Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (318)

Search Parameters:
Keywords = congestion in communication systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 3734 KB  
Article
A Surrogate Modeling Approach for Aggregated Flexibility Envelopes in Transmission–Distribution Coordination: A Case Study on Resilience
by Marco Rossi, Andrea Pitto, Emanuele Ciapessoni and Giacomo Viganò
Energies 2025, 18(21), 5567; https://doi.org/10.3390/en18215567 - 22 Oct 2025
Abstract
The role of distributed energy resources in distribution networks is evolving to support system operation, facilitated by their participation in local flexibility markets. Future scenarios envision a significant share of low-power resources providing ancillary services to efficiently manage network congestions, offering a competitive [...] Read more.
The role of distributed energy resources in distribution networks is evolving to support system operation, facilitated by their participation in local flexibility markets. Future scenarios envision a significant share of low-power resources providing ancillary services to efficiently manage network congestions, offering a competitive alternative to conventional grid reinforcement. Additionally, the interaction between distribution and transmission systems enables the provision of flexibility services at higher voltage levels for various applications. In such cases, the aggregated flexibility of low-power resources is typically represented as a capability envelope at the interface between the distribution and transmission network, constructed by accounting for distribution grid constraints and subsequently communicated to the transmission system operator. This paper revisits this concept and introduces a novel approach for envelope construction. The proposed method is based on a surrogate model composed of a limited set of standard power flow components—loads, generators, and storage units—enhancing the integration of distribution network flexibility into transmission-level optimization frameworks. Notably, this advantage can potentially be achieved without significant modifications to the optimization tools currently available to grid operators. The effectiveness of the approach is demonstrated through a case study in which the adoption of distribution network surrogate models within a coordinated framework between transmission and distribution operators enables the provision of ancillary services for transmission resilience support. This results in improved resilience indicators and lower control action costs compared to conventional shedding schemes. Full article
(This article belongs to the Section F1: Electrical Power System)
15 pages, 1996 KB  
Article
Implementation of Acyclic Matching in Aerospace Technology for Honeycomb-Designed Satellite Constellations
by Saffren Sundher, Angel Dharmakkan, Govindarajan Arunachalam, Vidhya Mohanakrishnan and Manigandan Sekar
Mathematics 2025, 13(20), 3280; https://doi.org/10.3390/math13203280 - 14 Oct 2025
Viewed by 205
Abstract
Operational satellites are critical to modern aerospace infrastructure, supporting essential services such as communication, navigation, and global surveillance. However, the increasing density of satellites and space debris in Earth’s orbit has heightened the risk of collisions, thereby threatening network reliability. This study addresses [...] Read more.
Operational satellites are critical to modern aerospace infrastructure, supporting essential services such as communication, navigation, and global surveillance. However, the increasing density of satellites and space debris in Earth’s orbit has heightened the risk of collisions, thereby threatening network reliability. This study addresses the dual challenge of managing space debris and enhancing satellite network performance by applying the concept of acyclic matching from graph theory to satellite constellations modeled as honeycomb networks. Acyclic matching identifies edge subsets without shared nodes or cycles, enabling static signal rerouting through pre-computed, loop-free paths. This ensures fault tolerance and efficient resource allocation in increasingly complex satellite constellations. The proposed method derives the general solution for acyclic matching cardinality and determines the maximum matching set for n-dimensional honeycomb networks. This technique aligns with emerging trends in autonomous fault-tolerant systems and adaptive routing protocols, proving particularly relevant for large-scale satellite systems such as Starlink and global navigation constellations. By providing alternative communication paths in the event of satellite or link failures, the approach significantly enhances the scalability, reliability, and resilience of satellite networks, ensuring uninterrupted service and improved space traffic management in the face of rising orbital congestion. Full article
Show Figures

Figure 1

19 pages, 1327 KB  
Article
An IoT Architecture for Sustainable Urban Mobility: Towards Energy-Aware and Low-Emission Smart Cities
by Manuel J. C. S. Reis, Frederico Branco, Nishu Gupta and Carlos Serôdio
Future Internet 2025, 17(10), 457; https://doi.org/10.3390/fi17100457 - 4 Oct 2025
Viewed by 407
Abstract
The rapid growth of urban populations intensifies congestion, air pollution, and energy demand. Green mobility is central to sustainable smart cities, and the Internet of Things (IoT) offers a means to monitor, coordinate, and optimize transport systems in real time. This paper presents [...] Read more.
The rapid growth of urban populations intensifies congestion, air pollution, and energy demand. Green mobility is central to sustainable smart cities, and the Internet of Things (IoT) offers a means to monitor, coordinate, and optimize transport systems in real time. This paper presents an Internet of Things (IoT)-based architecture integrating heterogeneous sensing with edge–cloud orchestration and AI-driven control for green routing and coordinated Electric Vehicle (EV) charging. The framework supports adaptive traffic management, energy-aware charging, and multimodal integration through standards-aware interfaces and auditable Key Performance Indicators (KPIs). We hypothesize that, relative to a static shortest-path baseline, the integrated green routing and EV-charging coordination reduce (H1) mean travel time per trip by ≥7%, (H2) CO2 intensity (g/km) by ≥6%, and (H3) station peak load by ≥20% under moderate-to-high demand conditions. These hypotheses are tested in Simulation of Urban MObility (SUMO) with Handbook Emission Factors for Road Transport (HBEFA) emission classes, using 10 independent random seeds and reporting means with 95% confidence intervals and formal significance testing. The results confirm the hypotheses: average travel time decreases by approximately 9.8%, CO2 intensity by approximately 8%, and peak load by approximately 25% under demand multipliers ≥1.2 and EV shares ≥20%. Gains are attenuated under light demand, where congestion effects are weaker. We further discuss scalability, interoperability, privacy/security, and the simulation-to-deployment gap, and outline priorities for reproducible field pilots. In summary, a pragmatic edge–cloud IoT stack has the potential to lower congestion, reduce per-kilometer emissions, and smooth charging demand, provided it is supported by reliable data integration, resilient edge services, and standards-compliant interoperability, thereby contributing to sustainable urban mobility in line with the objectives of SDG 11 (Sustainable Cities and Communities). Full article
Show Figures

Figure 1

19 pages, 2205 KB  
Article
Final Implementation and Performance of the Cheia Space Object Tracking Radar
by Călin Bîră, Liviu Ionescu and Radu Hobincu
Remote Sens. 2025, 17(19), 3322; https://doi.org/10.3390/rs17193322 - 28 Sep 2025
Viewed by 354
Abstract
This paper presents the final implemented design and performance evaluation of the ground-based C-band Cheia radar system, developed to enhance Romania’s contribution to the EU Space Surveillance and Tracking (EU SST) network. All data used for performance analysis are real-time, real-life measurements of [...] Read more.
This paper presents the final implemented design and performance evaluation of the ground-based C-band Cheia radar system, developed to enhance Romania’s contribution to the EU Space Surveillance and Tracking (EU SST) network. All data used for performance analysis are real-time, real-life measurements of true spatial test objects orbiting Earth. The radar is based on two decommissioned 32 m satellite communication antennas already present at the Cheia Satellite Communication Center, that were retrofitted for radar operation in a quasi-monostatic architecture. A Linear Frequency Modulated Continuous Wave (LFMCW) Radar design was implemented, using low transmitted power (2.5 kW) and advanced software-defined signal processing for detection and tracking of Low Earth Orbit (LEO) targets. System validation involved dry-run acceptance tests and calibration campaigns with known reference satellites. The radar demonstrated accurate measurements of range, Doppler velocity, and angular coordinates, with the capability to detect objects with radar cross-sections as low as 0.03 m2 at slant ranges up to 1200 km. Tracking of medium and large Radar Cross Section (RCS) targets remained robust under both fair and adverse weather conditions. This work highlights the feasibility of re-purposing legacy satellite infrastructure for SST applications. The Cheia radar provides a cost-effective, EUSST-compliant performance solution using primarily commercial off-the-shelf components. The system strengthens the EU SST network while demonstrating the advantages of LFMCW radar architectures in electromagnetically congested environments. Full article
Show Figures

Figure 1

38 pages, 27011 KB  
Article
Passable: An Intelligent Traffic Light System with Integrated Incident Detection and Vehicle Alerting
by Ohoud Alzamzami, Zainab Alsaggaf, Reema AlMalki, Rawan Alghamdi, Amal Babour and Lama Al Khuzayem
Sensors 2025, 25(18), 5760; https://doi.org/10.3390/s25185760 - 16 Sep 2025
Viewed by 1476
Abstract
The advancement of Artificial Intelligence (AI) and the Internet of Things (IoT) has accelerated the development of Intelligent Transportation Systems (ITS) in smart cities, playing a crucial role in optimizing traffic flow, enhancing road safety, and improving the driving experience. With urban traffic [...] Read more.
The advancement of Artificial Intelligence (AI) and the Internet of Things (IoT) has accelerated the development of Intelligent Transportation Systems (ITS) in smart cities, playing a crucial role in optimizing traffic flow, enhancing road safety, and improving the driving experience. With urban traffic becoming increasingly complex, timely detection and response to congestion and accidents are critical to ensuring safety and situational awareness. This paper presents Passable, an intelligent and adaptive traffic light control system that monitors traffic conditions in real time using deep learning and computer vision. By analyzing images captured from cameras at traffic lights, Passable detects road incidents and dynamically adjusts signal timings based on current vehicle density. It also employs wireless communication to alert drivers and update a centralized dashboard accessible to traffic management authorities. A working prototype integrating both hardware and software components was developed and evaluated. Results demonstrate the feasibility and effectiveness of designing an adaptive traffic signal control system that integrates incident detection, instantaneous communication, and immediate reporting to the relevant authorities. Such a design can enhance traffic efficiency and contribute to road safety. Future work will involve testing the system with real-world vehicular communication technologies on multiple coordinated intersections while integrating pedestrian and emergency vehicle detection. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

27 pages, 4269 KB  
Article
Smart Mobility Education and Capacity Building for Sustainable Development: A Review and Case Study
by Alaa Khamis
Sustainability 2025, 17(17), 7999; https://doi.org/10.3390/su17177999 - 5 Sep 2025
Cited by 1 | Viewed by 1202
Abstract
Smart mobility has emerged as a transformative enabler for achieving the United Nations Sustainable Development Goals (SDGs), offering technological and systemic solutions to pressing urban challenges such as congestion, environmental degradation, accessibility, and economic inclusion. Realizing this potential, however, depends not only on [...] Read more.
Smart mobility has emerged as a transformative enabler for achieving the United Nations Sustainable Development Goals (SDGs), offering technological and systemic solutions to pressing urban challenges such as congestion, environmental degradation, accessibility, and economic inclusion. Realizing this potential, however, depends not only on technological maturity but also on robust education and capacity-building frameworks. This paper addresses two critical gaps: the absence of a systematic review of structured academic curricula, vocational training programs, and professional development pathways dedicated to smart mobility, and the lack of a formal approach to demonstrate how structured, research-oriented education can effectively bridge theory and practice. The review examines a wide spectrum of initiatives, including academic programs, industry training, challenge-based competitions, and community-driven platforms. The analysis shows significant progress in Europe and North America but also reveals important gaps, particularly the limited availability of structured initiatives in the Global South, the underrepresentation of accessibility and inclusivity, and the insufficient integration of governance, ethical AI, policy, and cybersecurity. A case study of the AI for Smart Mobility course, developed using a design science methodology, illustrates how research-oriented education can be operationalized in practice. Since 2020, the course has engaged hundreds of students and professionals, with project dissemination through the AI4SM Medium hub attracting more than 20,000 views and 11,000 reads worldwide. The findings highlight both the progress made and the persistent gaps in smart mobility education, underscoring the need for wider geographic reach, stronger emphasis on inclusivity and governance, and structured approaches that effectively link theory with practice. Full article
(This article belongs to the Special Issue Smart Mobility for Sustainable Development)
Show Figures

Figure 1

20 pages, 952 KB  
Article
Noise-Robust-Based Clock Parameter Estimation and Low-Overhead Time Synchronization in Time-Sensitive Industrial Internet of Things
by Long Tang, Fangyan Li, Zichao Yu and Haiyong Zeng
Entropy 2025, 27(9), 927; https://doi.org/10.3390/e27090927 - 3 Sep 2025
Viewed by 619
Abstract
Time synchronization is critical for task-oriented and time-sensitive Industrial Internet of Things (IIoT) systems. Nevertheless, achieving high-precision synchronization with low communication overhead remains a key challenge due to the constrained resources of IIoT devices. In this paper, we propose a single-timestamp time synchronization [...] Read more.
Time synchronization is critical for task-oriented and time-sensitive Industrial Internet of Things (IIoT) systems. Nevertheless, achieving high-precision synchronization with low communication overhead remains a key challenge due to the constrained resources of IIoT devices. In this paper, we propose a single-timestamp time synchronization scheme that significantly reduces communication overhead by utilizing the mechanism of AP to periodically collect sensor device data. The reduced communication overhead alleviates network congestion, which is essential for achieving low end-to-end latency in synchronized IIoT networks. Furthermore, to mitigate the impact of random delay noise on clock parameter estimation, we propose a noise-robust-based Maximum Likelihood Estimation (NR-MLE) algorithm that jointly optimizes synchronization accuracy and resilience to random delays. Specifically, we decompose the collected timestamp matrix into two low-rank matrices and use gradient descent to minimize reconstruction error and regularization, approximating the true signal and removing noise. The denoised timestamp matrix is then used to jointly estimate clock skew and offset via MLE, with the corresponding Cramér–Rao Lower Bounds (CRLBs) being derived. The simulation results demonstrate that the NR-MLE algorithm achieves a higher clock parameter estimation accuracy than conventional MLE and exhibits strong robustness against increasing noise levels. Full article
Show Figures

Figure 1

30 pages, 22956 KB  
Article
Optimizing Urban Traffic Efficiency and Safety via V2X: A Simulation Study Using the MOSAIC Platform
by Sebastian-Ioan Alupoaei and Constantin-Florin Caruntu
Sensors 2025, 25(17), 5418; https://doi.org/10.3390/s25175418 - 2 Sep 2025
Viewed by 942
Abstract
Urban growth and rising vehicle usage have intensified congestion, accidents, and environmental impact, exposing the limitations of traditional traffic management systems. This study introduces a dual-incident simulation framework to investigate the potential of Vehicle-to-Everything (V2X) technologies in enhancing urban mobility. Using the Eclipse [...] Read more.
Urban growth and rising vehicle usage have intensified congestion, accidents, and environmental impact, exposing the limitations of traditional traffic management systems. This study introduces a dual-incident simulation framework to investigate the potential of Vehicle-to-Everything (V2X) technologies in enhancing urban mobility. Using the Eclipse MOSAIC platform integrated with SUMO, a realistic network in Iași, Romania, was modeled under single- and dual-incident scenarios with three V2X penetration levels: 0%, 50%, and 100%. Unlike prior works that focus on single-incident cases or assume full penetration, our approach evaluates cascading disruptions under partial adoption, providing a more realistic transition path for mid-sized European cities. Key performance indicators, i.e., average speed, vehicle density, time loss, and waiting time, were calculated using mathematically defined formulas and validated across multiple simulation runs. Results demonstrate that full V2X deployment reduces average time loss by 18% and peak density by more than 70% compared to baseline conditions, while partial adoption delivers measurable yet limited benefits. The dual-incident scenario shows that V2X-enabled rerouting significantly mitigates cascading congestion effects. These contributions advance the state of the art by bridging microscopic vehicle dynamics with network-level communication modeling, offering quantitative insights for phased V2X implementation and the design of resilient, sustainable intelligent transportation systems. Full article
Show Figures

Figure 1

26 pages, 2329 KB  
Article
Federated Learning for Surveillance Systems: A Literature Review and AHP Expert-Based Evaluation
by Yongjoo Shin, Hansung Kim, Jaeyeong Jeong and Dongkyoo Shin
Electronics 2025, 14(17), 3500; https://doi.org/10.3390/electronics14173500 - 1 Sep 2025
Viewed by 1039
Abstract
This study explores the application of federated learning (FL) in security camera surveillance systems to overcome the structural limitations inherent in traditional centralized artificial intelligence (AI) training approaches, while simultaneously enhancing operational efficiency and data security. Conventional centralized AI models require the transmission [...] Read more.
This study explores the application of federated learning (FL) in security camera surveillance systems to overcome the structural limitations inherent in traditional centralized artificial intelligence (AI) training approaches, while simultaneously enhancing operational efficiency and data security. Conventional centralized AI models require the transmission of raw surveillance data from individual security camera units to a central server for model training, which poses significant challenges, including network congestion, a heightened risk of personal data leakage, and inadequate adaptation to localized environmental characteristics. These limitations are particularly critical in high-security environments such as military bases and government facilities, where reliability and real-time processing are paramount. In contrast, FL enables decentralized training by retaining data on local devices and sharing only model parameters with a central aggregator, thereby improving privacy preservation, reducing communication overhead, and facilitating adaptive, context-aware learning. This paper does not present a new federated learning algorithm or original experiment. Instead, it synthesizes existing research findings and applies the Analytic Hierarchy Process (AHP) to evaluate and prioritize critical factors for deploying FL in surveillance systems. By combining literature-based evidence with structured expert judgment, this study provides practical guidelines for real-world application. This paper identifies four key performance metrics—detection accuracy, false alarm rate, response time, and network load—and conducts a comparative analysis of FL and centralized AI-based approaches in the recent literature. In addition, the AHP is employed to evaluate expert survey data, quantitatively prioritizing eight critical factors for effective FL implementation. The results highlight detection accuracy and data security as the most significant concerns, indicating that FL presents a promising solution for future smart surveillance infrastructures. This research contributes to the advancement of AI-powered surveillance systems that are both high-performing and resilient under stringent privacy and operational constraints. Full article
Show Figures

Figure 1

21 pages, 4084 KB  
Article
Integration of Cloud-Based Central Telemedicine System and IoT Device Networks
by Parin Sornlertlamvanich, Chatdanai Phakaket, Panya Hantula, Sarunya Kanjanawattana, Nuntawut Kaoungku and Komsan Srivisut
Computers 2025, 14(9), 357; https://doi.org/10.3390/computers14090357 - 29 Aug 2025
Viewed by 789
Abstract
The growing challenges in healthcare services, such as hospital congestion and a persistent shortage of medical personnel, significantly impede effective service delivery. This particularly presents significant challenges for the continuous monitoring of patients with chronic diseases. In comparison, Internet of Things (IoT) based [...] Read more.
The growing challenges in healthcare services, such as hospital congestion and a persistent shortage of medical personnel, significantly impede effective service delivery. This particularly presents significant challenges for the continuous monitoring of patients with chronic diseases. In comparison, Internet of Things (IoT) based telemonitoring systems offer a promising solution to alleviate these challenges. However, transmitting sensitive and confidential patient health data requires a strong focus on end-to-end security. This includes securing sensitive data within the patient’s home network, during internet transmission, at the endpoint system, and managing sensitive data. In this study, we propose a secure and scalable architecture for a remote health monitoring system that integrates telemedicine technology with the IoT. The proposed solution included a portable remote health monitoring device, an IoT Gateway appliance (IoT GW) in the patient’s home, and an IoT Application Gateway Endpoint (App GW Endpoint) on a cloud infrastructure. A secure communication channel was established by implementing a multi-layered security protocol stack that uses HTTPS over Quick UDP Internet Connection (QUIC), with a focus on optimal security and compatibility, prioritizing cipher suites for data confidentiality and device authentication. The cloud architecture is designed based on the Well-Architected Framework principles to ensure security, high availability, and scalability. Our study shows that storing patient health information is reliable and efficient. Furthermore, the results for processing and transmission times clearly demonstrate that the additional encryption mechanisms have a negligible effect on data transmission latency, while significantly improving security. Full article
(This article belongs to the Section Cloud Continuum and Enabled Applications)
Show Figures

Figure 1

35 pages, 2863 KB  
Article
DeepSIGNAL-ITS—Deep Learning Signal Intelligence for Adaptive Traffic Signal Control in Intelligent Transportation Systems
by Mirabela Melinda Medvei, Alin-Viorel Bordei, Ștefania Loredana Niță and Nicolae Țăpuș
Appl. Sci. 2025, 15(17), 9396; https://doi.org/10.3390/app15179396 - 27 Aug 2025
Viewed by 1236
Abstract
Urban traffic congestion remains a major contributor to vehicle emissions and travel inefficiency, prompting the need for adaptive and intelligent traffic management systems. In response, we introduce DeepSIGNAL-ITS (Deep Learning Signal Intelligence for Adaptive Lights in Intelligent Transportation Systems), a unified framework that [...] Read more.
Urban traffic congestion remains a major contributor to vehicle emissions and travel inefficiency, prompting the need for adaptive and intelligent traffic management systems. In response, we introduce DeepSIGNAL-ITS (Deep Learning Signal Intelligence for Adaptive Lights in Intelligent Transportation Systems), a unified framework that leverages real-time traffic perception and learning-based control to optimize signal timing and reduce congestion. The system integrates vehicle detection via the YOLOv8 architecture at roadside units (RSUs) and manages signal control using Proximal Policy Optimization (PPO), guided by global traffic indicators such as accumulated vehicle waiting time. Secure communication between RSUs and cloud infrastructure is ensured through Transport Layer Security (TLS)-encrypted data exchange. We validate the framework through extensive simulations in SUMO across diverse urban settings. Simulation results show an average 30.20% reduction in vehicle waiting time at signalized intersections compared to baseline fixed-time configurations derived from OpenStreetMap (OSM). Furthermore, emissions assessed via the HBEFA-based model in SUMO reveal measurable reductions across pollutant categories, underscoring the framework’s dual potential to improve both traffic efficiency and environmental sustainability in simulated urban environments. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

24 pages, 1981 KB  
Article
A Lightweight Batch Authenticated Key Agreement Scheme Based on Fog Computing for VANETs
by Lihui Li, Huacheng Zhang, Song Li, Jianming Liu and Chi Chen
Symmetry 2025, 17(8), 1350; https://doi.org/10.3390/sym17081350 - 18 Aug 2025
Viewed by 456
Abstract
In recent years, fog-based vehicular ad hoc networks (VANETs) have become a hot research topic. Due to the inherent insecurity of open wireless channels between vehicles and fog nodes, establishing session keys through authenticated key agreement (AKA) protocols is critically important for securing [...] Read more.
In recent years, fog-based vehicular ad hoc networks (VANETs) have become a hot research topic. Due to the inherent insecurity of open wireless channels between vehicles and fog nodes, establishing session keys through authenticated key agreement (AKA) protocols is critically important for securing communications. However, existing AKA schemes face several critical challenges: (1) When a large number of vehicles initiate AKA requests within a short time window, existing schemes that process requests one by one individually incur severe signaling congestion, resulting in significant quality of service degradation. (2) Many AKA schemes incur excessive computational and communication overheads due to the adoption of computationally intensive cryptographic primitives (e.g., bilinear pairings and scalar multiplications on elliptic curve groups) and unreasonable design choices, making them unsuitable for the low-latency requirements of VANETs. To address these issues, we propose a lightweight batch AKA scheme based on fog computing. In our scheme, when a group of vehicles requests AKA sessions with the same fog node within the set time interval, the fog node aggregates these requests and, with assistance from the traffic control center, establishes session keys for all vehicles by a round of operations. It has significantly reduced the operational complexity of the entire system. Moreover, our scheme employs Lagrange interpolation and lightweight cryptographic tools, thereby significantly reducing both computational and communication overheads. Additionally, our scheme supports conditional privacy preservation and includes a revocation mechanism for malicious vehicles. Security analysis demonstrates that the proposed scheme meets the security and privacy requirements of VANETs. Performance evaluation indicates that our scheme outperforms existing state-of-the-art solutions in terms of efficiency. Full article
(This article belongs to the Special Issue Applications Based on Symmetry in Applied Cryptography)
Show Figures

Figure 1

23 pages, 718 KB  
Article
State-Aware Graph Dynamics for Urban Transport Systems with Topology-Based Rate Modulation
by Yiwei Shi, Chunyu Li, Wei Wang and Yaowen Hu
Mathematics 2025, 13(16), 2574; https://doi.org/10.3390/math13162574 - 12 Aug 2025
Viewed by 460
Abstract
We introduce a novel optimization method, the Bud Lifecycle Algorithm (BLA), and present a mathematical model for optimizing urban transportation systems, demonstrated through a Baltimore case study. Our approach centers on the Proximity Topology Attribute Model, which integrates topological graph properties with K-means [...] Read more.
We introduce a novel optimization method, the Bud Lifecycle Algorithm (BLA), and present a mathematical model for optimizing urban transportation systems, demonstrated through a Baltimore case study. Our approach centers on the Proximity Topology Attribute Model, which integrates topological graph properties with K-means clustering to partition city nodes and identify key activity areas via betweenness centrality. A simulated bridge collapse reveals significant impacts on insurance companies and transport users. To balance traffic efficiency with construction costs in public transport projects, we propose a multi-objective optimization model prioritizing transit hubs while minimizing expenses in congested zones. We introduce the Bud Lifecycle Algorithm (BLA) to enhance traditional Genetic Algorithm performance, achieving improvements in system coverage, cost-efficiency, and user satisfaction. Our findings suggest that expanding public transport networks and optimizing rail projects could substantially boost employment and tourism in West Baltimore. We propose the Smart Traffic Management System (STMS) and Community Traffic Safety Program (CTSP) to enhance traffic safety, reduce congestion, and improve residents’ quality of life. Full article
Show Figures

Figure 1

40 pages, 87432 KB  
Article
Optimizing Urban Mobility Through Complex Network Analysis and Big Data from Smart Cards
by Li Sun, Negin Ashrafi and Maryam Pishgar
IoT 2025, 6(3), 44; https://doi.org/10.3390/iot6030044 - 6 Aug 2025
Viewed by 1197
Abstract
Urban public transportation systems face increasing pressure from shifting travel patterns, rising peak-hour demand, and the need for equitable and resilient service delivery. While complex network theory has been widely applied to analyze transit systems, limited attention has been paid to behavioral segmentation [...] Read more.
Urban public transportation systems face increasing pressure from shifting travel patterns, rising peak-hour demand, and the need for equitable and resilient service delivery. While complex network theory has been widely applied to analyze transit systems, limited attention has been paid to behavioral segmentation within such networks. This study introduces a frequency-based framework that differentiates high-frequency (HF) and low-frequency (LF) passengers to examine how distinct user groups shape network structure, congestion vulnerability, and robustness. Using over 20 million smart-card records from Beijing’s multimodal transit system, we construct and analyze directed weighted networks for HF and LF users, integrating topological metrics, temporal comparisons, and community detection. Results reveal that HF networks are densely connected but structurally fragile, exhibiting lower modularity and significantly greater efficiency loss during peak periods. In contrast, LF networks are more spatially dispersed yet resilient, maintaining stronger intracommunity stability. Peak-hour simulation shows a 70% drop in efficiency and a 99% decrease in clustering, with HF networks experiencing higher vulnerability. Based on these findings, we propose differentiated policy strategies for each user group and outline a future optimization framework constrained by budget and equity considerations. This study contributes a scalable, data-driven approach to integrating passenger behavior with network science, offering actionable insights for resilient and inclusive transit planning. Full article
(This article belongs to the Special Issue IoT-Driven Smart Cities)
Show Figures

Figure 1

31 pages, 6206 KB  
Article
High-Redundancy Design and Application of Excitation Systems for Large Hydro-Generator Units Based on ATS and DDS
by Xiaodong Wang, Xiangtian Deng, Xuxin Yue, Haoran Wang, Xiaokun Li and Xuemin He
Electronics 2025, 14(15), 3013; https://doi.org/10.3390/electronics14153013 - 29 Jul 2025
Viewed by 522
Abstract
The large-scale integration of stochastic renewable energy sources necessitates enhanced dynamic balancing capabilities in power systems, positioning hydropower as a critical balancing asset. Conventional excitation systems utilizing hot-standby dual-redundancy configurations remain susceptible to unit shutdown events caused by regulator failures. To mitigate this [...] Read more.
The large-scale integration of stochastic renewable energy sources necessitates enhanced dynamic balancing capabilities in power systems, positioning hydropower as a critical balancing asset. Conventional excitation systems utilizing hot-standby dual-redundancy configurations remain susceptible to unit shutdown events caused by regulator failures. To mitigate this vulnerability, this study proposes a peer-to-peer distributed excitation architecture integrating asynchronous traffic shaping (ATS) and Data Distribution Service (DDS) technologies. This architecture utilizes control channels of equal priority and achieves high redundancy through cross-communication between discrete acquisition and computation modules. This research advances three key contributions: (1) design of a peer-to-peer distributed architectural framework; (2) development of a real-time data interaction methodology combining ATS and DDS, incorporating cross-layer parameter mapping, multi-priority queue scheduling, and congestion control mechanisms; (3) experimental validation of system reliability and redundancy through dynamic simulation. The results confirm the architecture’s operational efficacy, delivering both theoretical foundations and practical frameworks for highly reliable excitation systems. Full article
(This article belongs to the Special Issue Power Electronics in Renewable Systems)
Show Figures

Figure 1

Back to TopTop