Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (511)

Search Parameters:
Keywords = conditional least squares estimate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3676 KB  
Article
Open-Access Simulation Platform and Motion Control Design for a Surface Robotic Vehicle in the VRX Environment
by Brayan Saldarriaga-Mesa, Julio Montesdeoca, Dennys Báez, Flavio Roberti and Juan Marcos Toibero
Robotics 2025, 14(10), 147; https://doi.org/10.3390/robotics14100147 - 21 Oct 2025
Abstract
This work presents an open-source simulation framework designed to extend the capabilities of the VRX environment for developing and validating control strategies for surface robotic vehicles. The platform features a custom monohull, kayak-type USV with four thrusters in differential configuration, represented with a [...] Read more.
This work presents an open-source simulation framework designed to extend the capabilities of the VRX environment for developing and validating control strategies for surface robotic vehicles. The platform features a custom monohull, kayak-type USV with four thrusters in differential configuration, represented with a complete graphical mockup consistent with its physical design and modeled with realistic dynamics and sensor integration. A thrust mapping function was calibrated using manufacturer data, and the vehicle’s behavior was characterized using a simplified Fossen model with parameters identified via Least Squares estimation. Multiple motion controllers, including velocity, position, trajectory tracking, and path guidance, were implemented and evaluated in a variety of wave and wind scenarios designed to test the full vehicle dynamics and closed-loop behavior. In addition to extending the VRX simulator, this work introduces a new USV model, a calibrated thrust response, and a set of model-based controllers validated in high-fidelity marine conditions. The resulting framework constitutes a reproducible and extensible resource for the marine robotics community, with direct applications in robotic education, perception, and advanced control systems. Full article
(This article belongs to the Section Sensors and Control in Robotics)
18 pages, 2757 KB  
Article
Robust Bias Compensation LMS Algorithms Under Colored Gaussian Input Noise and Impulse Observation Noise Environments
by Ying-Ren Chien, Han-En Hsieh and Guobing Qian
Mathematics 2025, 13(20), 3348; https://doi.org/10.3390/math13203348 - 21 Oct 2025
Abstract
Adaptive filtering algorithms often suffer from biased parameter estimation and performance degradation in the presence of colored input noise and impulsive observation noise, both of which are common in practical sensor and communication systems. Existing bias-compensated least mean square (LMS) algorithms generally assume [...] Read more.
Adaptive filtering algorithms often suffer from biased parameter estimation and performance degradation in the presence of colored input noise and impulsive observation noise, both of which are common in practical sensor and communication systems. Existing bias-compensated least mean square (LMS) algorithms generally assume white Gaussian input noise, thereby limiting their applicability in real-world scenarios. This paper introduces a robust convex combination bias-compensated LMS (CC-BC-LMS) algorithm designed to address both colored Gaussian input noise and impulsive observation noise. The proposed algorithm achieves bias compensation through robust estimation of the input noise autocorrelation matrix and employs a modified Huber function to mitigate the influence of impulsive noise. A convex combination of fast and slow adaptive filters enables variable step-size adaptation, effectively balancing rapid convergence and low steady-state error. Extensive simulation results demonstrate that the proposed CC-BC-LMS algorithm provides substantial improvements in normalized mean square deviation (NMSD), surpassing state-of-the-art bias-compensated and robust adaptive filtering techniques by 4.48 dB to 11.4 dB under various noise conditions. These results confirm the effectiveness of the proposed approach for reliable adaptive filtering in challenging noisy environments. Full article
Show Figures

Figure 1

13 pages, 6355 KB  
Article
TranSIC-Net: An End-to-End Transformer Network for OFDM Symbol Demodulation with Validation on DroneID Signals
by Zhihong Wang and Zi-Xin Xu
Sensors 2025, 25(20), 6488; https://doi.org/10.3390/s25206488 - 21 Oct 2025
Abstract
Demodulating Orthogonal Frequency Division Multiplexing (OFDM) signals in complex wireless environments remains a fundamental challenge, especially when traditional receiver designs rely on explicit channel estimation under adverse conditions such as low signal-to-noise ratio (SNR) or carrier frequency offset (CFO). Motivated by practical challenges [...] Read more.
Demodulating Orthogonal Frequency Division Multiplexing (OFDM) signals in complex wireless environments remains a fundamental challenge, especially when traditional receiver designs rely on explicit channel estimation under adverse conditions such as low signal-to-noise ratio (SNR) or carrier frequency offset (CFO). Motivated by practical challenges in decoding DroneID—a proprietary OFDM-like signaling format used by DJI drones with a nonstandard frame structure—we present TranSIC-Net, a Transformer-based end-to-end neural network that unifies channel estimation and symbol detection within a single architecture. Unlike conventional methods that treat these steps separately, TranSIC-Net implicitly learns channel dynamics from pilot patterns and exploits the attention mechanism to capture inter-subcarrier correlations. While initially developed to tackle the unique structure of DroneID, the model demonstrates strong generalizability: with minimal adaptation, it can be applied to a wide range of OFDM systems. Extensive evaluations on both synthetic OFDM waveforms and real-world unmanned aerial vehicle (UAV) signals show that TranSIC-Net consistently outperforms least-squares plus zero-forcing (LS+ZF) and leading deep learning baselines such as ProEsNet in terms of bit error rate (BER), estimation accuracy, and robustness—highlighting its effectiveness and flexibility in practical wireless communication scenarios. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

28 pages, 12549 KB  
Article
An Enhanced Faster R-CNN for High-Throughput Winter Wheat Spike Monitoring to Improved Yield Prediction and Water Use Efficiency
by Donglin Wang, Longfei Shi, Yanbin Li, Binbin Zhang, Guangguang Yang and Serestina Viriri
Agronomy 2025, 15(10), 2388; https://doi.org/10.3390/agronomy15102388 - 14 Oct 2025
Viewed by 221
Abstract
This study develops an innovative unmanned aerial vehicle (UAV)-based intelligent system for winter wheat yield prediction, addressing the inefficiencies of traditional manual counting methods (with approximately 15% error rate) and enabling quantitative analysis of water–fertilizer interactions. By integrating an enhanced Faster Region-Based Convolutional [...] Read more.
This study develops an innovative unmanned aerial vehicle (UAV)-based intelligent system for winter wheat yield prediction, addressing the inefficiencies of traditional manual counting methods (with approximately 15% error rate) and enabling quantitative analysis of water–fertilizer interactions. By integrating an enhanced Faster Region-Based Convolutional Neural Network (Faster R-CNN) architecture with multi-source data fusion and machine learning, the system significantly improves both spike detection accuracy and yield forecasting performance. Field experiments during the 2022–2023 growing season captured high-resolution multispectral imagery for varied irrigation regimes and fertilization treatments. The optimized detection model incorporates ResNet-50 as the backbone feature extraction network, with residual connections and channel attention mechanisms, achieving a mean average precision (mAP) of 91.2% (calculated at IoU threshold 0.5) and 88.72% recall while reducing computational complexity. The model outperformed YOLOv8 by a statistically significant 2.1% margin (p < 0.05). Using model-generated spike counts as input, the random forest (RF) model regressor demonstrated superior yield prediction performance (R2 = 0.82, RMSE = 324.42 kg·ha−1), exceeding the Partial Least Squares Regression (PLSR) (R2 +46%, RMSE-44.3%), Least Squares Support Vector Machine (LSSVM) (R2 + 32.3%, RMSE-32.4%), Support Vector Regression (SVR) (R2 + 30.2%, RMSE-29.6%), and Backpropagation (BP) Neural Network (R2+22.4%, RMSE-24.4%) models. Analysis of different water–fertilizer treatments revealed that while organic fertilizer under full irrigation (750 m3 ha−1) conditions achieved maximum yield benefit (13,679.26 CNY·ha−1), it showed relatively low water productivity (WP = 7.43 kg·m−3). Conversely, under deficit irrigation (450 m3 ha−1) conditions, the 3:7 organic/inorganic fertilizer treatment achieved optimal WP (11.65 kg m−3) and WUE (20.16 kg∙ha−1∙mm−1) while increasing yield benefit by 25.46% compared to organic fertilizer alone. This research establishes an integrated technical framework for high-throughput spike monitoring and yield estimation, providing actionable insights for synergistic water–fertilizer management strategies in sustainable precision agriculture. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

18 pages, 7359 KB  
Article
Estimating Field-Scale Soil Organic Matter in Agricultural Soils Using UAV Hyperspectral Imagery
by Chenzhen Xia and Yue Zhang
AgriEngineering 2025, 7(10), 339; https://doi.org/10.3390/agriengineering7100339 - 10 Oct 2025
Viewed by 229
Abstract
Fast and precise monitoring of soil organic matter (SOM) during maize growth periods is crucial for real-time assessment of soil quality. However, the big challenge we usually face is that many agricultural soils are covered by crops or snow, and the bare soil [...] Read more.
Fast and precise monitoring of soil organic matter (SOM) during maize growth periods is crucial for real-time assessment of soil quality. However, the big challenge we usually face is that many agricultural soils are covered by crops or snow, and the bare soil period is short, which makes reliable SOM prediction complex and difficult. In this study, an unmanned aerial vehicle (UAV) was utilized to acquire multi-temporal hyperspectral images of maize across the key growth stages at the field scale. The auxiliary predictors, such as spectral indices (I), field management (F), plant characteristics (V), and soil properties (S), were also introduced. We used stepwise multiple linear regression, partial least squares regression (PLSR), random forest (RF) regression, and XGBoost regression models for SOM prediction, and the results show the following: (1) Multi-temporal remote sensing information combined with multi-source predictors and their combinations can accurately estimate SOM content across the key growth periods. The best-fitting model depended on the types of models and predictors selected. With the I + F + V + S predictor combination, the best SOM prediction was achieved by using the XGBoost model (R2 = 0.72, RMSE = 0.27%, nRMSE = 0.16%) in the R3 stage. (2) The relative importance of soil properties, spectral indices, plant characteristics, and field management was 55.36%, 26.09%, 9.69%, and 8.86%, respectively, for the multiple periods combination. Here, this approach can overcome the impact of the crop cover condition by using multi-temporal UAV hyperspectral images combined with valuable auxiliary variables. This study can also improve the field-scale farmland soil properties assessment and mapping accuracy, which will aid in soil carbon sequestration and soil management. Full article
(This article belongs to the Section Remote Sensing in Agriculture)
Show Figures

Figure 1

16 pages, 879 KB  
Article
International Tourism and Economic Growth: Exploring the Unexplored for the ASEAN Region
by Talal H. Alsabhan, Muhammad Tahir, Umar Burki, Talal F. Abuhulaibah, Zeyad K. Alnahedh and Mohammad Jaboob
Economies 2025, 13(10), 291; https://doi.org/10.3390/economies13100291 - 6 Oct 2025
Viewed by 335
Abstract
International tourism has helped numerous economies and regions over the years in achieving the objective of long-term sustainable economic growth. The “Association of Southeast Asian Nations (ASEAN)” is the rising hub for international tourism due to its rich history, rich vibrant culture, pleasant [...] Read more.
International tourism has helped numerous economies and regions over the years in achieving the objective of long-term sustainable economic growth. The “Association of Southeast Asian Nations (ASEAN)” is the rising hub for international tourism due to its rich history, rich vibrant culture, pleasant weather conditions, and beautiful landscape. However, research evidence about the tourism-growth relationship in the context of ASEAN economies is indeed very scarce. Accordingly, this research paper focuses on the members of the ASEAN region to examine the true influence that international tourism has on economic growth. Relevant econometric technique such as the “Fixed Effects (FEF)” is chosen for analysis based on the Hausman test, “Feasible Generalized Least Squares (FGLS)” is used for robustness, and “Two Stages Least Squares (2SLS)” is employed for tackling the likely endogeneity issue. The results show that international tourism has contributed positively to the economic growth of the ASEAN economies. Similarly, openness to global trade and education have also helped the ASEAN economies in securing long run sustainable economic growth. Lastly, the inflation rate has decelerated the pace of economic growth, while government expenditures have accelerated the pace of economic growth among ASEAN members. Our empirical findings are robust to alternative model specifications and alternative econometric estimations. Therefore, we expect our empirical findings to help the policymakers of the ASEAN economies in developing suitable policy responses regarding the growth performance of their economies through the channel of international tourism. Full article
Show Figures

Figure 1

24 pages, 5745 KB  
Article
Development and Application of a Distributed and Parallel Dynamic Grouting Monitoring System Based on an Electrical Resistivity Tomography Method
by Hu Zeng, Qianli Zhang, Jie Liu, Cui Du and Yilin Li
Appl. Sci. 2025, 15(19), 10375; https://doi.org/10.3390/app151910375 - 24 Sep 2025
Viewed by 253
Abstract
To address the technical challenges in dynamic monitoring of grout diffusion patterns under complex geological conditions, in this study, a distributed parallel grouting monitoring system based on electrical resistivity tomography was developed. The system achieves three-dimensional visualization of grout propagation through hardware architecture [...] Read more.
To address the technical challenges in dynamic monitoring of grout diffusion patterns under complex geological conditions, in this study, a distributed parallel grouting monitoring system based on electrical resistivity tomography was developed. The system achieves three-dimensional visualization of grout propagation through hardware architecture innovation and the integration of inversion algorithms. At the hardware level, a cascadable distributed data acquisition terminal was designed, employing a dynamic optimization strategy for electrode combinations. This breakthrough overcomes traditional serial acquisition limitations. Algorithmically, a Bayesian estimation-based geological unit merging inversion model was proposed; it dynamically calculates merging thresholds through the noise posterior probability, achieving an improvement of more than 30% in the inversion boundary resolution compared with traditional least squares methods. Numerical simulations and physical experiments demonstrated that dipole arrays with 0.5 m electrode spacing exhibit optimal sensitivity to variations in grout resistivity, accurately capturing electrical response characteristics during diffusion. In practical roadbed grouting applications, the system yielded a grout diffusion radius showing only a 0.3 m deviation from the core sampling verification results, with three-dimensional imaging clearly depicting the diffusion morphology. This system provides reliable technical support for the precise control and quality assessment of underground engineering grouting processes. Full article
Show Figures

Figure 1

26 pages, 1605 KB  
Article
Variable Bayesian-Based Maximum Correntropy Criterion Cubature Kalman Filter with Application to Target Tracking
by Yu Ma, Guanghua Zhang, Songtao Ye and Dou An
Entropy 2025, 27(10), 997; https://doi.org/10.3390/e27100997 - 24 Sep 2025
Viewed by 350
Abstract
Target tracking in typical radar applications faces critical challenges in complex environments, including nonlinear dynamics, non-Gaussian noise, and sensor outliers. Current robustness-enhanced approaches remain constrained by empirical kernel tuning and computational trade-offs, failing to achieve balanced noise suppression and real-time efficiency. To address [...] Read more.
Target tracking in typical radar applications faces critical challenges in complex environments, including nonlinear dynamics, non-Gaussian noise, and sensor outliers. Current robustness-enhanced approaches remain constrained by empirical kernel tuning and computational trade-offs, failing to achieve balanced noise suppression and real-time efficiency. To address these limitations, this paper proposes the variational Bayesian-based maximum correntropy criterion cubature Kalman filter (VBMCC-CKF), which integrates variational Bayesian inference with CKF to establish a fully adaptive robust filtering framework for nonlinear systems. The core innovation lies in constructing a joint estimation framework of state and kernel size, where the kernel size is modeled as an inverse-gamma distributed random variable. Leveraging the conjugate properties of Gaussian-inverse gamma distributions, the method synchronously optimizes the state posterior distribution and kernel size parameters via variational Bayesian inference, eliminating reliance on manual empirical adjustments inherent to conventional correntropy-based filters. Simulation confirms the robust performance of the VBMCC-CKF framework in both single and multi-target tracking under non-Gaussian noise conditions. For the single-target case, it achieves a reduction in trajectory average root mean square error (Avg-RMSE) by at least 14.33% compared to benchmark methods while maintaining real-time computational efficiency. Integrated with multi-Bernoulli filtering, the method achieves a 40% lower optimal subpattern assignment (OSPA) distance even under 10-fold covariance mutations, accompanied by superior hit rates (HRs) and minimal trajectory position RMSEs in cluttered environments. These results substantiate its precision and adaptability for dynamic tracking scenarios. Full article
(This article belongs to the Section Information Theory, Probability and Statistics)
Show Figures

Figure 1

19 pages, 1013 KB  
Article
A Simulation-Based Comparative Analysis of Two-Parameter Robust Ridge M-Estimators for Linear Regression Models
by Bushra Haider, Syed Muhammad Asim, Danish Wasim and B. M. Golam Kibria
Stats 2025, 8(4), 84; https://doi.org/10.3390/stats8040084 - 24 Sep 2025
Viewed by 420
Abstract
Traditional regression estimators like Ordinary Least Squares (OLS) and classical ridge regression often fail under multicollinearity and outlier contamination respectively. Although recently developed two-parameter ridge regression (TPRR) estimators improve efficiency by introducing dual shrinkage parameters, they remain sensitive to extreme observations. This study [...] Read more.
Traditional regression estimators like Ordinary Least Squares (OLS) and classical ridge regression often fail under multicollinearity and outlier contamination respectively. Although recently developed two-parameter ridge regression (TPRR) estimators improve efficiency by introducing dual shrinkage parameters, they remain sensitive to extreme observations. This study develops a new class of Two-Parameter Robust Ridge M-Estimators (TPRRM) that integrate dual shrinkage with robust M-estimation to simultaneously address multicollinearity and outliers. A Monte Carlo simulation study, conducted under varying sample sizes, predictor dimensions, correlation levels, and contamination structures, compares the proposed estimators with OLS, ridge, and the most recent TPRR estimators. The results demonstrate that TPRRM consistently achieves the lowest Mean Squared Error (MSE), particularly in heavy-tailed and outlier-prone scenarios. Application to the Tobacco and Gasoline Consumption datasets further validates the superiority of the proposed methods in real-world conditions. The findings confirm that the proposed TPRRM fills a critical methodological gap by offering estimators that are not only efficient under multicollinearity, but also robust against departures from normality. Full article
Show Figures

Figure 1

29 pages, 3798 KB  
Article
Hybrid Adaptive MPC with Edge AI for 6-DoF Industrial Robotic Manipulators
by Claudio Urrea
Mathematics 2025, 13(19), 3066; https://doi.org/10.3390/math13193066 - 24 Sep 2025
Viewed by 752
Abstract
Autonomous robotic manipulators in industrial environments face significant challenges, including time-varying payloads, multi-source disturbances, and real-time computational constraints. Traditional model predictive control frameworks degrade by over 40% under model uncertainties, while conventional adaptive techniques exhibit convergence times incompatible with industrial cycles. This work [...] Read more.
Autonomous robotic manipulators in industrial environments face significant challenges, including time-varying payloads, multi-source disturbances, and real-time computational constraints. Traditional model predictive control frameworks degrade by over 40% under model uncertainties, while conventional adaptive techniques exhibit convergence times incompatible with industrial cycles. This work presents a hybrid adaptive model predictive control framework integrating edge artificial intelligence with dual-stage parameter estimation for 6-DoF industrial manipulators. The approach combines recursive least squares with a resource-optimized neural network (three layers, 32 neurons, <500 KB memory) designed for industrial edge deployment. The system employs innovation-based adaptive forgetting factors, providing exponential convergence with mathematically proven Lyapunov-based stability guarantees. Simulation validation using the Fanuc CR-7iA/L manipulator demonstrates superior performance across demanding scenarios, including precision laser cutting and obstacle avoidance. Results show 52% trajectory tracking RMSE reduction (0.022 m to 0.012 m) under 20% payload variations compared to standard MPC, while achieving sub-5 ms edge inference latency with 99.2% reliability. The hybrid estimator achieves 65% faster parameter convergence than classical RLS, with 18% energy efficiency improvement. Statistical significance is confirmed through ANOVA (F = 24.7, p < 0.001) with large effect sizes (Cohen’s d > 1.2). This performance surpasses recent adaptive control methods while maintaining proven stability guarantees. Hardware validation under realistic industrial conditions remains necessary to confirm practical applicability. Full article
(This article belongs to the Special Issue Computation, Modeling and Algorithms for Control Systems)
Show Figures

Figure 1

19 pages, 2794 KB  
Article
Estimating Soil Moisture Content in Winter Wheat in Southern Xinjiang by Fusing UAV Texture Feature with Novel Three-Dimensional Texture Indexes
by Tao Sun, Zhijun Li, Zijun Tang, Wei Zhang, Wangyang Li, Zhiying Liu, Jinqi Wu, Shiqi Liu, Youzhen Xiang and Fucang Zhang
Plants 2025, 14(19), 2948; https://doi.org/10.3390/plants14192948 - 23 Sep 2025
Viewed by 359
Abstract
Winter wheat is a major staple crop worldwide, and real-time monitoring of soil moisture content (SMC) is critical for yield security. Targeting the monitoring needs under arid conditions in southern Xinjiang, this study proposes a UAV multispectral-based SMC estimation method that constructs novel [...] Read more.
Winter wheat is a major staple crop worldwide, and real-time monitoring of soil moisture content (SMC) is critical for yield security. Targeting the monitoring needs under arid conditions in southern Xinjiang, this study proposes a UAV multispectral-based SMC estimation method that constructs novel three-dimensional (3-D) texture indices. Field experiments were conducted over two consecutive growing seasons in Kunyu City, southern Xinjiang, China, with four irrigation and four fertilization levels. High-resolution multispectral imagery was acquired at the jointing stage using a UAV-mounted camera. From the imagery, conventional texture features were extracted, and six two-dimensional (2-D) and four 3-D texture indices were constructed. A correlation matrix approach was used to screen feature combinations significantly associated with SMC. Random forest (RF), partial least squares regression (PLSR), and back-propagation neural networks (BPNN) were then used to develop SMC models for three soil depths (0–20, 20–40, and 40–60 cm). Results showed that estimation accuracy for the shallow layer (0–20 cm) was markedly higher than for the middle and deep layers. Under single-source input, using 3-D texture indices (Combination 3) with RF achieved the best shallow-layer performance (validation R2 = 0.827, RMSE = 0.534, MRE = 2.686%). With multi-source fusion inputs (Combination 7: texture features + 2-D texture indices + 3-D texture indices) combined with RF, shallow-layer SMC estimation further improved (R2 = 0.890, RMSE = 0.395, MRE = 1.91%). Relative to models using only conventional texture features, fusion increased R2 by approximately 11.4%, 11.7%, and 18.1% for the shallow, middle, and deep layers, respectively. The findings indicate that 3-D texture indices (e.g., DTTI), which integrate multi-band texture information, more comprehensively capture canopy spatial structure and are more sensitive to shallow-layer moisture dynamics. Multi-source fusion provides complementary information and substantially enhances model accuracy. The proposed approach offers a new pathway for accurate SMC monitoring in arid croplands and is of practical significance for remote sensing-based moisture estimation and precision irrigation. Full article
Show Figures

Figure 1

27 pages, 8643 KB  
Article
Determining Vertical Displacement of Agricultural Areas Using UAV-Photogrammetry and a Heteroscedastic Deep Learning Model
by Wojciech Gruszczyński, Edyta Puniach, Paweł Ćwiąkała and Wojciech Matwij
Remote Sens. 2025, 17(18), 3259; https://doi.org/10.3390/rs17183259 - 21 Sep 2025
Viewed by 430
Abstract
This article introduces an algorithm that uses a U-Net architecture to determine vertical ground surface displacements from unmanned aerial vehicle (UAV)-photogrammetry point clouds, offering an alternative to traditional ground filtering methods. Unlike conventional ground filters that rely on point cloud classification, the proposed [...] Read more.
This article introduces an algorithm that uses a U-Net architecture to determine vertical ground surface displacements from unmanned aerial vehicle (UAV)-photogrammetry point clouds, offering an alternative to traditional ground filtering methods. Unlike conventional ground filters that rely on point cloud classification, the proposed approach employs heteroscedastic regression. The U-Net model predicts the conditional expected values of the elevation corrections, aiming to reduce the impact of vegetation on determined ground surface elevations. Concurrently, it estimates the logarithm of the elevation correction variance, allowing for direct quantification of the uncertainty associated with each elevation correction value. The algorithm was evaluated using three metrics: the root mean square error (RMSE) of vertical displacements, the percentage of nodes with determined displacement values, and the percentage of outliers among those values. Performance was assessed using the technique for order of preference by similarity to ideal solution (TOPSIS) method and compared against several ground-filter-based algorithms across four datasets, each including at least two time intervals. In most cases, the U-Net-based approach demonstrated a slight performance advantage over traditional ground filtering techniques. For example, for the U-Net-based algorithm, for one of the test datasets, the RMSE of the determined subsidences was 6.1 cm, the percentage of nodes with determined subsidences was 80.5%, and the percentage of outliers was 0.2%. For the same case, the algorithm based on the next best model (SMRF) allowed an RMSE of 7.7 cm to be obtained; for 77.3% of nodes, the subsidences were determined; and the percentage of outliers was 0.3%. Full article
Show Figures

Figure 1

27 pages, 4096 KB  
Article
Direct and Inverse Steady-State Heat Conduction in Materials with Discontinuous Thermal Conductivity: Hybrid Difference/Meshless Monte Carlo Approaches
by Sławomir Milewski
Materials 2025, 18(18), 4358; https://doi.org/10.3390/ma18184358 - 18 Sep 2025
Viewed by 517
Abstract
This study investigates steady-state heat conduction in materials with stepwise discontinuities in thermal conductivity, a phenomenon frequently encountered in layered composites, thermal barrier coatings, and electronic packaging. The problem is formulated for a 2D two-domain region, where each subdomain has a distinct constant [...] Read more.
This study investigates steady-state heat conduction in materials with stepwise discontinuities in thermal conductivity, a phenomenon frequently encountered in layered composites, thermal barrier coatings, and electronic packaging. The problem is formulated for a 2D two-domain region, where each subdomain has a distinct constant conductivity. Both the direct problem—determining the temperature field from known conductivities—and the inverse problem—identifying conductivities and the internal heat source from limited temperature measurements—are addressed. To this end, three deterministic finite-difference-type models are developed: two for the standard formulation and one for a meshless formulation based on Moving Least Squares (MLS), all derived within a local framework that efficiently enforces interface conditions. In addition, two Monte Carlo models are proposed—one for the standard and one for the meshless setting—providing pointwise estimates of the solution without requiring computation over the entire domain. Finally, an algorithm for solving inverse problems is introduced, enabling the reconstruction of material parameters and internal sources. The performance of the proposed approaches is assessed through 2D benchmark problems of varying geometric complexity, including both structured grids and irregular node clouds. The numerical experiments cover convergence studies, sensitivity of inverse reconstructions to measurement noise and input parameters, and evaluations of robustness across different conductivity contrasts. The results confirm that the hybrid difference-meshless Monte Carlo framework delivers accurate temperature predictions and reliable inverse identification, highlighting its potential for engineering applications in thermal design optimization, material characterization, and failure analysis. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

26 pages, 4678 KB  
Article
Uncalibrated Visual Servoing for Spatial Under-Constrained Cable-Driven Parallel Robots
by Jarrett-Scott K. Jenny and Matt Marshall
Appl. Sci. 2025, 15(18), 10144; https://doi.org/10.3390/app151810144 - 17 Sep 2025
Viewed by 528
Abstract
Cable-driven parallel robots (CDPRs) offer large workspaces with minimal infrastructure, but their control becomes difficult when the platform is under-constrained and sensing is limited. This paper investigates uncalibrated visual servoing (UVS) with a single monocular camera, asking whether simple global static Jacobians (GSJ) [...] Read more.
Cable-driven parallel robots (CDPRs) offer large workspaces with minimal infrastructure, but their control becomes difficult when the platform is under-constrained and sensing is limited. This paper investigates uncalibrated visual servoing (UVS) with a single monocular camera, asking whether simple global static Jacobians (GSJ) can be sufficient and how an adaptive Jacobian estimator behaves. Two platforms are evaluated: a three-cable (3C) platform and a redundant six-cable du-al-plane platform (RC). Motion-capture (MoCap) validation shows that redundancy improves stability and tracking by reducing platform tilt and making image errors correspond more directly to Cartesian motions. Across static and low-speed tracking tasks, GSJ proved reliable, while a baseline recursive least-squares (RLS) estimator without safety triggers was often unstable. These findings suggest that improving mechanical conditioning may be as important as adding algorithmic complexity, and that carefully estimated global models can suffice in practice. Limitations include the use of a single camera, laboratory conditions, and a baseline RLS variant; future work will evaluate event-triggered adaptation and higher-speed trajectories. Full article
(This article belongs to the Special Issue Advances in Cable Driven Robotic Systems)
Show Figures

Figure 1

22 pages, 606 KB  
Article
Calibration for Computer Models with Time-Varying Parameter
by Yang Sun and Xiangzhong Fang
Mathematics 2025, 13(18), 2969; https://doi.org/10.3390/math13182969 - 13 Sep 2025
Viewed by 348
Abstract
Traditional calibration methods often assume constant parameters that remain unchanged across input conditions, which can limit predictive accuracy when parameters actually vary. To address this issue, we propose a novel calibration framework with time-varying parameters. Building on the idea of profile least squares, [...] Read more.
Traditional calibration methods often assume constant parameters that remain unchanged across input conditions, which can limit predictive accuracy when parameters actually vary. To address this issue, we propose a novel calibration framework with time-varying parameters. Building on the idea of profile least squares, we first apply local linear smoothing to estimate the discrepancy function between the computer model and the true process, and then use local linear smoothing again to obtain pointwise estimates of the functional calibration parameter. Through rigorous theoretical analysis, we establish the consistency and asymptotic normality of the proposed estimator. Simulation studies and an application to NASA’s OCO-2 mission demonstrate that the proposed method effectively captures parameter variation and improves predictive performance. Full article
Show Figures

Figure 1

Back to TopTop