Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,631)

Search Parameters:
Keywords = conditioned stimuli

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 787 KiB  
Review
Bradykinin Receptors in Metabolic Disorders: A Comprehensive Review
by Jéssica Branquinho, Raquel Leão Neves, Michael Bader and João Bosco Pesquero
Drugs Drug Candidates 2025, 4(3), 37; https://doi.org/10.3390/ddc4030037 - 5 Aug 2025
Abstract
The kallikrein–kinin system and its B1 and B2 receptors are key regulators in metabolic disorders such as obesity, diabetes, and insulin resistance. Obesity, a chronic and multifactorial condition often associated with comorbidities like type 2 diabetes and dyslipidemia, remains poorly understood at the [...] Read more.
The kallikrein–kinin system and its B1 and B2 receptors are key regulators in metabolic disorders such as obesity, diabetes, and insulin resistance. Obesity, a chronic and multifactorial condition often associated with comorbidities like type 2 diabetes and dyslipidemia, remains poorly understood at the metabolic level. The kinin B2 receptor (B2R) is involved in blood pressure regulation and glucose metabolism, promoting glucose uptake in skeletal muscle via bradykinin. Studies in B2R-KO mice demonstrate that the absence of this receptor predisposes animals to glucose intolerance under a high-fat diet and impairs adaptive thermogenesis, indicating a protective role for B2R in metabolic homeostasis and insulin sensitivity. In contrast, the kinin B1 receptor (B1R) is inducible under pathological conditions and is activated by kinin metabolites. Mouse models lacking B1R exhibit improved metabolic profiles, including protection against high-fat diet-induced obesity and insulin resistance, enhanced energy expenditure, and increased leptin sensitivity. B1R inactivation in adipocytes enhances insulin responsiveness and glucose tolerance, supporting its role in the development of insulin resistance. Moreover, B1R deficiency improves energy metabolism and thermogenic responses to adrenergic and cold stimuli, promoting the activation of brown adipose tissue and the browning of white adipose tissue. Collectively, these findings suggest that B1R and B2R represent promising therapeutic targets for the treatment of metabolic disorders. Full article
(This article belongs to the Special Issue Drugs of the Kallikrein-Kinin System)
Show Figures

Figure 1

16 pages, 612 KiB  
Article
Examination of Step Kinematics Between Children with Different Acceleration Patterns in Short-Sprint Dash
by Ilias Keskinis, Vassilios Panoutsakopoulos, Evangelia Merkou, Savvas Lazaridis and Eleni Bassa
Biomechanics 2025, 5(3), 60; https://doi.org/10.3390/biomechanics5030060 - 4 Aug 2025
Abstract
Background/Objectives: Sprinting is a fundamental locomotor skill and a key indicator of lower limb strength and anaerobic power in early childhood. The aim of the study was to examine possible differences in the step kinematic parameters and their contribution to sprint speed [...] Read more.
Background/Objectives: Sprinting is a fundamental locomotor skill and a key indicator of lower limb strength and anaerobic power in early childhood. The aim of the study was to examine possible differences in the step kinematic parameters and their contribution to sprint speed between children with different patterns of speed development. Methods: 65 prepubescent male and female track athletes (33 males and 32 females; 6.9 ± 0.8 years old) were examined in a maximal 15 m short sprint running test, where photocells measured time for each 5 m segment. At the last 5 m segment, step length, frequency, and velocity were evaluated via a video analysis method. The symmetry angle was calculated for the examined step kinematic parameters. Results: Based on the speed at the final 5 m segment of the test, two groups were identified, the maximum sprint phase (MAX) and the acceleration phase (ACC) group. Speed was significantly (p < 0.05) higher in ACC in the final 5 m segment, while there was a significant (p < 0.05) interrelationship between step length and frequency in ACC but not in MAX. No other differences were observed. Conclusions: The difference observed in the interrelationship between speed and step kinematic parameters between ACC and MAX highlights the importance of identifying the speed development pattern to apply individualized training stimuli for the optimization of training that can lead to better conditioning and wellbeing of children involved in sports with requirements for short-sprint actions. Full article
(This article belongs to the Collection Locomotion Biomechanics and Motor Control)
Show Figures

Figure 1

15 pages, 604 KiB  
Article
Brief Repeated Attention Training for Psychological Distress: Findings from Two Experiments
by David Skvarc, Shannon Hyder, Laetitia Leary, Shahni Watts, Marcus Seecamp, Lewis Burns and Alexa Hayley
Behav. Sci. 2025, 15(8), 1052; https://doi.org/10.3390/bs15081052 - 3 Aug 2025
Viewed by 69
Abstract
Psychological distress is understood to be maintained by attention. We performed two experiments examining the impact of attention training (AT) on psychological distress symptoms. Experiment one (N = 336) investigated what effects might be detected in a simple experimental design with longitudinal [...] Read more.
Psychological distress is understood to be maintained by attention. We performed two experiments examining the impact of attention training (AT) on psychological distress symptoms. Experiment one (N = 336) investigated what effects might be detected in a simple experimental design with longitudinal measurements, while experiment two (N = 214) examined whether using a different emotional stimulus could induce an immediate anxiolytic effect in response to AT. Attentional biases were operationalized as the target search latency correlated with mood and psychological distress scores. While limited evidence of attentional biases was found in participants with higher mood distress, correlations emerged in the experimental conditions at day thirty, indicating a relationship between task latency, stress, and changes in depression (experimental one). We found no immediate between–within-group differences in outcome when including different emotional stimuli (experiment two). Despite attentional biases being less apparent in community samples, attentional training for bias modification was effective in eliciting positive biases, leading to improved mood. Notably, participants in the control condition reported the greatest mood and psychological distress improvements, whereas changes in the experimental condition primarily pertained to attentional biases. Taken together, these findings suggest that AT tasks can improve distress, but not through changes in attentional biases. Full article
Show Figures

Figure 1

37 pages, 2918 KiB  
Review
Guardians of Water and Gas Exchange: Adaptive Dynamics of Stomatal Development and Patterning
by Eleni Giannoutsou, Ioannis-Dimosthenis S. Adamakis and Despina Samakovli
Plants 2025, 14(15), 2405; https://doi.org/10.3390/plants14152405 - 3 Aug 2025
Viewed by 56
Abstract
Stomata, highly specialized structures that evolved on the aerial surfaces of plants, play a crucial role in regulating hydration, mitigating the effects of abiotic stress. Stomatal lineage development involves a series of coordinated events, such as initiation, stem cell proliferation, and cell fate [...] Read more.
Stomata, highly specialized structures that evolved on the aerial surfaces of plants, play a crucial role in regulating hydration, mitigating the effects of abiotic stress. Stomatal lineage development involves a series of coordinated events, such as initiation, stem cell proliferation, and cell fate determination, ultimately leading to the differentiation of guard cells. While core transcriptional regulators and signaling pathways controlling stomatal cell division and fate determination have been characterized over the past twenty years, the molecular mechanisms linking stomatal development to dynamic environmental cues remain poorly understood. Therefore, stomatal development is considered an active and compelling frontier in plant biology research. On the one hand, this review aims to provide an understanding of the molecular networks governing stomatal ontogenesis, which relies on the activation and function of the transcription factors SPEECHLESS (SPCH), MUTE, and FAMA; the EPF–TMM and ERECTA receptor systems; and downstream MAPK signaling. On the other hand, it synthesizes current discoveries of how hormonal signaling pathways regulate stomatal development in response to environmental changes. As the climate crisis intensifies, the understanding of the complex interplay between stress stimuli and key factors regulating stomatal development may reveal key mechanisms that enhance plant resilience under adverse environmental conditions. Full article
Show Figures

Figure 1

12 pages, 1090 KiB  
Article
Behavioral Interference by Emotional Stimuli: Sequential Modulation by Perceptual Conditions but Not by Emotional Primes
by Andrea De Cesarei, Virginia Tronelli, Serena Mastria, Vera Ferrari and Maurizio Codispoti
Vision 2025, 9(3), 66; https://doi.org/10.3390/vision9030066 - 1 Aug 2025
Viewed by 135
Abstract
Previous studies observed that emotional scenes, presented as distractors, capture attention and interfere with an ongoing task. This behavioral interference has been shown to be elicited by the semantic rather than by the perceptual properties of a scene, as it resisted the application [...] Read more.
Previous studies observed that emotional scenes, presented as distractors, capture attention and interfere with an ongoing task. This behavioral interference has been shown to be elicited by the semantic rather than by the perceptual properties of a scene, as it resisted the application of low-pass spatial frequency filters. Some studies observed that the visual system can adapt to perceptual conditions; however, little is known concerning whether attentional capture by emotional stimuli can also be modulated by the sequential repetition of viewing conditions or of emotional content. In the present study, we asked participants to perform a parity task while viewing irrelevant natural scenes, which could be either emotional or neutral. These scenes could be either blurred (low-pass filter) or perceptually intact, and the order of presentation was balanced to study the effects of sequential repetition of perceptual conditions. The results indicate that affective modulation was most pronounced when the same viewing condition (either intact or blurred) was repeated, with faster responses when perceptual conditions were repeated for neutral distractors, but to a lesser extent for emotional ones. These data suggest that emotional interference in an attentional task can be modulated by serial sensitization in the processing of spatial frequencies. Full article
(This article belongs to the Section Visual Neuroscience)
Show Figures

Figure 1

11 pages, 2406 KiB  
Article
Surfactant-Free Electrosprayed Alginate Beads for Oral Delivery of Hydrophobic Compounds
by Hye-Seon Jeong, Hyo-Jin Kim, Sung-Min Kang and Chang-Hyung Choi
Polymers 2025, 17(15), 2098; https://doi.org/10.3390/polym17152098 - 30 Jul 2025
Viewed by 186
Abstract
Oral delivery of hydrophobic compounds remains challenging due to their poor aqueous solubility and the potential toxicity associated with conventional surfactant-based emulsions. To address these issues, we present a surfactant-free encapsulation strategy using electrosprayed alginate hydrogel beads for the stable and controlled delivery [...] Read more.
Oral delivery of hydrophobic compounds remains challenging due to their poor aqueous solubility and the potential toxicity associated with conventional surfactant-based emulsions. To address these issues, we present a surfactant-free encapsulation strategy using electrosprayed alginate hydrogel beads for the stable and controlled delivery of hydrophobic oils. Hydrophobic compounds were dispersed in high-viscosity alginate solutions without surfactants via ultrasonication, forming kinetically stable oil-in-water dispersions. These mixtures were electrosprayed into calcium chloride baths, yielding monodisperse hydrogel beads. Higher alginate concentrations improved droplet sphericity and suppressed phase separation by enhancing matrix viscosity. The resulting beads exhibited stimuli-responsive degradation and controlled release behavior in response to physiological ionic strength. Dense alginate networks delayed ion exchange and prolonged structural integrity, while elevated external ionic conditions triggered rapid disintegration and immediate payload release. This simple and scalable system offers a biocompatible platform for the oral delivery of lipophilic active compounds without the need for surfactants or complex fabrication steps. Full article
Show Figures

Figure 1

9 pages, 703 KiB  
Article
Development of the Visual Analysis of Form and Contour
by Clay Mash, Lauren M. Henry and Marc H. Bornstein
Children 2025, 12(8), 1005; https://doi.org/10.3390/children12081005 - 30 Jul 2025
Viewed by 168
Abstract
Background/Objectives: A common approach to investigating visual form processing is through studying responses to visual stimuli that comprise illusory contours. Such stimuli induce contours where none exist physically and thus reveal the constructive nature of visual perception and the conditions that engender it. [...] Read more.
Background/Objectives: A common approach to investigating visual form processing is through studying responses to visual stimuli that comprise illusory contours. Such stimuli induce contours where none exist physically and thus reveal the constructive nature of visual perception and the conditions that engender it. The present work used IC stimuli to study the development of visual form detection and extraction in infants and adults. Methods: Infant and adult participants viewed square stimulus forms with either real or illusory contours, while their looking behavior was measured with an eye tracker. Fixations of the stimuli were coded by region, distinguishing between the contours of the forms and within the forms themselves. Fixations were summed by region, and fixations on forms were interpreted to index the detection of coherent, whole forms. Fixations on contours (real and illusory) were interpreted to index the extraction of form edges. Results: Total form fixations differed by age. For real contours, fixations by infants exceeded those by adults; when contours were illusory, adult fixations were greater than those of infants. Contour fixations were similar between ages. Infants and adults both looked more at contours when illusory than when real. Conclusions: Together, the results provide new conclusions about change and continuity in the visual analysis of form and contour. The results suggest that the visual detection and binding of simple form structure appears to develop between infancy and adulthood. However, the exploration of contours that support the extraction of form contours from backgrounds appears to change little between infancy and adulthood. Full article
(This article belongs to the Section Pediatric Ophthalmology)
Show Figures

Figure 1

15 pages, 2026 KiB  
Article
Behavioral Effects of Food-Based and Olfactory Enrichment in Zoo-Housed Binturongs: An Exploratory Study
by Courtney Archer, Joselyn Hoyt, Emma Loy, Emma Marthaler, Abigail Richardson, Katie Hall, Madison Bacon and Rielle Perttu
J. Zool. Bot. Gard. 2025, 6(3), 38; https://doi.org/10.3390/jzbg6030038 - 29 Jul 2025
Viewed by 209
Abstract
Environmental enrichment is essential for promoting species-specific behaviors and enhancing the welfare of zoo-housed animals. This study examined the behavioral responses of two juvenile male binturongs (Arctictis binturong) at the Minnesota Zoo to three enrichment stimuli: lavender oil (olfactory), thawed fish [...] Read more.
Environmental enrichment is essential for promoting species-specific behaviors and enhancing the welfare of zoo-housed animals. This study examined the behavioral responses of two juvenile male binturongs (Arctictis binturong) at the Minnesota Zoo to three enrichment stimuli: lavender oil (olfactory), thawed fish (olfactory and dietary), and hard-boiled egg (olfactory and dietary). Their behaviors were recorded using scan sampling before and after enrichment exposure, focusing on locomotion, foraging, resting, and visitor visibility. Food-based enrichments, particularly the hard-boiled egg, significantly increased foraging behavior, while lavender oil and thawed fish produced minimal behavioral changes. Locomotion and visibility remained stable across the conditions, although a slight increase in resting was observed with lavender oil. No evidence of scent-marking disruption was noted, and individual differences appeared to influence inactivity levels. These findings highlight the potential of biologically relevant, food-based enrichment to stimulate natural behaviors in binturongs and emphasize the importance of species-specific enrichment strategies. Future research should explore a broader range of olfactory cues, assess long-term behavioral responses, and incorporate physiological measures to further evaluate enrichment impacts on binturong welfare. Full article
Show Figures

Figure 1

13 pages, 986 KiB  
Article
Enhanced Cross-Audiovisual Perception in High-Level Martial Arts Routine Athletes Stems from Increased Automatic Processing Capacity
by Xiaohan Wang, Zeshuai Wang, Ya Gao, Wu Jiang, Zikang Meng, Tianxin Gu, Zonghao Zhang, Haoping Yang and Li Luo
Behav. Sci. 2025, 15(8), 1028; https://doi.org/10.3390/bs15081028 - 29 Jul 2025
Viewed by 181
Abstract
Multisensory integration is crucial for effective cognitive functioning, especially in complex tasks such as those requiring rapid audiovisual information processing. High-level martial arts routine athletes, trained in integrating visual and auditory cues for performance, may exhibit superior abilities in cross-audiovisual integration. This study [...] Read more.
Multisensory integration is crucial for effective cognitive functioning, especially in complex tasks such as those requiring rapid audiovisual information processing. High-level martial arts routine athletes, trained in integrating visual and auditory cues for performance, may exhibit superior abilities in cross-audiovisual integration. This study aimed to explore whether these athletes demonstrate an expert advantage effect in audiovisual integration, particularly focusing on whether this advantage is due to enhanced automatic auditory processing. A total of 165 participants (81 male, 84 female) were included in three experiments. Experiment 1 (n = 63) used a cross-audiovisual Rapid Serial Visual Presentation (RSVP) paradigm to compare the martial arts routine athlete group (n = 31) with a control group (n = 33) in tasks requiring target stimulus identification under audiovisual congruent and incongruent conditions. Experiment 2 (n = 52) manipulated the synchronicity of auditory stimuli to differentiate between audiovisual integration and auditory alerting effects. Experiment 3 (n = 50) combined surprise and post-surprise tests to investigate the role of automatic auditory processing in this expert advantage. Experiment 1 revealed that martial arts routine athletes outperformed the control group, especially in semantically incongruent conditions, with significantly higher accuracy at both lag3 (p < 0.001, 95% CI = [0.165, 0.275]) and lag8 (p < 0.001, 95% CI = [0.242, 0.435]). Experiment 2 found no significant difference between groups in response to the manipulation of auditory stimulus synchronicity, ruling out an alerting effect. In Experiment 3, martial arts routine athletes demonstrated better performance in reporting unexpected auditory stimuli during the surprise test, indicating enhanced automatic processing capacity. Additionally, a significant improvement in working memory re-selection was observed in the martial arts routine group. The expert advantage effect observed in martial arts routine athletes is attributable to enhanced cross-audiovisual integration, independent of an auditory alerting mechanism. Long-term training improves the efficiency of working memory re-selection and the ability to inhibit conflicting information, suggesting that the expanded capacity for automatic auditory processing underpins their multisensory integration advantage. Full article
(This article belongs to the Section Cognition)
Show Figures

Figure 1

22 pages, 4200 KiB  
Article
Investigation of Personalized Visual Stimuli via Checkerboard Patterns Using Flickering Circles for SSVEP-Based BCI System
by Nannaphat Siribunyaphat, Natjamee Tohkhwan and Yunyong Punsawad
Sensors 2025, 25(15), 4623; https://doi.org/10.3390/s25154623 - 25 Jul 2025
Viewed by 682
Abstract
In this study, we conducted two steady-state visual evoked potential (SSVEP) studies to develop a practical brain–computer interface (BCI) system for communication and control applications. The first study introduces a novel visual stimulus paradigm that combines checkerboard patterns with flickering circles configured in [...] Read more.
In this study, we conducted two steady-state visual evoked potential (SSVEP) studies to develop a practical brain–computer interface (BCI) system for communication and control applications. The first study introduces a novel visual stimulus paradigm that combines checkerboard patterns with flickering circles configured in single-, double-, and triple-layer forms. We tested three flickering frequency conditions: a single fundamental frequency, a combination of the fundamental frequency and its harmonics, and a combination of two fundamental frequencies. The second study utilizes personalized visual stimuli to enhance SSVEP responses. SSVEP detection was performed using power spectral density (PSD) analysis by employing Welch’s method and relative PSD to extract SSVEP features. Commands classification was carried out using a proposed decision rule–based algorithm. The results were compared with those of a conventional checkerboard pattern with flickering squares. The experimental findings indicate that single-layer flickering circle patterns exhibit comparable or improved performance when compared with the conventional stimuli, particularly when customized for individual users. Conversely, the multilayer patterns tended to increase visual fatigue. Furthermore, individualized stimuli achieved a classification accuracy of 90.2% in real-time SSVEP-based BCI systems for six-command generation tasks. The personalized visual stimuli can enhance user experience and system performance, thereby supporting the development of a practical SSVEP-based BCI system. Full article
Show Figures

Figure 1

13 pages, 405 KiB  
Review
Insular Cortex—Biology and Its Role in Psychiatric Disorders: A Narrative Review
by Darko Laketić, Nikola M. Stojanović, Isidora Laketić, Milorad Pavlović, Bojan Milosević, Ana Starčević and Slobodan Kapor
Brain Sci. 2025, 15(8), 793; https://doi.org/10.3390/brainsci15080793 - 25 Jul 2025
Viewed by 357
Abstract
The insular cortex has emerged as a key region implicated in a wide array of cognitive, emotional, and sensory processes. The anterior part of the insula (AIC) is central to emotional awareness, decision-making, and interoception, while the posterior insula (PIC) is more associated [...] Read more.
The insular cortex has emerged as a key region implicated in a wide array of cognitive, emotional, and sensory processes. The anterior part of the insula (AIC) is central to emotional awareness, decision-making, and interoception, while the posterior insula (PIC) is more associated with somatosensory processing. The insula acts as a functional hub within the salience network and integrates homeostatic, affective, and cognitive information; thus, its role in different mental disorders seems to be prominent. Altered structure and connectivity of the insular cortex are evident in several psychiatric conditions. In schizophrenia, reductions in insular volume—especially on the left—correlate with hallucinations, emotional dysregulation, and cognitive deficits. Bipolar and major depressive disorders exhibit AIC volume loss and aberrant connectivity patterns linked to impaired affect regulation and interoceptive awareness. Anxiety disorders show functional hyperactivity of the insula, especially in response to fear-inducing stimuli, though findings on structural changes are mixed. Overall, growing evidence underscores the insular cortex’s central role in psychiatric pathophysiology and highlights its potential as a target for future diagnostic and therapeutic strategies. Full article
(This article belongs to the Special Issue Understanding the Role and Functions of the Insula in the Brain)
Show Figures

Figure 1

12 pages, 1311 KiB  
Review
Modulation of Voltage-Gated Na+ Channel Currents by Small Molecules: Effects on Amplitude and Gating During High-Frequency Stimulation
by Cheng-Yuan Lin, Zi-Han Gao, Chi-Wai Cheung, Edmund Cheung So and Sheng-Nan Wu
Sci. Pharm. 2025, 93(3), 33; https://doi.org/10.3390/scipharm93030033 - 24 Jul 2025
Viewed by 328
Abstract
Cumulative inhibition of voltage-gated Na+ channel current (INa) caused by high-frequency depolarization plays a critical role in regulating electrical activity in excitable cells. As discussed in this review paper, exposure to certain small-molecule modulators can perturb INa during [...] Read more.
Cumulative inhibition of voltage-gated Na+ channel current (INa) caused by high-frequency depolarization plays a critical role in regulating electrical activity in excitable cells. As discussed in this review paper, exposure to certain small-molecule modulators can perturb INa during high-frequency stimulation, influencing the extent of cumulative inhibition and electrical excitability in excitable cells. Carbamazepine differentially suppressed transient or peak (INa(T)) and late (INa(L)) components of INa. Moreover, the cumulative inhibition of INa(T) during pulse-train stimulation at 40 Hz was enhanced by lacosamide. GV-58 was noted to exert stimulatory effect on INa(T) and INa(L). This stimulated INa was not countered by ω-conotoxin MVIID but was effectively reversed by ranolazine. GV-58′s exposure can slow down INa inactivation elicited during pulse-train stimulation. Lacosamide directly inhibited INa magnitude as well as promoted this cumulative inhibition of INa during pulse-train stimuli. Mirogabalin depressed INa magnitude as well as modulated frequency dependence of the current. Phenobarbital can directly modulate both the magnitude and frequency dependence of ionic currents, including INa. Previous investigations have shown that exposure to small-molecule modulators can perturb INa under conditions of high-frequency stimulation. This ionic mechanism plays a crucial role in modulating membrane excitability, hereby supporting the validity of these findings. Full article
Show Figures

Graphical abstract

17 pages, 2640 KiB  
Article
The Developmental Toxicity of Haloperidol on Zebrafish (Danio rerio) Embryos
by Maximos Leonardos, Charis Georgalis, Georgia Sergiou, Dimitrios Leonardos, Lampros Lakkas and George A. Alexiou
Biomedicines 2025, 13(8), 1794; https://doi.org/10.3390/biomedicines13081794 - 22 Jul 2025
Viewed by 218
Abstract
Background/Objectives: Haloperidol is a typical antipsychotic drug widely used for acute confusional state, psychotic disorders, agitation, delirium, and aggressive behavior. Methods: The toxicity of haloperidol was studied using zebrafish (ZF) embryos as a model organism. Dechorionated embryos were exposed to various concentrations of [...] Read more.
Background/Objectives: Haloperidol is a typical antipsychotic drug widely used for acute confusional state, psychotic disorders, agitation, delirium, and aggressive behavior. Methods: The toxicity of haloperidol was studied using zebrafish (ZF) embryos as a model organism. Dechorionated embryos were exposed to various concentrations of haloperidol (0.5–6.0 mg/L). The lethal dose concentration was estimated and was found to be 1.941 mg/L. Results: The impact of haloperidol was dose-dependent and significant from 0.25 mg/L. Haloperidol induced several deformities at sublethal doses, including abnormal somites, yolk sac edema, and skeletal deformities. Haloperidol significantly affected heart rate and blood flow and induced pericardial edema and hyperemia in a dose-dependent manner, suggesting its influence on heart development and function. Embryos exposed to haloperidol during their ontogenetic development had smaller body length and eye surface area than non-exposed ones in a dose-dependent manner. Conclusions: It was found that haloperidol significantly affects the behavior of the experimental organisms in terms of mobility, reflexes to stimuli, and adaptation to dark/light conditions. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

18 pages, 798 KiB  
Study Protocol
Prejudice, Proxemic Space, and Social Odor: The Representation of the ‘Outsider’ Through an Evolutionary Metaverse Psychology Perspective
by Sara Invitto, Francesca Ferraioli, Andrea Schito, Giulia Costanzo, Chiara Lucifora, Assunta Pompili, Carmelo Mario Vicario and Giuseppe Curcio
Brain Sci. 2025, 15(8), 779; https://doi.org/10.3390/brainsci15080779 - 22 Jul 2025
Viewed by 261
Abstract
Prejudices, particularly those related to social biases, are shaped by various cognitive and sensory mechanisms. This study investigates the interaction between olfactory perception and propensity and implicit or explicit prejudices through three experimental protocols in a metaverse condition. Experiment 1 examines the impact [...] Read more.
Prejudices, particularly those related to social biases, are shaped by various cognitive and sensory mechanisms. This study investigates the interaction between olfactory perception and propensity and implicit or explicit prejudices through three experimental protocols in a metaverse condition. Experiment 1 examines the impact of five different odors on proxemic behavior when interacting with individuals from stigmatized social groups. Experiment 2 integrates electroencephalography (EEG) to analyze the neural correlates of prejudice-related responses to olfactory stimuli. Experiment 3 explores implicit biases through the Implicit Association Test (IAT) in relation to different fragrances, without employing virtual reality. The proposed protocol is expected to demonstrate a significant relationship between olfactory cues, linked to social relationships, and implicit or explicit prejudices, with variations based on individual differences. These insights will contribute to psychological, neuroscientific, and social interventions, offering new perspectives on the unconscious mechanisms of bias formation. Additionally, this study highlights the potential of virtual reality and olfactory stimuli as innovative tools for studying and addressing social biases in controlled environments. Full article
(This article belongs to the Special Issue New Horizons in Multisensory Perception and Processing—2nd Edition)
Show Figures

Figure 1

35 pages, 1038 KiB  
Review
Hydrogels in Cardiac Surgery: Versatile Platforms for Tissue Repair, Adhesion Prevention, and Localized Therapeutics
by Seok Beom Hong, Jin-Oh Jeong and Hoon Choi
Gels 2025, 11(7), 564; https://doi.org/10.3390/gels11070564 - 21 Jul 2025
Viewed by 494
Abstract
Hydrogels have emerged as multifunctional biomaterials in cardiac surgery, offering promising solutions for myocardial regeneration, adhesion prevention, valve engineering, and localized drug and gene delivery. Their high water content, biocompatibility, and mechanical tunability enable close emulation of the cardiac extracellular matrix, supporting cellular [...] Read more.
Hydrogels have emerged as multifunctional biomaterials in cardiac surgery, offering promising solutions for myocardial regeneration, adhesion prevention, valve engineering, and localized drug and gene delivery. Their high water content, biocompatibility, and mechanical tunability enable close emulation of the cardiac extracellular matrix, supporting cellular viability and integration under dynamic physiological conditions. In myocardial repair, injectable and patch-forming hydrogels have been shown to be effective in reducing infarct size, promoting angiogenesis, and preserving contractile function. Hydrogel coatings and films have been designed as adhesion barriers to minimize pericardial adhesions after cardiotomy and improve reoperative safety. In heart valve and patch engineering, hydrogels contribute to scaffold design by providing bio-instructive, mechanically resilient, and printable matrices that are compatible with 3D fabrication. Furthermore, hydrogels serve as localized delivery platforms for small molecules, proteins, and nucleic acids, enabling sustained or stimuli-responsive release while minimizing systemic toxicity. Despite these advances, challenges such as mechanical durability, immune compatibility, and translational scalability persist. Ongoing innovations in smart polymer chemistry, hybrid composite design, and patient-specific manufacturing are addressing these limitations. This review aims to provide an integrated perspective on the application of hydrogels in cardiac surgery. The relevant literature was identified through a narrative search of PubMed, Scopus, Web of Science, Embase, and Google Scholar. Taken together, hydrogels offer a uniquely versatile and clinically translatable platform for addressing the multifaceted challenges of cardiac surgery. Hydrogels are poised to redefine clinical strategies in cardiac surgery by enabling tailored, bioresponsive, and functionally integrated therapies. Full article
(This article belongs to the Special Issue Recent Advances in Hydrogels for Tissue Engineering Applications)
Show Figures

Figure 1

Back to TopTop