Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (68)

Search Parameters:
Keywords = confining pressure unloading

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1710 KiB  
Article
On Gas Seepage Regularity in Different Structural Bituminous Coal and Its Influence on Outburst-Coal Breaking
by Jie Zheng, Linfan Chen, Gun Huang, Jun Wang and Weile Geng
Appl. Sci. 2025, 15(13), 7167; https://doi.org/10.3390/app15137167 - 25 Jun 2025
Viewed by 221
Abstract
Coal and gas outburst remains a critical and persistent challenge in coal extraction, posing a profound threat for mine safety. The underlying mechanisms of such disaster, particularly the gas-driven coal fragmentation, continue to elude comprehensive understanding. To explore this problem, in this paper, [...] Read more.
Coal and gas outburst remains a critical and persistent challenge in coal extraction, posing a profound threat for mine safety. The underlying mechanisms of such disaster, particularly the gas-driven coal fragmentation, continue to elude comprehensive understanding. To explore this problem, in this paper, gas seepage regularity in different structural bituminous coal and its influence on outburst-coal breaking were investigated through strength tests, isothermal adsorption tests, and gas seepage tests of stressed coal under various conditions. The results indicated that coal permeability decreased as axial stress, confining pressure, and gas kinetic diameter increased. That meant outburst-induced abrupt stress unloading and coal matrix destabilization changed gas seepage characteristics. As a result, a self-reinforcing cycle effect where outburst-coal breaking and gas seepage are mutually stimulated was formed in a short time period when outbursts initiated, which further promoted outburst-coal breaking and outburst initiation. The findings of this study enhance our understanding of the mechanism of gas participating in coal fragmentation during outbursts, which are significantly conducive to gas disaster prevention, sustainable coal production, and efficient CBM development, further ensuring global energy security. Full article
Show Figures

Figure 1

19 pages, 2791 KiB  
Article
Experimental Investigation of Mechanical Behavior and Damage Evolution of Coal Materials Subjected to Cyclic Triaxial Loads with Increasing Amplitudes
by Zongwu Song, Chun’an Tang and Hongyuan Liu
Materials 2025, 18(13), 2940; https://doi.org/10.3390/ma18132940 - 21 Jun 2025
Viewed by 480
Abstract
As a part of the mining-induced stress redistribution process during coal mining, the repeated loading and unloading process with increasing peak stresses will cause more severe deformation and damage to mining roadways, which is different from the findings in other underground engineering practices. [...] Read more.
As a part of the mining-induced stress redistribution process during coal mining, the repeated loading and unloading process with increasing peak stresses will cause more severe deformation and damage to mining roadways, which is different from the findings in other underground engineering practices. Consequently, cyclic triaxial compression tests with increasing amplitudes were carried out to investigate the mechanical behavior, acoustic emission (AE) characteristics, and damage evolution of coal materials. It is found that peak deviatoric stress and axial residual strain at the failure of coal specimens increase with increasing confining pressures, while the changes in circumferential strain are not obvious. Moreover, the failure patterns of coal specimens exhibit shear failure due to the constraint of confining pressures while some local tensile cracks occur near the shear bands at both ends of the specimens. After that, the damage evolution of coal specimens was analyzed against the regularity of AE counts and energies to develop a damage evolution model. It is concluded that the damage evolution model can not only quantify the deformation and failure process of the coal specimens under cyclic loads with increasing amplitudes but also takes into account both the initial damage due to natural defects and the induced damage by the cyclic loads in previous cycles. Full article
Show Figures

Figure 1

18 pages, 4203 KiB  
Article
Long-Term Anisotropic Mechanical Characterization of Layered Shale—An Experimental Study for the BaoKang Tunnel of the Zhengwan Railway, China
by Jun Zhao, Changming Li and Wei Huang
Processes 2025, 13(6), 1900; https://doi.org/10.3390/pr13061900 - 16 Jun 2025
Viewed by 424
Abstract
With the further implementation and development of the Western Development Strategy, studying the mechanical behavior and deformation characteristics of deep-buried tunnels in layered hard rock under high ground stress conditions holds considerable engineering significance. To study the mechanical properties and long-term deformation and [...] Read more.
With the further implementation and development of the Western Development Strategy, studying the mechanical behavior and deformation characteristics of deep-buried tunnels in layered hard rock under high ground stress conditions holds considerable engineering significance. To study the mechanical properties and long-term deformation and failure characteristics of different bedding stratified rocks, this research employed an MTS815 electro-hydraulic servo rock testing system and a French TOP rheometer. Triaxial compression tests, rheological property tests, and long-term cyclic and unloading tests were conducted on shale samples under varying confining pressures and bedding angles. The results indicate that (1) under triaxial compression, shale demonstrates pronounced anisotropic behavior. When the confining pressure is constant, the peak strength of the rock sample exhibits a “U”-shaped variation with the bedding angle (its minimum value at 60°). For a fixed bedding angle, the peak strength of the rock sample progressively increases as the confining pressure rises. (2) The mode of shale failure varies with the angle: at 0°, shale exhibits conjugate shear failure; at 30°, shear slip failure along the bedding is controlled by the bedding weak plane; at 60° and 90°, failure occurs through the bedding. (3) During the creep process of layered shale, brittle failure characteristics are evident, with microcracks within the sample gradually failing at stress concentration points. The decelerated and stable creep stages are prominent; while the accelerated creep stage is less noticeable, the creep rate increases with increasing stress level. (4) Under low confining pressure, the peak strength during cyclic loading and unloading creep processes is lower than that of conventional triaxial tests when the bedding plane dip angles are 0° and 30°, which is the opposite at 60° and 90°. (5) In the cyclic loading and unloading process, Poisson’s ratio gradually increases, whereas the elastic modulus, shear modulus, and bulk modulus gradually decrease. Full article
Show Figures

Figure 1

35 pages, 8248 KiB  
Article
Pre-Failure Deformation Response and Dilatancy Damage Characteristics of Beishan Granite Under Different Stress Paths
by Yang Han, Dengke Zhang, Zheng Zhou, Shikun Pu, Jianli Duan, Lei Gao and Erbing Li
Processes 2025, 13(6), 1892; https://doi.org/10.3390/pr13061892 - 15 Jun 2025
Viewed by 345
Abstract
Different from general underground engineering, the micro-damage prior to failure of the surrounding rock has a significant influence on the geological disposal of high-level radioactive waste. However, the quantitative research on pre-failure dilatancy damage characteristics and stress path influence of hard brittle rocks [...] Read more.
Different from general underground engineering, the micro-damage prior to failure of the surrounding rock has a significant influence on the geological disposal of high-level radioactive waste. However, the quantitative research on pre-failure dilatancy damage characteristics and stress path influence of hard brittle rocks under high stress levels is insufficient currently, and especially, the stress path under simultaneous unloading of axial and confining pressures is rarely discussed. Therefore, three representative mechanical experimental studies were conducted on the Beishan granite in the pre-selected area for high-level radioactive waste (HLW) geological disposal in China, including increasing axial pressure with constant confining pressure (path I), increasing axial pressure with unloading confining pressure (path II), and simultaneous unloading of axial and confining pressures (path III). Using the deviatoric stress ratio as a reference, the evolution laws and characteristics of stress–strain relationships, deformation modulus, generalized Poisson’s ratio, dilatancy index, and dilation angle during the path bifurcation stage were quantitatively analyzed and compared. The results indicate that macro-deformation and the plastic dilatancy process exhibit strong path dependency. The critical value and growth gradient of the dilatancy parameter for path I are both the smallest, and the suppressive effect of the initial confining pressure is the most significant. The dilation gradient of path II is the largest, but the degree of dilatancy before the critical point is the smallest due to its susceptibility to fracture. The critical values of the dilatancy parameters for path III are the highest and are minimally affected by the initial confining pressure, indicating the most significant dilatancy properties. Establish the relationship between the deformation parameters and the crack-induced volumetric strain and define the damage variable accordingly. The critical damage state and the damage accumulation process under various stress paths were examined in detail. The results show that the damage evolution is obviously differentiated with the bifurcation of the stress paths, and three different types of damage curve clusters are formed, indicating that the damage accumulation path is highly dependent on the stress path. The research findings quantitatively reveal the differences in deformation response and damage characteristics of Beishan granite under varying stress paths, providing a foundation for studying the nonlinear mechanical behavior and damage failure mechanisms of hard brittle rock under complex loading conditions. Full article
Show Figures

Figure 1

14 pages, 3243 KiB  
Article
Study on the Load-Bearing and Mechanical Properties of Coal Specimens Under Uniaxial Compression with Polyurea Spraying
by Shuwen Cao, Jinhong Yang and Dingyi Hao
Appl. Sci. 2025, 15(7), 3486; https://doi.org/10.3390/app15073486 - 22 Mar 2025
Viewed by 297
Abstract
Polyurea spraying is a new temporary support technology that can significantly enhance the mechanical properties of coal. However, the mechanism of interactions between the polymer coating and coal is unclear. In this study, the No. 4 non-stick coal from Mengcun Coal Mine and [...] Read more.
Polyurea spraying is a new temporary support technology that can significantly enhance the mechanical properties of coal. However, the mechanism of interactions between the polymer coating and coal is unclear. In this study, the No. 4 non-stick coal from Mengcun Coal Mine and polyurea material were used to conduct experiments and numerical simulations. The tests and simulations were used to examine the role of the sprayed coating in the formation of residual strength and the unloading and rebound mechanism after brittle failure of the coal. The results showed that the presence of the polyurea coating had a significant impact on the mechanical behavior of the coal. The specimens sprayed with polyurea were affected by the confining pressure applied by the coating and the internal friction of the coal; consequently, the specimens exhibited certain plastic characteristics and maintained their residual strength after experiencing brittle failure. The polyurea coating not only effectively prevents the loosening and slippage of the coal but also improves the stability of the coal by altering its mechanical behavior during the loading process. This study lays the foundation for popularizing and applying polyurea spraying technology in coal mine support while providing rich data to support further theoretical research. Full article
Show Figures

Figure 1

20 pages, 5869 KiB  
Article
Research on the Long-Term Mechanical Behavior and Constitutive Model of Cemented Tailings Backfill Under Dynamic Triaxial Loading
by Yuye Tan, Jinshuo Yang, Yuchao Deng, Yunpeng Kou, Yiding Li and Weidong Song
Minerals 2025, 15(3), 276; https://doi.org/10.3390/min15030276 - 8 Mar 2025
Cited by 1 | Viewed by 584
Abstract
Cemented tailings backfill (CTB) plays an important role in mine filling operations. In order to study the long-term stability of CTB under the dynamic disturbance of deep wells, ultrafine cemented tailings backfill was taken as the research object, and the true triaxial hydraulic [...] Read more.
Cemented tailings backfill (CTB) plays an important role in mine filling operations. In order to study the long-term stability of CTB under the dynamic disturbance of deep wells, ultrafine cemented tailings backfill was taken as the research object, and the true triaxial hydraulic fracturing antireflection-wetting dynamic experimental system of coal and rock was used to carry out a static true triaxial compression test, a true triaxial compression test under unidirectional disturbance, and a true triaxial compression test under bidirectional disturbance. At the same time, the acoustic emission monitoring and positioning tests of the CTB were carried out during the compression test. The evolution law of the mechanical parameters and deformation and failure characteristics of CTB under different confining pressures is analyzed, and the damage constitutive model of the filling body is established using stochastic statistical theory. The results show that the compressive strength of CTB increases with an increase in intermediate principal stress. According to the change process of the acoustic emission ringing count over time, the triaxial compression test can be divided into four stages: the initial active stage, initial calm stage, pre-peak active stage, and post-peak calm stage. When the intermediate principal stress is small, the specimen is dominated by shear failure. With an increase in the intermediate principal stress, the specimen changes from brittle failure to plastic failure. The deformation and failure strength of CTB are closely related to its loading and unloading methods. Under a certain stress intensity, compared with unidirectional unloading, bidirectional unloading produces a greater deformation of the rock mass, and the failure strength of the rock mass is higher. This study only considers the confining pressure within the compressive limit of the specimen. Future research can be directed at a wider range of stresses to improve the applicability and reliability of the research results. Full article
(This article belongs to the Special Issue Advances in Mine Backfilling Technology and Materials)
Show Figures

Figure 1

21 pages, 103718 KiB  
Article
The Fractal Dimension, Structure Characteristics, and Damage Effects of Multi-Scale Cracks on Sandstone Under Triaxial Compression
by Pengjin Yang, Shengjun Miao, Kesheng Li, Xiangfan Shang, Pengliang Li and Meifeng Cai
Fractal Fract. 2025, 9(1), 51; https://doi.org/10.3390/fractalfract9010051 - 17 Jan 2025
Cited by 1 | Viewed by 1129
Abstract
To study the influence of the spatial distribution and structure of multi-scale cracks on the mechanical behavior of rocks, triaxial compression tests and cyclic triaxial complete loading and unloading tests were conducted on sandstone, with real-time wave velocity monitoring and CT scan testing. [...] Read more.
To study the influence of the spatial distribution and structure of multi-scale cracks on the mechanical behavior of rocks, triaxial compression tests and cyclic triaxial complete loading and unloading tests were conducted on sandstone, with real-time wave velocity monitoring and CT scan testing. The quantitative classification criteria for multi-scale cracks on sandstone were established, and the constraint effect of confining pressure was analyzed. The crack with a length less than 0.1 mm is considered a small-scale crack, 0.1–1 mm is a medium-scale crack, and larger than 1 mm is a large-scale crack. As the confining pressure increases, the spatial fractal dimension of large-scale cracks decreases, while that of medium-scale cracks increases, and that of small-scale cracks remains stable. The respective nonlinear models of the aspect ratio were established with the length and density of multi-scale cracks. The results indicate significant differences in the effects of cracks of different scales on rock damage. The distribution density of medium-scale cracks in the failed specimen is higher, which is the main reason to produce damage. The small-scale cracks mainly originate from relatively uniform initial cracks in rocks, mainly distributed in medium-density and low-density areas. The results of this research provide important insights into how to quantitatively evaluate the damage of rocks. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

22 pages, 8033 KiB  
Article
Characteristics of Energy Evolution and Failure Mechanisms in Sandstone Subject to Triaxial Cyclic Loading and Unloading Conditions
by Jinrui Zhang, Yi Luo, Hangli Gong, Xianqi Zhang and Shankun Zhao
Appl. Sci. 2024, 14(19), 8693; https://doi.org/10.3390/app14198693 - 26 Sep 2024
Viewed by 1138
Abstract
This study investigates the energy dynamics of sandstone subjected to failure in conditions typical of deep underground construction. Research was conducted using both standard triaxial compression and cyclic loading–unloading techniques at six distinct confining pressures, with the objective of elucidating the deformation and [...] Read more.
This study investigates the energy dynamics of sandstone subjected to failure in conditions typical of deep underground construction. Research was conducted using both standard triaxial compression and cyclic loading–unloading techniques at six distinct confining pressures, with the objective of elucidating the deformation and failure processes of rock materials. The tests demonstrated that, regardless of the stress path, sandstone primarily fails through shear under different confining pressures, which also reduces the formation of secondary cracks. The energy transformation observed during cyclic loading and unloading processes exhibits a distinctive peak-like distribution, marked by an inflection point that indicates changes in energy distribution. In the initial stages of the loading cycle, the energy profile of the rock increases, characterized by a condition in which the energy stored elastically exceeds the energy dissipated. Nevertheless, subsequent to reaching peak stress, there is a rapid transmutation of elastic strain energy into other forms, culminating in a pronounced elevation in the ratio of dissipated energy, which ultimately achieves a state of equilibrium influenced by the confining pressures. The study introduces the energy consumption ratio (Ke) as a metric for assessing rock damage accumulation and stability, noting a critical pattern where Ke decreases and then spikes at the rock’s failure point, with K = 1 identified as the critical threshold for failure. This comprehensive analysis illuminates the intricate relationship between energy distribution patterns and the stability of rock structures, thereby enhancing our understanding of failure mechanisms from an energetic perspective. Full article
Show Figures

Figure 1

20 pages, 9895 KiB  
Article
Quantitative Calculation of Crack Stress Thresholds Based on Volumetric Strain Decomposition for Siltstone and Granite
by Mingchun Liang, Shengjun Miao, Meifeng Cai, Fei Li and Zejing Liu
Appl. Sci. 2024, 14(15), 6473; https://doi.org/10.3390/app14156473 - 25 Jul 2024
Viewed by 1342
Abstract
Crack stress thresholds in rocks have long been a popular subject in rock mechanics and engineering research. In this study, the applicability of existing methods for determining the crack stress thresholds of granite and weakly cemented porous siltstone is investigated using step loading [...] Read more.
Crack stress thresholds in rocks have long been a popular subject in rock mechanics and engineering research. In this study, the applicability of existing methods for determining the crack stress thresholds of granite and weakly cemented porous siltstone is investigated using step loading and unloading tests. In addition, a novel method for decomposing the volumetric strain into solid-phase linear elastic strain, gas-phase nonlinear elastic strain, and plastic volumetric strain is presented. A quantitative calculation method for determining these thresholds is proposed based on the evolution law of the gas-phase volumetric strain and the physical significance of crack stress thresholds. The initiation and termination points of the stationary stage of the gas-phase volumetric strain are determined as σcc and σci; the point at which the gas-phase strain changes from positive to negative is determined as σcd. To validate the proposed method, statistical results of the existing methods after screening are compared with the results of the proposed method. The results show that the proposed method provides reasonable crack stress thresholds for siltstone and granite and is applicable to rocks with similar stress–strain behaviors. The proposed method offers the advantages of independence from other methods, suitability across high and low confining pressures, and the capability for the quantitative calculation and processing of numerous samples. Full article
Show Figures

Figure 1

16 pages, 5260 KiB  
Article
Confined Compressibility of Fine-Grained Marine Sediments with Cavities after Complete Dissociation of Noduled Natural Gas Hydrates
by Lei Yang, Lele Liu, Tao Liu, Jinbo Lin, Yizhao Wan, Yongchao Zhang, Zhihui Wang and Xiang Liu
J. Mar. Sci. Eng. 2024, 12(6), 1029; https://doi.org/10.3390/jmse12061029 - 20 Jun 2024
Cited by 3 | Viewed by 1012
Abstract
Due to natural and anthropogenic disturbances, natural gas hydrates with morphologies of nodules and chunks dissociate and release massive free gas, creating large cavities within fine-grained marine sediments. However, it is still a challenge to quantify the impact of gas cavities on mechanical [...] Read more.
Due to natural and anthropogenic disturbances, natural gas hydrates with morphologies of nodules and chunks dissociate and release massive free gas, creating large cavities within fine-grained marine sediments. However, it is still a challenge to quantify the impact of gas cavities on mechanical properties of cavitied fine-grained marine sediments as there is a lack of efforts focusing on the inner structure visualization. In this study, an oedometer test and X-ray computed tomography scans are jointly conducted on marine clayey silt with gas cavities, and the confined compressibility as well as the inner structure change under an undrained condition are explored, followed by development of a theoretical model depicting the void ratio change. The results show that vertical loading induces a void ratio reduction, and the reduced void ratio can fully recover after being unloaded. Although being fully recovered, unrecovered changes of the inner structure still remain after being unloaded. Examples include closed cracks in the lower matrix, new occurring cracks in the upper matrix, and the fragmented gas cavity. In addition, the void ratio linearly increases with the increasing inverse of normalized pore gas pressure, while the coefficient of the effective stress linearly decreases with the increasing inverse of normalized vertical loading stress. The proposed theoretical model captures the essential physics behind undrained confined deformation of fine-grained marine sediments with gas cavities when subjected to loading and unloading. Full article
(This article belongs to the Special Issue Analytical and Experimental Technology for Marine Gas Hydrate)
Show Figures

Figure 1

15 pages, 7349 KiB  
Article
Experimental Study on Pore Structure Evolution of Unloaded Rock Mass during Excavation of Reservoir Slope under Dry–Wet Cycle
by Lili Chen, Xingzhou Chen, Sheng Gong, Zhenhan Li and Zhenkun Su
Appl. Sci. 2024, 14(11), 4716; https://doi.org/10.3390/app14114716 - 30 May 2024
Cited by 2 | Viewed by 1077
Abstract
There is a long sequence of periodic characteristics of reservoir water storage and discharge in large hydropower stations. The unloaded rock mass formed by blasting and excavation in the reservoir slope of the reservoir fluctuation zone is not only subjected to the penetration [...] Read more.
There is a long sequence of periodic characteristics of reservoir water storage and discharge in large hydropower stations. The unloaded rock mass formed by blasting and excavation in the reservoir slope of the reservoir fluctuation zone is not only subjected to the penetration erosion caused by the change of the water level of the reservoir slope, but also the dry–wet cycle caused by the reservoir water storage and discharge. There is an obvious process of crack derivation and pore structure expansion, and the subsequent strength degradation breeds reservoir slope risks, which is one of the important factors restricting the operation safety of power stations. To study the pore structure evolution law of unloaded rock mass in reservoir slope excavation of reservoir fluctuation zones, the dry–wet cycle test simulating the periodic storage and discharge environment was carried out with samples of equal unloading amount obtained by indoor triaxial unloading test. The variation law of mesoscopic parameters such as wave velocity, mass, and nuclear magnetic resonance spectrum under dry–wet cycle was compared and analyzed, and the physical and mechanical mechanism of the pore structure evolution of the unloaded specimen under dry–wet cycles was explored. The results show that: (1) With the increase of dry–wet cycles, the evolution of wave velocity and dry mass of unloaded samples has obvious stage characteristics, which generally presents a rapid change in the early stage, moderate in the middle stage, and gradually stable in the late stage; (2) nuclear magnetic resonance (NMR) shows that the number of macropore structures in unloaded samples increases gradually with the dry–wet cycles; (3) the smaller the initial confining pressure, the larger the first peak area and the peak value of unloaded samples, and the spectral area corresponding to each peak under low confining pressure is significantly larger than that under medium and high confining pressure; (4) the unloading amount affects the overall proportion of macropores in the sample, which determines the deterioration process and evolution law of the mesostructure of the sample under dry–wet cycles. Full article
(This article belongs to the Topic Slope Erosion Monitoring and Anti-erosion)
Show Figures

Figure 1

19 pages, 2659 KiB  
Article
Prediction of the Permeability Tensor of Marine Clayey Sediment during Cyclic Loading and Unloading of Confinement Pressure Using Physical Tests and Machine Learning Techniques
by Peng Cui, Jiaxin Zhou, Ruiqian Gao, Zijia Fan, Ying Jiang, Hui Liu, Yipei Zhang, Bo Cao, Kun Tan, Peng Tan and Xianhui Feng
Water 2024, 16(8), 1102; https://doi.org/10.3390/w16081102 - 12 Apr 2024
Cited by 2 | Viewed by 1454
Abstract
In this study, a method was introduced to validate the presence of a Representative Elementary Volume (REV) within marine clayey sediment containing cracks during cyclic loading and unloading of confinement pressure. Physical testing provided the basis for this verification. Once the existence of [...] Read more.
In this study, a method was introduced to validate the presence of a Representative Elementary Volume (REV) within marine clayey sediment containing cracks during cyclic loading and unloading of confinement pressure. Physical testing provided the basis for this verification. Once the existence of the REV for such sediment was confirmed, we established a machine-learning predictive model. This model utilizes a hybrid algorithm combining Particle Swarm Optimization (PSO) with a Support Vector Machine (SVM). The model was trained using a database generated from the aforementioned physical tests. The machine-learning model demonstrates favorable predictive performance based on several statistical metrics, including the coefficient of determination (R2), mean residual error (MSE), mean relative residual error (MRSE), and the correlation coefficient R during the verification process. Utilizing the established machine-learning predictive model, one can effortlessly obtain the permeability tensor of marine clayey sediment containing cracks during cyclic loading and unloading of confinement pressure by inputting the relevant stress condition parameters. The original research cannot estimate the permeability tensor under similar loading and unloading conditions through REV. In this study, the physical model test was used to determine the REV of marine cohesive sediments with cracks by cyclic-constrained pressure loading and unloading. Referring to the results of physical tests, we developed a machine-learning prediction model that can easily estimate the permeability tensor of marine cohesive sediments with cracks under cyclic loading and constrained pressure unloading conditions. This method greatly saves time and computation and provides a direct method for engineering and technical personnel to predict the permeability tensor in this case. Full article
Show Figures

Figure 1

12 pages, 1543 KiB  
Article
Effect of Confining Pressure on the Macro- and Microscopic Mechanisms of Diorite under Triaxial Unloading Conditions
by Xiaoxiao Duan, Dengke Yang and Xuexu An
Buildings 2024, 14(4), 866; https://doi.org/10.3390/buildings14040866 - 22 Mar 2024
Viewed by 1126
Abstract
In this study, the response mechanism between macro- and microscales of deep hard-rock diorite is investigated under loading and unloading conditions. Moreover, the statistical theory is combined with particle flow code simulations to establish a correlation between unloading rates observed in laboratory experiments [...] Read more.
In this study, the response mechanism between macro- and microscales of deep hard-rock diorite is investigated under loading and unloading conditions. Moreover, the statistical theory is combined with particle flow code simulations to establish a correlation between unloading rates observed in laboratory experiments and numerical simulations. Subsequent numerical tests under varying confining pressures are conducted to examine the macroscopic mechanical properties and the evolution of particle velocity, displacement, contact force chain failures, and microcracks in both axial and radial directions of the numerical rock samples during the loading and unloading phases. The findings indicate that the confining pressure strength curve displays an instantaneous fluctuation response during unloading, which intensifies with higher initial confining pressures. This suggests that rock sample damage progresses in multiple stages of expansion and penetration. The study also reveals that with increased initial confining pressure, there is a decrease in particle velocity along the unloading direction and an increase in particle displacement and the number of contact force chain failures, indicating more severe radial expansion of the rock sample. Furthermore, microcracks predominantly accumulate near the unloading surface, and their total number escalates with rising confining pressure, suggesting that higher confining pressures promote the development and expansion of internal microcracks. Full article
(This article belongs to the Special Issue Construction in Urban Underground Space)
Show Figures

Figure 1

25 pages, 12025 KiB  
Article
Experimental Research on Anisotropy Characteristics of Shale under Triaxial Incremental Cyclic Loading and Unloading
by Yangbing Cao, Qiang Yan, Sui Zhang and Fuming Cai
Appl. Sci. 2024, 14(6), 2602; https://doi.org/10.3390/app14062602 - 20 Mar 2024
Cited by 2 | Viewed by 1100
Abstract
Shale is a common rock type that is associated with underground engineering projects, and several important factors, such as bedding structure, confining pressure, and the loading and unloading path, significantly influence the anisotropy of shale. Triaxial monotonic loading tests and triaxial incremental cyclic [...] Read more.
Shale is a common rock type that is associated with underground engineering projects, and several important factors, such as bedding structure, confining pressure, and the loading and unloading path, significantly influence the anisotropy of shale. Triaxial monotonic loading tests and triaxial incremental cyclic loading and unloading tests of shale under three kinds of confining pressures and five types of bedding inclination angles (θ) were thus performed to investigate the anisotropy of shale in terms of mechanical behavior, acoustic emission (AE), and energy evolution, and reveal the mechanism by which shale anisotropy is weakened. The results show that (1) the compressive strength and elastic modulus of shale decrease and then increase as the θ increases, and that both σ3 and incremental cyclic loading and unloading reduce the anisotropy in terms of the compressive strength and elastic modulus of shale, with the ratio of plastic strain to total strain reaching its maximum at a θ of 60° during each loading and unloading cycle. (2) The failure modes of shale with θ of 0°, 30°, and 90° under triaxial monotonic loading are similar to the counterparts under triaxial incremental cyclic loading and unloading, while the failure modes of shale with θ of 45° and 60° differ significantly under the two loading conditions, and interestingly, the degree to which the bedding plane participates in shale crack evolution under incremental cyclic loading and unloading is considerably lower than that under triaxial monotonic loading. (3) The cumulative AE count and AE b-value of shale first decrease and then increase as the θ increases, while the Felicity ratio decreases as the number of cycles increases. (4) As the θ increases, the total energy density U0 and the parameter m, which reflects the accumulation rate of elastic energy, first decrease and then increase, with both reaching a minimum at a θ of 60°. (5) The mode by which cyclic loading and unloading leads to failure in shale with a θ of 60° is similar to that at a θ of 0° and is the main mechanism by which shale anisotropy weakening occurs as a result of cyclic loading and unloading. The results provide experimental support and a theoretical basis for safer and more efficient underground engineering projects that involve shale. Full article
Show Figures

Figure 1

17 pages, 14560 KiB  
Article
The Mechanical Behavior and Constitutive Model Study of Coarse-Grained Soil under Cyclic Loading–Unloading in Large-Scale Plane Strain Conditions
by Zhi Wang, Shuai Shao, Shengjun Shao and Liguo Yang
Buildings 2024, 14(1), 200; https://doi.org/10.3390/buildings14010200 - 12 Jan 2024
Cited by 2 | Viewed by 1603
Abstract
To address loading and unloading issues in civil and hydraulic engineering projects that employ coarse-grained soil as fill material under plane strain conditions during construction and operation, cyclic loading–unloading large-scale plane strain tests were conducted on two types of coarse-grained soils. The effects [...] Read more.
To address loading and unloading issues in civil and hydraulic engineering projects that employ coarse-grained soil as fill material under plane strain conditions during construction and operation, cyclic loading–unloading large-scale plane strain tests were conducted on two types of coarse-grained soils. The effects of coarse-grained soil properties on shear behavior and various modulus relationships were analyzed. The research results showed that coarse-grained soils with better particle roundness exhibit significant shear dilation deformation; it was also found that low parent rock strength can lead to strain softening, and an increase in confining pressure suppresses shear dilation deformation. During the cyclic loading–unloading process, the initial unloading modulus (Eiu) > unloading–reloading modulus (Eur) > initial reloading modulus (Eir) > initial tangent modulus (Ei), with the unloading modulus considerably greater than the others. In finite element simulations and model calculations, it is essential to select appropriate modulus parameters based on the stress conditions of the soil to ensure calculation accuracy. In this work, an elastoplastic and nonlinear elastic theory was used to establish a cyclic loading–unloading constitutive model. By comparing the values obtained using this model with experimental measurements, it was found that the model can reasonably predict stress–strain variations during cyclic loading–unloading of coarse-grained soils under plane strain conditions. Full article
Show Figures

Figure 1

Back to TopTop