Support the Delivery of Emerging C-ITS Services: A Case Study on an Irish Motorway
by Arif Hossan, Md Noor-a-Rahim, Cormac J. Sreenan, Piraba Navaratnam, Shobanraj Navaratnarajah, Thomas Allen, David Laoide-Kemp and Aisling O’Driscoll
Information 2025, 16(7), 563; https://doi.org/10.3390/info16070563 - 30 Jun 2025
Viewed by 367
Abstract
Roadside communication networks with Cooperative Intelligent Transport Systems (C-ITSs) offer services that aim to enhance traffic management and road safety.This paper presents a comprehensive scalability study of C-ITSs to support a deployment of Day 1 advisory services on the busiest Irish motorway. Specifically, [...] Read more.
Roadside communication networks with Cooperative Intelligent Transport Systems (C-ITSs) offer services that aim to enhance traffic management and road safety.This paper presents a comprehensive scalability study of C-ITSs to support a deployment of Day 1 advisory services on the busiest Irish motorway. Specifically, the performance of the two standardized C-ITS short-range communication technologies, namely ITS-G5 and C-V2X, are quantified. Both technologies are evaluated while considering different market penetration rates (MPRs), real-world vehicle densities during daily time periods, and data traffic demands linked to real world C-ITS services. The simulation results show that ITS-G5 performs slightly better at shorter distances, and C-V2X performs marginally better at medium and longer distances, benefiting from technology that supports better signal quality and communication robustness. Full article
(This article belongs to the Special Issue Internet of Everything and Vehicular Networks)
Show Figures

Figure 1

18 pages, 1921 KiB  
Article
Efficient Multi-Sensor Fusion for Cooperative Autonomous Vehicles Leveraging C-ITS Infrastructure and Machine Learning
by Jiwon Kwak, Hayoung Jeon and Seokil Song
Sensors 2025, 25(7), 1975; https://doi.org/10.3390/s25071975 - 21 Mar 2025
Viewed by 663
Abstract
The widespread deployment of Cooperative Intelligent Transport Systems (C-ITS) has elevated the need for robust, real-time sensor fusion strategies capable of handling noisy, asynchronous data from multiple infrastructure sensors. In this paper, we propose a two-stage data fusion framework that integrates a grid-based [...] Read more.
The widespread deployment of Cooperative Intelligent Transport Systems (C-ITS) has elevated the need for robust, real-time sensor fusion strategies capable of handling noisy, asynchronous data from multiple infrastructure sensors. In this paper, we propose a two-stage data fusion framework that integrates a grid-based indexing method for efficient duplicate-object detection with a Light Gradient Boosting Machine (LGBM) augmented by an Extended Kalman Filter (EKF). In the first stage, the hybrid EKF–LGBM model mitigates noise, refines object trajectories, and synchronizes sensor streams under varying noise conditions. In the second stage, the grid-based indexing technique rapidly associates objects detected by multiple sensors, merging their measurements into unified state estimates. Extensive experiments—using both synthetic data, where noise scales ranged from 0.5 to 3, and a real-road dataset—confirm that our approach balances near-real-time performance with significantly improved trajectory accuracy. For instance, at a noise scale of 1, the hybrid method outperforms the Unscented Kalman Filter (UKF) while running up to 1.81 times faster, and real-world tests show a 1.54 times RMSE improvement over baseline measurements. By efficiently filtering out noise and minimizing the computational overhead of pairwise comparisons, the proposed system demonstrates practical feasibility with respect to C-ITS applications. Full article
Show Figures

Figure 1

21 pages, 2964 KiB  
Article
Prediction of Drivers’ Red-Light Running Behaviour in Connected Vehicle Environments Using Deep Recurrent Neural Networks
by Md Mostafizur Rahman Komol, Mohammed Elhenawy, Jack Pinnow, Mahmoud Masoud, Andry Rakotonirainy, Sebastien Glaser, Merle Wood and David Alderson
Mach. Learn. Knowl. Extr. 2024, 6(4), 2855-2875; https://doi.org/10.3390/make6040136 - 11 Dec 2024
Viewed by 1949
Abstract
Red-light running at signalised intersections poses a significant safety risk, necessitating advanced predictive technologies to predict red-light violation behaviour, especially for advanced red-light warning (ARLW) systems. This research leverages Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) models to forecast the red-light [...] Read more.
Red-light running at signalised intersections poses a significant safety risk, necessitating advanced predictive technologies to predict red-light violation behaviour, especially for advanced red-light warning (ARLW) systems. This research leverages Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) models to forecast the red-light running and stopping behaviours of drivers in connected vehicles. We utilised data from the Ipswich Connected Vehicle Pilot (ICVP) in Queensland, Australia, which gathered naturalistic driving data from 355 connected vehicles at 29 signalised intersections. These vehicles broadcast Cooperative Awareness Messages (CAM) within the Cooperative Intelligent Transport Systems (C-ITS), providing kinematic inputs such as vehicle speed, speed limits, longitudinal and lateral accelerations, and yaw rate. These variables were monitored at 100-millisecond intervals for durations from 1 to 4 s before reaching various distances from the stop line. Our results indicate that the LSTM model outperforms the GRU in predicting both red-light running and stopping behaviours with high accuracy. However, the pre-trained GRU model performs better in predicting red-light running specifically, making it valuable in applications requiring early violation prediction. Implementing these models can enhance red-light violation countermeasures, such as dynamic all-red extension (DARE), decreasing the likelihood of severe collisions and enhancing road users’ safety. Full article
Show Figures

Figure 1

16 pages, 954 KiB  
Article
A Maneuver Coordination Analysis Using Artery V2X Simulation Framework
by João Oliveira, Emanuel Vieira, João Almeida, Joaquim Ferreira and Paulo C. Bartolomeu
Electronics 2024, 13(23), 4813; https://doi.org/10.3390/electronics13234813 - 6 Dec 2024
Viewed by 1425
Abstract
This paper examines the impact of Vehicle-to-Everything (V2X) communications on vehicle cooperation, focusing on increasing the robustness and feasibility of Cooperative, Connected, and Automated Vehicles (CCAVs). V2X communications enable CCAVs to obtain a holistic environmental perception, facilitating informed decision making regarding their trajectory. [...] Read more.
This paper examines the impact of Vehicle-to-Everything (V2X) communications on vehicle cooperation, focusing on increasing the robustness and feasibility of Cooperative, Connected, and Automated Vehicles (CCAVs). V2X communications enable CCAVs to obtain a holistic environmental perception, facilitating informed decision making regarding their trajectory. This technological innovation is essential to mitigate accidents resulting from inadequate or absent communication on the roads. As the importance of vehicle cooperation grows, the European Telecommunications Standards Institute (ETSI) has been standardizing messages and services for V2X communications, in order to improve the synchronization of CCAVs actions. In this context, this preliminary work explores the use of Maneuver Coordination Messages (MCMs), under standardization by ETSI, for cooperative path planning. This work presents a novel approach by implementing these messages as well as the associated Maneuver Coordination Service (MCS) with a Cooperative Driving System to process maneuver coordination. Additionally, a trajectory approach is introduced along with a message generation mechanism and a process to dynamically handle collisions. This was implemented in an Artery V2X simulation framework combining both network communications and SUMO traffic simulations. The obtained results demonstrate the effectiveness of using V2X communications to ensure the safety and efficiency of Cooperative Intelligent Transportation Systems (C-ITS). Full article
(This article belongs to the Special Issue Cyber-Physical Systems: Recent Developments and Emerging Trends)
Show Figures

Figure 1

16 pages, 1837 KiB  
Article
Automated Evaluation of C-ITS Message Content for Enhanced Compliance and Reliability
by Zdeněk Lokaj, Miroslav Vaniš, Radek Holý, Martin Šrotýř, Martin Zajíček and Shih-Chia Huang
Appl. Sci. 2024, 14(20), 9526; https://doi.org/10.3390/app14209526 - 18 Oct 2024
Viewed by 1203
Abstract
In the field of Cooperative Intelligent Transport Systems (C-ITSs), the traditional approach to testing often emphasizes technological parameters, leaving the validation of message content insufficiently addressed. Since the content of these messages is crucial for the correct functioning of C-ITS, this article demonstrates [...] Read more.
In the field of Cooperative Intelligent Transport Systems (C-ITSs), the traditional approach to testing often emphasizes technological parameters, leaving the validation of message content insufficiently addressed. Since the content of these messages is crucial for the correct functioning of C-ITS, this article demonstrates the potential for automated evaluation of C-ITS message content against relevant standards. It leverages our novel tools, Karlos and C-ITS SIM, to facilitate this process. Through detailed laboratory testing and data analysis, the study showcases the effectiveness of these automated solutions in enhancing the accuracy and reliability of message content validation. Full article
Show Figures

Figure 1

16 pages, 5570 KiB  
Article
Enhancing Traffic Efficiency and Sustainability through Strategic Placement of Roadside Units and Variable Speed Limits in a Connected Vehicle Environment
by Kinjal Bhattacharyya, Pierre-Antoine Laharotte, Eleonore Fauchet, Hugues Blache and Nour-Eddin El Faouzi
Sustainability 2024, 16(17), 7495; https://doi.org/10.3390/su16177495 - 29 Aug 2024
Cited by 4 | Viewed by 1512
Abstract
With the deployment of cooperative intelligent transportation systems (C-ITSs), the telecommunication systems and their performance occupy a key position in ensuring safe, robust, and resilient services to the end-users. Regardless of the adopted protocol, adequate road network coverage might affect the service performance, [...] Read more.
With the deployment of cooperative intelligent transportation systems (C-ITSs), the telecommunication systems and their performance occupy a key position in ensuring safe, robust, and resilient services to the end-users. Regardless of the adopted protocol, adequate road network coverage might affect the service performance, in terms of traffic and environmental efficiency. In this study, we analyze the traffic efficiency and emission pollutant sensitivity to the location of ad hoc network antennas when the C-ITS services disseminate dynamic messages to control the speed limit and ensure sustainable mobility. We design the experimentation with short-range communication resulting from an ad hoc network and requiring Roadside Units (RSUs) along the road to broadcast messages within their communication range to the end-user. The performance variability according to the RSUs’ location and effective road network coverage are highlighted through our microscopic simulation-based experimentations. This paper develops a sensitivity analysis to evaluate the impact of the network mesh according to the C-ITS service under consideration. Focus is placed on the variable speed limit (VSL) service, controlling upstream speed to restrict congestion and ensure more sustainable mobility. The results show that, while the traffic efficiency improves even at a low market penetration rate (MPR) of the connected vehicles, the environmental efficiency improves only at a high MPR. From the telecommunication perspective, an expansive broadcast strategy appears to be more effective than the conservative approach. Full article
(This article belongs to the Special Issue Intelligent Transportation Systems towards Sustainable Transportation)
Show Figures

Figure 1

23 pages, 5504 KiB  
Article
Enhancing Driving Safety through User Experience Evaluation of the C-ITS Mobile Application: A Case Study of the DARS Traffic Plus App in a Driving Simulator Environment
by Gregor Burger and Jože Guna
Sensors 2024, 24(15), 4948; https://doi.org/10.3390/s24154948 - 30 Jul 2024
Viewed by 1471
Abstract
The paper evaluates the DARS Traffic Plus mobile application within a realistic driving simulator environment to assess its impact on driving safety and user experience, particularly focusing on the Cooperative Intelligent Transport Systems (C-ITS). The study is positioned within the broader context of [...] Read more.
The paper evaluates the DARS Traffic Plus mobile application within a realistic driving simulator environment to assess its impact on driving safety and user experience, particularly focusing on the Cooperative Intelligent Transport Systems (C-ITS). The study is positioned within the broader context of integrating mobile technology in vehicular environments to enhance road safety by informing drivers about potential hazards in real time. A combination of experimental methods was employed, including a standardised user experience questionnaire (meCUE 2.0), measuring quantitative driving parameters and eye-tracking data within a driving simulator, and post-experiment interviews. The results indicate that the mobile application significantly improved drivers’ safety perception, particularly when notifications about hazardous locations were received. Notifications displayed at the top of the mobile screen with auditory cues were deemed most effective. The study concludes that mobile applications like DARS Traffic Plus can play a crucial role in enhancing road safety by effectively communicating hazards to drivers, thereby potentially reducing road accidents and improving overall traffic safety. Screen viewing was kept below the safety threshold, affirming the app’s efficacy in delivering crucial information without distraction. These findings support the integration of C-ITS functionalities into mobile applications as a means to augment older vehicle technologies and extend the safety benefits to a broader user base. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

19 pages, 3948 KiB  
Article
Design of New BLE GAP Roles for Vehicular Communications
by Antonio Perez-Yuste, Jordi Pitarch-Blasco, Felix Alejandro Falcon-Darias and Neftali Nuñez
Sensors 2024, 24(15), 4835; https://doi.org/10.3390/s24154835 - 25 Jul 2024
Cited by 2 | Viewed by 1548
Abstract
Bluetooth Low Energy (BLE) is a prominent short-range wireless communication protocol widely extended for communications and sensor systems in consumer electronics and industrial applications, ranging from manufacturing to retail and healthcare. The BLE protocol provides four generic access profile (GAP) roles when it [...] Read more.
Bluetooth Low Energy (BLE) is a prominent short-range wireless communication protocol widely extended for communications and sensor systems in consumer electronics and industrial applications, ranging from manufacturing to retail and healthcare. The BLE protocol provides four generic access profile (GAP) roles when it is used in its low-energy version, i.e., ver. 4 and beyond. GAP roles control connections and allow BLE devices to interoperate each other. They are defined by the Bluetooth special interest group (SIG) and are primarily oriented to connect peripherals wirelessly to smartphones, laptops, and desktops. Consequently, the existing GAP roles have characteristics that do not fit well with vehicular communications in cooperative intelligent transport systems (C-ITS), where low-latency communications in high-density environments with stringent security demands are required. This work addresses this gap by developing two new GAP roles, defined at the application layer to meet the specific requirements of vehicular communications, and by providing a service application programming interface (API) for developers of vehicle-to-everything (V2X) applications. We have named this new approach ITS-BLE. These GAP roles are intended to facilitate BLE-based solutions for real-world scenarios on roads, such as detecting road traffic signs or exchanging information at toll booths. We have developed a prototype able to work indistinctly as a unidirectional or bidirectional communication device, depending on the use case. To solve security risks in the exchange of personal data, BLE data packets, here called packet data units (PDU), are encrypted or signed to guarantee either privacy when sharing sensitive data or authenticity when avoiding spoofing, respectively. Measurements taken and their later evaluation demonstrated the feasibility of a V2X BLE network consisting of picocells with a radius of about 200 m. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

21 pages, 4013 KiB  
Article
The Impacts of Centralized Control on Mixed Traffic Network Performance: A Strategic Games Analysis
by Areti Kotsi, Ioannis Politis and Evangelos Mitsakis
Sustainability 2024, 16(15), 6343; https://doi.org/10.3390/su16156343 - 24 Jul 2024
Cited by 2 | Viewed by 1653
Abstract
Cooperative Intelligent Transport Systems (C-ITS) address contemporary transportation challenges, as Connected Vehicles (CVs) can play a pivotal role in enhancing efficiency and safety. The role of central governing authorities in shaping traffic management policies for CVs influences decision-making processes and system performance. In [...] Read more.
Cooperative Intelligent Transport Systems (C-ITS) address contemporary transportation challenges, as Connected Vehicles (CVs) can play a pivotal role in enhancing efficiency and safety. The role of central governing authorities in shaping traffic management policies for CVs influences decision-making processes and system performance. In this work, the role of central governing authorities in the traffic management of a mixed traffic network is examined, integrating System Optimum principles with game theory. More specifically, we introduce and develop a framework that models and analyses the strategic interactions between different stakeholders in a mixed traffic environment, considering central governing authorities with varying levels of control. The results indicate how the various levels of control of a central governing authority may have an impact on the network in terms of traffic measures. Through a strategic games analysis, the trade-offs associated with centralized control mechanisms are demonstrated and recommendations are offered for policymakers and practitioners to optimize traffic management strategies. Full article
Show Figures

Figure 1

25 pages, 19736 KiB  
Article
Enhancing Autonomous Driving Robot Systems with Edge Computing and LDM Platforms
by Jeongmin Moon, Dongwon Hong, Jungseok Kim, Suhong Kim, Soomin Woo, Hyeongju Choi and Changjoo Moon
Electronics 2024, 13(14), 2740; https://doi.org/10.3390/electronics13142740 - 12 Jul 2024
Cited by 6 | Viewed by 4274
Abstract
The efficient operation and interaction of autonomous robots play crucial roles in various fields, e.g., security, environmental monitoring, and disaster response. For these purposes, processing large volumes of sensor data and sharing data between robots is essential; however, processing such large data in [...] Read more.
The efficient operation and interaction of autonomous robots play crucial roles in various fields, e.g., security, environmental monitoring, and disaster response. For these purposes, processing large volumes of sensor data and sharing data between robots is essential; however, processing such large data in an on-device environment for robots results in substantial computational resource demands, causing high battery consumption and heat issues. Thus, this study addresses challenges related to processing large volumes of sensor data and the lack of dynamic object information sharing among autonomous robots and other mobility systems. To this end, we propose an Edge-Driving Robotics Platform (EDRP) and a Local Dynamic Map Platform (LDMP) based on 5G mobile edge computing and Kubernetes. The proposed EDRP implements the functions of autonomous robots based on a microservice architecture and offloads these functions to an edge cloud computing environment. The LDMP collects and shares information about dynamic objects based on the ETSI TR 103 324 standard, ensuring cooperation among robots in a cluster and compatibility with various Cooperative-Intelligent Transport System (C-ITS) components. The feasibility of operating a large-scale autonomous robot offloading system was verified in experimental scenarios involving robot autonomy, dynamic object collection, and distribution by integrating real-world robots with an edge computing–based offloading platform. Experimental results confirmed the potential of dynamic object collection and dynamic object information sharing with C-ITS environment components based on LDMP. Full article
(This article belongs to the Special Issue Fog/Edge/Cloud Computing in the Internet of Things)
Show Figures

Figure 1

29 pages, 4818 KiB  
Article
Optimizing Hybrid V2X Communication: An Intelligent Technology Selection Algorithm Using 5G, C-V2X PC5 and DSRC
by Ihtisham Khalid, Vasilis Maglogiannis, Dries Naudts, Adnan Shahid and Ingrid Moerman
Future Internet 2024, 16(4), 107; https://doi.org/10.3390/fi16040107 - 23 Mar 2024
Cited by 10 | Viewed by 3999
Abstract
Cooperative communications advancements in Vehicular-to-Everything (V2X) are bolstering the autonomous driving paradigm. V2X nodes are connected through communication technology, such as a short-range communication mode (Dedicated Short Range Communication (DSRC) and Cellular-V2X) or a long-range communication mode (Uu). Conventional vehicular networks employ static [...] Read more.
Cooperative communications advancements in Vehicular-to-Everything (V2X) are bolstering the autonomous driving paradigm. V2X nodes are connected through communication technology, such as a short-range communication mode (Dedicated Short Range Communication (DSRC) and Cellular-V2X) or a long-range communication mode (Uu). Conventional vehicular networks employ static wireless vehicular communication technology without considering the traffic load on any individual V2X communication technology and the traffic dynamics in the vicinity of the V2X node, and are hence inefficient. In this study, we investigate hybrid V2X communication and propose an autonomous and intelligent technology selection algorithm using a decision tree. The algorithm uses the information from the received Cooperative Intelligent Transport Systems (C-ITS) Cooperative Awareness Messages (CAMs) to collect statistics such as inter vehicular distance, one-way end-to-end latency and CAM density. These statistics are then used as input for the decision tree for selecting the appropriate technology (DSRC, C-V2X PC5 or 5G) for the subsequent scheduled C-ITS message transmission. The assessment of the intelligent hybrid V2X algorithm’s performance in our V2X test setup demonstrates enhancements in one-way end-to-end latency, reliability, and packet delivery rate when contrasted with the conventional utilization of static technology. Full article
(This article belongs to the Special Issue Vehicular Networking in Intelligent Transportation Systems)
Show Figures

Graphical abstract

13 pages, 3638 KiB  
Article
Evaluating the Impact of V2V Warning Information on Driving Behavior Modification Using Empirical Connected Vehicle Data
by Hoseon Kim, Jieun Ko, Aram Jung and Seoungbum Kim
Appl. Sci. 2024, 14(6), 2625; https://doi.org/10.3390/app14062625 - 21 Mar 2024
Cited by 1 | Viewed by 1401
Abstract
A connected vehicle (CV) enables vehicles to communicate not only with other vehicles but also the road infrastructure based on wireless communication technologies. A road system with CVs, which is often referred to as a cooperative intelligent transportation system (C-ITS), provides drivers with [...] Read more.
A connected vehicle (CV) enables vehicles to communicate not only with other vehicles but also the road infrastructure based on wireless communication technologies. A road system with CVs, which is often referred to as a cooperative intelligent transportation system (C-ITS), provides drivers with road and traffic condition information using an in-vehicle warning system. Road environments with CVs induce drivers to reduce their speed while increasing the spacing or changing lanes to avoid potential risks downstream. Such avoidance maneuvers can be considered to improve driving behavior from a traffic safety point of view. This study seeks to quantitatively evaluate the effect of in-vehicle warning information using per-vehicle data (PVD) collected from freeway C-ITSs. The PVD are reproduced to extract the speed–spacing relationship and are evaluated to determine whether the warning information induces drivers to drive in a conservative way. This study reveals that the in-vehicle warning prompts drivers to increase the spacing while decreasing their speed in the majority of samples. The rate of conservative driving behavior tends to increase during the initial operation period, but no significant changes were observed after this period; that is, the reliability of in-vehicle warning information is not constant in the CV environment. Full article
(This article belongs to the Special Issue Advances in Intelligent Transportation Systems)
Show Figures

Figure 1

26 pages, 2138 KiB  
Article
Protecting Hybrid ITS Networks: A Comprehensive Security Approach
by Ricardo Severino, José Simão, Nuno Datia and António Serrador
Future Internet 2023, 15(12), 388; https://doi.org/10.3390/fi15120388 - 30 Nov 2023
Cited by 1 | Viewed by 2982
Abstract
Cooperative intelligent transport systems (C-ITS) continue to be developed to enhance transportation safety and sustainability. However, the communication of vehicle-to-everything (V2X) systems is inherently open, leading to vulnerabilities that attackers can exploit. This represents a threat to all road users, as security failures [...] Read more.
Cooperative intelligent transport systems (C-ITS) continue to be developed to enhance transportation safety and sustainability. However, the communication of vehicle-to-everything (V2X) systems is inherently open, leading to vulnerabilities that attackers can exploit. This represents a threat to all road users, as security failures can lead to privacy violations or even fatalities. Moreover, a high fatality rate is correlated with soft-mobility road users. Therefore, when developing C-ITS systems, it is important to broaden the focus beyond connected vehicles to include soft-mobility users and legacy vehicles. This work presents a new approach developed in the context of emerging hybrid networks, combining intelligent transport systems operating in 5.9 GHz (ITS-G5) and radio-mobile cellular technologies. Two protocols were implemented and evaluated to introduce security guarantees (such as privacy and integrity) in communications within the developed C-ITS hybrid environment. As a result, this work securely integrates G5-connected ITS stations and soft-mobility users through a smartphone application via cellular networks. Commercial equipment was used for this goal, including on-board and roadside units. Computational, transmission and end-to-end latency were used to assess the system’s performance. Implemented protocols introduce an additional 11% end-to-end latency in hybrid communications. Moreover, workflows employing hybrid communications impose, on average, an extra 28.29 ms of end-to-end latency. The proposal shows promise, as it reaches end-to-end times below the latency requirements imposed in most C-ITS use cases. Full article
(This article belongs to the Special Issue Inter-Vehicle Communication Protocols and Their Applications)
Show Figures

Figure 1

15 pages, 3220 KiB  
Article
Road-Side Unit Anomaly Detection
by Mohamed-Lamine Benzagouta, Hasnaâ Aniss, Hacène Fouchal and Nour-Eddin El Faouzi
Vehicles 2023, 5(4), 1467-1481; https://doi.org/10.3390/vehicles5040080 - 20 Oct 2023
Cited by 1 | Viewed by 1731
Abstract
Actors of the Cooperative Intelligent Transport Systems (C-ITS) generate various amounts of data. Useful information on various issues such as anomalies, failures, road profiles, etc., could be revealed from the analysis of these data. The analysis, could be managed by operators and vehicles, [...] Read more.
Actors of the Cooperative Intelligent Transport Systems (C-ITS) generate various amounts of data. Useful information on various issues such as anomalies, failures, road profiles, etc., could be revealed from the analysis of these data. The analysis, could be managed by operators and vehicles, and its output could be very helpful for future decision making. In this study, we collected real data extracted from road operators. We analyzed these streams in order to verify whether abnormal behaviors could be observed in the data. Our main target was a very sensitive C-ITS failure, which is when a road-side unit (RSU) experiences transmission failure. The detection of such failure is to be achieved by end users (vehicles), which in turn would inform road operators which would then recover the failure. The data we analyzed were collected from various roads in Europe (France, Germany, and Italy) with the aim of studying the RSUs’ behavior. Our mechanism offers compelling results regarding the early detection of RSU failures. We also proposed a new C-ITS message dedicated to raise alerts to road operators when required. Full article
Show Figures

Figure 1

20 pages, 2747 KiB  
Article
Disaggregate Modelling for Estimating Location Choice of Safe and Secure Truck Parking Areas: A Case Study
by Marina Kouta and Yorgos Stephanedes
Sustainability 2023, 15(20), 15008; https://doi.org/10.3390/su152015008 - 18 Oct 2023
Viewed by 1687
Abstract
Responding to the increasing need for safety and security in road freight transport, and to targeted legislation specifying the availability of freight drivers’ rest areas, this paper proposes a plan and a model for deployment of safe and secure parking areas for truck [...] Read more.
Responding to the increasing need for safety and security in road freight transport, and to targeted legislation specifying the availability of freight drivers’ rest areas, this paper proposes a plan and a model for deployment of safe and secure parking areas for truck drivers. Disaggregate analysis within a stated preference and conjoint analysis framework leads to the modelling of truck parking area selection by each truck driver that registers in the system proposed in this research. The concept builds upon the Cooperative Intelligent Transport Systems (C-ITS) upgrading of the Trans-European Transport Network (TEN-T) infrastructure systems while adapting to novel transport and logistics needs in an operationally safe, secure, and efficient environment for the supply chain. The analysis is applied in the Orient/East-Med Corridor of the TEN-T and is supported by the clustering of available truck parking areas for each truck route in the application subnetwork. The personalised approach is scalable and can be integrated into platforms for safe and secure truck parking areas, thus facilitating their acceptance and increasing awareness by the end-users. From pilot implementation on the Hellenic motorways, functional evaluation of use cases indicates 94.4% estimated choice probability of the most suitable parking area by the pilot drivers. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

Back to TopTop