Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = condensin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1403 KiB  
Review
Loop Extrusion Machinery Impairments in Models and Disease
by Anastasiya Ryzhkova, Ekaterina Maltseva, Nariman Battulin and Evelyn Kabirova
Cells 2024, 13(22), 1896; https://doi.org/10.3390/cells13221896 - 17 Nov 2024
Cited by 1 | Viewed by 1905
Abstract
Structural maintenance of chromosomes (SMC) complexes play a crucial role in organizing the three-dimensional structure of chromatin, facilitating key processes such as gene regulation, DNA repair, and chromosome segregation. This review explores the molecular mechanisms and biological significance of SMC-mediated loop extrusion complexes, [...] Read more.
Structural maintenance of chromosomes (SMC) complexes play a crucial role in organizing the three-dimensional structure of chromatin, facilitating key processes such as gene regulation, DNA repair, and chromosome segregation. This review explores the molecular mechanisms and biological significance of SMC-mediated loop extrusion complexes, including cohesin, condensins, and SMC5/6, focusing on their structure, their dynamic function during the cell cycle, and their impact on chromatin architecture. We discuss the implications of impairments in loop extrusion machinery as observed in experimental models and human diseases. Mutations affecting these complexes are linked to various developmental disorders and cancer, highlighting their importance in genome stability and transcriptional regulation. Advances in model systems and genomic techniques have provided deeper insights into the pathological roles of SMC complex dysfunction, offering potential therapeutic avenues for associated diseases. Full article
Show Figures

Figure 1

15 pages, 1277 KiB  
Article
Positive Selection Drives the Evolution of the Structural Maintenance of Chromosomes (SMC) Complexes
by Diego Forni, Alessandra Mozzi, Manuela Sironi and Rachele Cagliani
Genes 2024, 15(9), 1159; https://doi.org/10.3390/genes15091159 - 3 Sep 2024
Cited by 2 | Viewed by 1728
Abstract
Structural Maintenance of Chromosomes (SMC) complexes are an evolutionary conserved protein family. In most eukaryotes, three SMC complexes have been characterized, as follows: cohesin, condensin, and SMC5/6 complexes. These complexes are involved in a plethora of functions, and defects in SMC genes can [...] Read more.
Structural Maintenance of Chromosomes (SMC) complexes are an evolutionary conserved protein family. In most eukaryotes, three SMC complexes have been characterized, as follows: cohesin, condensin, and SMC5/6 complexes. These complexes are involved in a plethora of functions, and defects in SMC genes can lead to an increased risk of chromosomal abnormalities, infertility, and cancer. To investigate the evolution of SMC complex genes in mammals, we analyzed their selective patterns in an extended phylogeny. Signals of positive selection were identified for condensin NCAPG, for two SMC5/6 complex genes (SMC5 and NSMCE4A), and for all cohesin genes with almost exclusive meiotic expression (RAD21L1, REC8, SMC1B, and STAG3). For the latter, evolutionary rates correlate with expression during female meiosis, and most positively selected sites fall in intrinsically disordered regions (IDRs). Our results support growing evidence that IDRs are fast evolving, and that they most likely contribute to adaptation through modulation of phase separation. We suggest that the natural selection signals identified in SMC complexes may be the result of different selective pressures: a host-pathogen arms race in the condensin and SMC5/6 complexes, and an intragenomic conflict for meiotic cohesin genes that is similar to that described for centromeres and telomeres. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

20 pages, 1764 KiB  
Review
How Chromatin Motor Complexes Influence the Nuclear Architecture: A Review of Chromatin Organization, Cohesins, and Condensins with a Focus on C. elegans
by Bahaar Chawla and Györgyi Csankovszki
DNA 2024, 4(1), 84-103; https://doi.org/10.3390/dna4010005 - 11 Mar 2024
Viewed by 3436
Abstract
Chromatin is the complex of DNA and associated proteins found in the nuclei of living organisms. How it is organized is a major research field as it has implications for replication, repair, and gene expression. This review summarizes the current state of the [...] Read more.
Chromatin is the complex of DNA and associated proteins found in the nuclei of living organisms. How it is organized is a major research field as it has implications for replication, repair, and gene expression. This review summarizes the current state of the chromatin organization field, with a special focus on chromatin motor complexes cohesin and condensin. Containing the highly conserved SMC proteins, these complexes are responsible for organizing chromatin during cell division. Additionally, research has demonstrated that condensin and cohesin also have important functions during interphase to shape the organization of chromatin and regulate expression of genes. Using the model organism C. elegans, the authors review the current knowledge of how these complexes perform such diverse roles and what open questions still exist in the field. Full article
(This article belongs to the Special Issue DNA Organization in Model Organisms)
Show Figures

Graphical abstract

18 pages, 7798 KiB  
Article
Unlocking the Transcriptional Control of NCAPG in Bovine Myoblasts: CREB1 and MYOD1 as Key Players
by Zongchang Chen, Jingsheng Li, Yanbin Bai, Zhanxin Liu, Yali Wei, Dashan Guo, Xue Jia, Bingang Shi, Xiaolan Zhang, Zhidong Zhao, Jiang Hu, Xiangmin Han, Jiqing Wang, Xiu Liu, Shaobin Li and Fangfang Zhao
Int. J. Mol. Sci. 2024, 25(5), 2506; https://doi.org/10.3390/ijms25052506 - 21 Feb 2024
Cited by 2 | Viewed by 1997
Abstract
Muscle formation directly determines meat production and quality. The non-SMC condensin I complex subunit G (NCAPG) is strongly linked to the growth features of domestic animals because it is essential in controlling muscle growth and development. This study aims to elucidate the tissue [...] Read more.
Muscle formation directly determines meat production and quality. The non-SMC condensin I complex subunit G (NCAPG) is strongly linked to the growth features of domestic animals because it is essential in controlling muscle growth and development. This study aims to elucidate the tissue expression level of the bovine NCAPG gene, and determine the key transcription factors for regulating the bovine NCAPG gene. In this study, we observed that the bovine NCAPG gene exhibited high expression levels in longissimus dorsi and spleen tissues. Subsequently, we cloned and characterized the promoter region of the bovine NCAPG gene, consisting of a 2039 bp sequence, through constructing the deletion fragment double-luciferase reporter vector and site-directed mutation-identifying core promoter region with its key transcription factor binding site. In addition, the key transcription factors of the core promoter sequence of the bovine NCAPG gene were analyzed and predicted using online software. Furthermore, by integrating overexpression experiments and the electrophoretic mobility shift assay (EMSA), we have shown that cAMP response element binding protein 1 (CREB1) and myogenic differentiation 1 (MYOD1) bind to the core promoter region (−598/+87), activating transcription activity in the bovine NCAPG gene. In conclusion, these findings shed important light on the regulatory network mechanism that underlies the expression of the NCAPG gene throughout the development of the muscles in beef cattle. Full article
(This article belongs to the Special Issue New Sights into Bioinformatics of Gene Regulations and Structure)
Show Figures

Figure 1

17 pages, 2782 KiB  
Article
Polymer Modeling Reveals Interplay between Physical Properties of Chromosomal DNA and the Size and Distribution of Condensin-Based Chromatin Loops
by Daniel Kolbin, Benjamin L. Walker, Caitlin Hult, John Donoghue Stanton, David Adalsteinsson, M. Gregory Forest and Kerry Bloom
Genes 2023, 14(12), 2193; https://doi.org/10.3390/genes14122193 - 9 Dec 2023
Cited by 3 | Viewed by 2126
Abstract
Transient DNA loops occur throughout the genome due to thermal fluctuations of DNA and the function of SMC complex proteins such as condensin and cohesin. Transient crosslinking within and between chromosomes and loop extrusion by SMCs have profound effects on high-order chromatin organization [...] Read more.
Transient DNA loops occur throughout the genome due to thermal fluctuations of DNA and the function of SMC complex proteins such as condensin and cohesin. Transient crosslinking within and between chromosomes and loop extrusion by SMCs have profound effects on high-order chromatin organization and exhibit specificity in cell type, cell cycle stage, and cellular environment. SMC complexes anchor one end to DNA with the other extending some distance and retracting to form a loop. How cells regulate loop sizes and how loops distribute along chromatin are emerging questions. To understand loop size regulation, we employed bead–spring polymer chain models of chromatin and the activity of an SMC complex on chromatin. Our study shows that (1) the stiffness of the chromatin polymer chain, (2) the tensile stiffness of chromatin crosslinking complexes such as condensin, and (3) the strength of the internal or external tethering of chromatin chains cooperatively dictate the loop size distribution and compaction volume of induced chromatin domains. When strong DNA tethers are invoked, loop size distributions are tuned by condensin stiffness. When DNA tethers are released, loop size distributions are tuned by chromatin stiffness. In this three-way interaction, the presence and strength of tethering unexpectedly dictates chromatin conformation within a topological domain. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

22 pages, 4289 KiB  
Article
A Realistic Mixture of Persistent Organic Pollutants Affects Zebrafish Development, Behavior, and Specifically Eye Formation by Inhibiting the Condensin I Complex
by Gustavo Guerrero-Limón, Renaud Nivelle, Nguyen Bich-Ngoc, Dinh Duy-Thanh and Marc Muller
Toxics 2023, 11(4), 357; https://doi.org/10.3390/toxics11040357 - 9 Apr 2023
Cited by 5 | Viewed by 3979
Abstract
Persistent organic pollutants (POPs) are posing major environmental and health threats due to their stability, ubiquity, and bioaccumulation. Most of the numerous studies of these compounds deal with single chemicals, although real exposures always consist of mixtures. Thus, using different tests, we screened [...] Read more.
Persistent organic pollutants (POPs) are posing major environmental and health threats due to their stability, ubiquity, and bioaccumulation. Most of the numerous studies of these compounds deal with single chemicals, although real exposures always consist of mixtures. Thus, using different tests, we screened the effects on zebrafish larvae caused by exposure to an environmentally relevant POP mixture. Our mixture consisted of 29 chemicals as found in the blood of a Scandinavian human population. Larvae exposed to this POP mix at realistic concentrations, or sub-mixtures thereof, presented growth retardation, edemas, retarded swim bladder inflation, hyperactive swimming behavior, and other striking malformations such as microphthalmia. The most deleterious compounds in the mixture belong to the per- and polyfluorinated acids class, although chlorinated and brominated compounds modulated the effects. Analyzing the changes in transcriptome caused by POP exposure, we observed an increase of insulin signaling and identified genes involved in brain and eye development, leading us to propose that the impaired function of the condensin I complex caused the observed eye defect. Our findings contribute to the understanding of POP mixtures, their consequences, and potential threats to human and animal populations, indicating that more mechanistic, monitoring, and long-term studies are imperative. Full article
(This article belongs to the Topic Environmental Toxicology and Human Health)
Show Figures

Graphical abstract

23 pages, 2903 KiB  
Article
Height-Related Polygenic Variants Are Associated with Metabolic Syndrome Risk and Interact with Energy Intake and a Rice-Main Diet to Influence Height in KoGES
by Sunmin Park
Nutrients 2023, 15(7), 1764; https://doi.org/10.3390/nu15071764 - 4 Apr 2023
Cited by 7 | Viewed by 3441
Abstract
Adult height is inversely related to metabolic syndrome (MetS) risk, but its genetic impacts have not been revealed. The present study aimed to examine the hypothesis that adult height-related genetic variants interact with lifestyle to influence adult height and are associated with MetS [...] Read more.
Adult height is inversely related to metabolic syndrome (MetS) risk, but its genetic impacts have not been revealed. The present study aimed to examine the hypothesis that adult height-related genetic variants interact with lifestyle to influence adult height and are associated with MetS risk in adults aged >40 in Korea during 2010–2014. Participants were divided into short stature (SS; control) and tall stature (TS; case) by the 85th percentile of adult height. The genetic variants linked to adult height were screened from a genome-wide association study in a city hospital-based cohort (n = 58,701) and confirmed in Ansan/Ansung plus rural cohorts (n = 13,783) among the Korean Genome and Epidemiology Study. Genetic variants that interacted with each other were identified using the generalized multifactor dimensionality reduction (GMDR) analysis. The interaction between the polygenic risk score (PRS) of the selected genetic variants and lifestyles was examined. Adult height was inversely associated with MetS, cardiovascular diseases, and liver function. The PRS, including zinc finger and BTB domain containing 38 (ZBTB38)_rs6762722, polyadenylate-binding protein-interacting protein-2B (PAIP2B)_rs13034890, carboxypeptidase Z (CPZ)_rs3756173, and latent-transforming growth factor beta-binding protein-1 (LTBP1)_rs4630744, was positively associated with height by 1.29 times and inversely with MetS by 0.894 times after adjusting for covariates. In expression quantitative trait loci, the gene expression of growth/differentiation factor-5 (GDF5)_rs224331, non-SMC condensin I complex subunit G (NCAPG)_rs2074974, ligand-dependent nuclear receptor corepressor like (LCORL)_rs7700107, and insulin-like growth factor-1 receptor (IGF1R)_rs2871865 was inversely linked to their risk allele in the tibial nerve and brain. The gene expression of PAIP2B_rs13034890 and a disintegrin and metalloproteinase with thrombospondin motifs-like-3 (ADAMTSL3)_rs13034890 was positively related to it. The PRS was inversely associated with MetS, hyperglycemia, HbA1c, and white blood cell counts. The wild type of GDF5_rs224331 (Ala276) lowered binding energy with rugosin A, D, and E (one of the hydrolyzable tannins) but not the mutated one (276Ser) in the in-silico analysis. The PRS interacted with energy intake and rice-main diet; PRS impact was higher in the high energy intake and the low rice-main diet. In conclusion, the PRS for adult height interacted with energy intake and diet patterns to modulate height and was linked to height and MetS by modulating their expression in the tibial nerve and brain. Full article
(This article belongs to the Special Issue Nutrition and Gene Interaction)
Show Figures

Figure 1

13 pages, 2498 KiB  
Review
Making Mitotic Chromosomes in a Test Tube
by Keishi Shintomi
Epigenomes 2022, 6(3), 20; https://doi.org/10.3390/epigenomes6030020 - 20 Jul 2022
Cited by 2 | Viewed by 4045
Abstract
Mitotic chromosome assembly is an essential preparatory step for accurate transmission of the genome during cell division. During the past decades, biochemical approaches have uncovered the molecular basis of mitotic chromosomes. For example, by using cell-free assays of frog egg extracts, the condensin [...] Read more.
Mitotic chromosome assembly is an essential preparatory step for accurate transmission of the genome during cell division. During the past decades, biochemical approaches have uncovered the molecular basis of mitotic chromosomes. For example, by using cell-free assays of frog egg extracts, the condensin I complex central for the chromosome assembly process was first identified, and its functions have been intensively studied. A list of chromosome-associated proteins has been almost completed, and it is now possible to reconstitute structures resembling mitotic chromosomes with a limited number of purified factors. In this review, I introduce how far we have come in understanding the mechanism of chromosome assembly using cell-free assays and reconstitution assays, and I discuss their potential applications to solve open questions. Full article
(This article belongs to the Special Issue Chromatin Unlimited)
Show Figures

Figure 1

14 pages, 2145 KiB  
Article
Proteomic Response of Aedes aegypti Larvae to Silver/Silver Chloride Nanoparticles Synthesized Using Bacillus thuringiensis subsp. israelensis Metabolites
by Nantipat Chimkhan, Sutticha Na-Ranong Thammasittirong, Sittiruk Roytrakul, Sucheewin Krobthong and Anon Thammasittirong
Insects 2022, 13(7), 641; https://doi.org/10.3390/insects13070641 - 16 Jul 2022
Cited by 6 | Viewed by 2827
Abstract
Silver/silver chloride nanoparticles (Ag/AgCl NPs) are an alternative approach to control the larvae of Aedes aegypti, a vector of mosquito-borne diseases. However, the molecular mechanisms of Ag/AgCl NPs to A. aegypti have not been reported. In this work, Ag/AgCl NPs were synthesized [...] Read more.
Silver/silver chloride nanoparticles (Ag/AgCl NPs) are an alternative approach to control the larvae of Aedes aegypti, a vector of mosquito-borne diseases. However, the molecular mechanisms of Ag/AgCl NPs to A. aegypti have not been reported. In this work, Ag/AgCl NPs were synthesized using supernatant, mixed toxins from Bacillus thuringiensis subsp. israelensis (Bti), and heterologously expressed Cry4Aa and Cry4Ba toxins. The images from scanning electron microscopy revealed that the Ag/AgCl NPs were spherical in shape with a size range of 25–100 nm. The larvicidal activity against A. aegypti larvae revealed that the Ag/AgCl NPs synthesized using the supernatant of Bti exhibited higher toxicity (LC50 = 0.133 μg/mL) than the Ag/AgCl NPs synthesized using insecticidal proteins (LC50 = 0.148–0.217 μg/mL). The proteomic response to Ag/AgCl NPs synthesized using the supernatant of Bti in A. aegypti larvae was compared to the ddH2O-treated control. Two-dimensional gel electrophoresis analysis revealed 110 differentially expressed proteins, of which 15 were selected for identification using mass spectrometry. Six upregulated proteins (myosin I heavy chain, heat shock protein 70, the F0F1-type ATP synthase beta subunit, methyltransferase, protein kinase, and condensin complex subunit 3) that responded to Ag/AgCl NP treatment in A. aegypti were reported for NP treatments in different organisms. These results suggested that possible mechanisms of action of Ag/AgCl NPs on A. aegypti larvae are: mitochondrial dysfunction, DNA and protein damage, inhibition of cell proliferation, and cell apoptosis. The findings from this work provide greater insight into the action of green synthesized Ag/AgCl NPs on the control of A. aegypti larvae. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

12 pages, 1961 KiB  
Review
Mechanisms of DNA Mobilization and Sequestration
by Kerry Bloom and Daniel Kolbin
Genes 2022, 13(2), 352; https://doi.org/10.3390/genes13020352 - 16 Feb 2022
Cited by 3 | Viewed by 3168
Abstract
The entire genome becomes mobilized following DNA damage. Understanding the mechanisms that act at the genome level requires that we embrace experimental and computational strategies to capture the behavior of the long-chain DNA polymer, which is the building block for the chromosome. Long-chain [...] Read more.
The entire genome becomes mobilized following DNA damage. Understanding the mechanisms that act at the genome level requires that we embrace experimental and computational strategies to capture the behavior of the long-chain DNA polymer, which is the building block for the chromosome. Long-chain polymers exhibit constrained, sub-diffusive motion in the nucleus. Cross-linking proteins, including cohesin and condensin, have a disproportionate effect on genome organization in their ability to stabilize transient interactions. Cross-linking proteins can segregate the genome into sub-domains through polymer–polymer phase separation (PPPS) and can drive the formation of gene clusters through small changes in their binding kinetics. Principles from polymer physics provide a means to unravel the mysteries hidden in the chains of life. Full article
(This article belongs to the Special Issue Mechanisms of DNA Damage, Repair and Mutagenesis)
Show Figures

Figure 1

13 pages, 2999 KiB  
Article
Role of Nse1 Subunit of SMC5/6 Complex as a Ubiquitin Ligase
by Peter Kolesar, Karel Stejskal, David Potesil, Johanne M. Murray and Jan J. Palecek
Cells 2022, 11(1), 165; https://doi.org/10.3390/cells11010165 - 4 Jan 2022
Cited by 11 | Viewed by 3840 | Correction
Abstract
Structural Maintenance of Chromosomes (SMC) complexes are important for many aspects of the chromosomal organization. Unlike cohesin and condensin, the SMC5/6 complex contains a variant RING domain carried by its Nse1 subunit. RING domains are characteristic for ubiquitin ligases, and human NSE1 has [...] Read more.
Structural Maintenance of Chromosomes (SMC) complexes are important for many aspects of the chromosomal organization. Unlike cohesin and condensin, the SMC5/6 complex contains a variant RING domain carried by its Nse1 subunit. RING domains are characteristic for ubiquitin ligases, and human NSE1 has been shown to possess ubiquitin-ligase activity in vitro. However, other studies were unable to show such activity. Here, we confirm Nse1 ubiquitin-ligase activity using purified Schizosaccharomyces pombe proteins. We demonstrate that the Nse1 ligase activity is stimulated by Nse3 and Nse4. We show that Nse1 specifically utilizes Ubc13/Mms2 E2 enzyme and interacts directly with ubiquitin. We identify the Nse1 mutation (R188E) that specifically disrupts its E3 activity and demonstrate that the Nse1-dependent ubiquitination is particularly important under replication stress. Moreover, we determine Nse4 (lysine K181) as the first known SMC5/6-associated Nse1 substrate. Interestingly, abolition of Nse4 modification at K181 leads to suppression of DNA-damage sensitivity of other SMC5/6 mutants. Altogether, this study brings new evidence for Nse1 ubiquitin ligase activity, significantly advancing our understanding of this enigmatic SMC5/6 function. Full article
Show Figures

Figure 1

15 pages, 1449 KiB  
Article
OCT1 Is a Poor Prognostic Factor for Breast Cancer Patients and Promotes Cell Proliferation via Inducing NCAPH
by Takuya Ogura, Kotaro Azuma, Junichiro Sato, Keiichi Kinowaki, Ken-Ichi Takayama, Toshihiko Takeiwa, Hidetaka Kawabata and Satoshi Inoue
Int. J. Mol. Sci. 2021, 22(21), 11505; https://doi.org/10.3390/ijms222111505 - 25 Oct 2021
Cited by 19 | Viewed by 3266
Abstract
Octamer transcription factor 1 (OCT1) is a transcriptional factor reported to be a poor prognostic factor in various cancers. However, the clinical value of OCT1 in breast cancer is not fully understood. In the present study, an immunohistochemical study of OCT1 protein was [...] Read more.
Octamer transcription factor 1 (OCT1) is a transcriptional factor reported to be a poor prognostic factor in various cancers. However, the clinical value of OCT1 in breast cancer is not fully understood. In the present study, an immunohistochemical study of OCT1 protein was performed using estrogen receptor (ER)-positive breast cancer tissues from 108 patients. Positive OCT1 immunoreactivity (IR) was associated with the shorter disease-free survival (DFS) of patients (p = 0.019). Knockdown of OCT1 inhibited cell proliferation in MCF-7 breast cancer cells as well as its derivative long-term estrogen-deprived (LTED) cells. On the other hand, the overexpression of OCT1 promoted cell proliferation in MCF-7 cells. Using microarray analysis, we identified the non-structural maintenance of chromosomes condensin I complex subunit H (NCAPH) as a novel OCT1-taget gene in MCF-7 cells. Immunohistochemical analysis showed that NCAPH IR was significantly positively associated with OCT1 IR (p < 0.001) and that positive NCAPH IR was significantly related to the poor DFS rate of patients (p = 0.041). The knockdown of NCAPH inhibited cell proliferation in MCF-7 and LTED cells. These results demonstrate that OCT1 and its target gene NCAPH are poor prognostic factors and potential therapeutic targets for patients with ER-positive breast cancer. Full article
(This article belongs to the Special Issue Molecular Research and Treatment of Breast Cancer)
Show Figures

Figure 1

13 pages, 3290 KiB  
Article
Functions of SMC2 in the Development of Zebrafish Liver
by Xixi Li, Guili Song, Yasong Zhao, Jing Ren, Qing Li and Zongbin Cui
Biomedicines 2021, 9(9), 1240; https://doi.org/10.3390/biomedicines9091240 - 16 Sep 2021
Cited by 5 | Viewed by 3379
Abstract
SMC2 (structural maintenance of chromosomes 2) is the core subunit of condensins, which play a central role in chromosome organization and segregation. However, the functions of SMC2 in embryonic development remain poorly understood, due to the embryonic lethality of homozygous SMC2−/− mice. [...] Read more.
SMC2 (structural maintenance of chromosomes 2) is the core subunit of condensins, which play a central role in chromosome organization and segregation. However, the functions of SMC2 in embryonic development remain poorly understood, due to the embryonic lethality of homozygous SMC2−/− mice. Herein, we explored the roles of SMC2 in the liver development of zebrafish. The depletion of SMC2, with the CRISPR/Cas9-dependent gene knockout approach, led to a small liver phenotype. The specification of hepatoblasts was unaffected. Mechanistically, extensive apoptosis occurred in the liver of SMC2 mutants, which was mainly associated with the activation of the p53-dependent apoptotic pathway. Moreover, an aberrant activation of a series of apoptotic pathways in SMC2 mutants was involved in the defective chromosome segregation and subsequent DNA damage. Therefore, our findings demonstrate that SMC2 is necessary for zebrafish liver development. Full article
(This article belongs to the Special Issue Zebrafish Models for Development and Disease 3.0)
Show Figures

Figure 1

22 pages, 4540 KiB  
Article
A Role for Caenorhabditis elegans COMPASS in Germline Chromatin Organization
by Marion Herbette, Valérie Robert, Aymeric Bailly, Loïc Gely, Robert Feil, David Llères and Francesca Palladino
Cells 2020, 9(9), 2049; https://doi.org/10.3390/cells9092049 - 8 Sep 2020
Cited by 6 | Viewed by 4983
Abstract
Deposition of histone H3 lysine 4 (H3K4) methylation at promoters is catalyzed by the SET1/COMPASS complex and is associated with context-dependent effects on gene expression and local changes in chromatin organization. The role of SET1/COMPASS in shaping chromosome architecture has not been investigated. [...] Read more.
Deposition of histone H3 lysine 4 (H3K4) methylation at promoters is catalyzed by the SET1/COMPASS complex and is associated with context-dependent effects on gene expression and local changes in chromatin organization. The role of SET1/COMPASS in shaping chromosome architecture has not been investigated. Here we used Caenorhabditis elegans to address this question through a live imaging approach and genetic analysis. Using quantitative FRET (Förster resonance energy transfer)-based fluorescence lifetime imaging microscopy (FLIM) on germ cells expressing histones eGFP-H2B and mCherry-H2B, we find that SET1/COMPASS influences meiotic chromosome organization, with marked effects on the close proximity between nucleosomes. We further show that inactivation of set-2, encoding the C. elegans SET1 homologue, or CFP-1, encoding the chromatin targeting subunit of COMPASS, enhances germline chromosome organization defects and sterility of condensin-II depleted animals. set-2 loss also aggravates germline defects resulting from conditional inactivation of topoisomerase II, another structural component of chromosomes. Expression profiling of set-2 mutant germlines revealed only minor transcriptional changes, suggesting that the observed effects are at least partly independent of transcription. Altogether, our results are consistent with a role for SET1/COMPASS in shaping meiotic chromosomes in C. elegans, together with the non-histone proteins condensin-II and topoisomerase. Given the high degree of conservation, our findings expand the range of functions attributed to COMPASS and suggest a broader role in genome organization in different species. Full article
(This article belongs to the Section Cell Nuclei: Function, Transport and Receptors)
Show Figures

Figure 1

12 pages, 4504 KiB  
Article
Knockdown of Dinoflagellate Condensin CcSMC4 Subunit Leads to S-Phase Impediment and Decompaction of Liquid Crystalline Chromosomes
by Ting Hin Kosmo Yan, Zhihao Wu, Alvin Chun Man Kwok and Joseph Tin Yum Wong
Microorganisms 2020, 8(4), 565; https://doi.org/10.3390/microorganisms8040565 - 14 Apr 2020
Cited by 5 | Viewed by 3078
Abstract
Dinoflagellates have some of the largest genomes, and their liquid-crystalline chromosomes (LCCs) have high degrees of non-nucleosomal superhelicity with cation-mediated DNA condensation. It is currently unknown if condensins, pentameric protein complexes containing structural maintenance of chromosomes 2/4, commonly involved in eukaryotic chromosomes condensation [...] Read more.
Dinoflagellates have some of the largest genomes, and their liquid-crystalline chromosomes (LCCs) have high degrees of non-nucleosomal superhelicity with cation-mediated DNA condensation. It is currently unknown if condensins, pentameric protein complexes containing structural maintenance of chromosomes 2/4, commonly involved in eukaryotic chromosomes condensation in preparation for M phase, may be involved in the LCC structure. We find that CcSMC4p (dinoflagellate SMC4 homolog) level peaked at S/G2 phase, even though LCCs do not undergo global-decondensation for replication. Despite the differences in the chromosomal packaging system, heterologous CcSMC4p expression suppressed conditional lethality of the corresponding fission yeast mutant, suggesting conservation of some canonical condensin functions. CcSMC4p-knockdown led to sustained expression of the S-phase marker PCNAp, S-phase impediment, and distorted nuclei in the early stage of CcSMC4p depletion. Prolonged CcSMC4p-knockdown resulted in aneuploidal cells and nuclear swelling with increasing LCC decompaction–decondensation. Cumulatively, our data suggested CcSMC4p function was required for dinoflagellate S-phase progression, and we propose that condensin-mediated higher-order compaction provisioning is involved in the provision of local rigidity for the replisome. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

Back to TopTop