Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (133)

Search Parameters:
Keywords = condensation monomers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 40365 KiB  
Article
Formation of Hybrid Spherical Silica Particles Using a Novel Alkoxy-Functional Polysilsesquioxane Macromonomer as a Precursor in an Acid-Catalyzed Sol-Gel Process
by Anna Kowalewska, Kamila Majewska-Smolarek, Agata S. Herc, Sławomir Kaźmierski and Joanna Bojda
Materials 2025, 18(14), 3357; https://doi.org/10.3390/ma18143357 - 17 Jul 2025
Viewed by 370
Abstract
The interest in macromolecular alkoxysilyl-functionalized hybrids (self-assembling or nanostructured), which could be used as precursors in biomimetic silica precipitation and for the synthesis of hollow spherical silica particles, is growing. Nevertheless, reports on all-organosilicon systems for bioinspired silica precipitation are scarce. Therefore, a [...] Read more.
The interest in macromolecular alkoxysilyl-functionalized hybrids (self-assembling or nanostructured), which could be used as precursors in biomimetic silica precipitation and for the synthesis of hollow spherical silica particles, is growing. Nevertheless, reports on all-organosilicon systems for bioinspired silica precipitation are scarce. Therefore, a new kind of polyalkoxysilane macromonomer–linear polysilsesquioxane (LPSQ) of ladder-like backbone, functionalized in side chains with trimethoxysilyl groups (LPSQ-R-Si(OMe)3), was designed following this approach. It was obtained by photoinitiated thiol-ene addition of 3-mercaptopropyltrimethoxysilane to the vinyl-functionalized polysilsesquioxane precursor, carried out in situ in tetraethoxysilane (TEOS). The mixture of LPSQ-R-Si(OMe)3 and TEOS (co-monomers) was used in a sol–gel process conducted under acidic conditions (0.5 M HCl/NaCl) in the presence of Pluronic® F-127 triblock copolymer as a template. LPSQ-R-Si(OMe)3 played a key role for the formation of microparticles of a spherical shape that were formed under the applied conditions, while their size (as low as 3–4 µm) was controlled by the stirring rate. The hybrid materials were hydrophobic and showed good thermal and oxidative stability. Introduction of zinc acetate (Zn(OAc)2) as an additive in the sol–gel process influenced the pH of the reaction medium, which resulted in structural reinforcement of the hybrid microparticles owing to more effective condensation of silanol groups and a relative increase of the content of SiO2. The proposed method shows directions in designing the properties of hybrid materials and can be translated to other silicon–organic polymers and oligomers that could be used to produce hollow silica particles. The established role of various factors (macromonomer structure, pH, and stirring rate) allows for the modulation of particle morphology. Full article
Show Figures

Graphical abstract

14 pages, 7125 KiB  
Article
Ultraporous Amine-Functionalized Organosilicas: Tuning Morphology and Surface Chemistry for Adsorption Applications
by Marlena Bytniewska, Kacper Latusek, Maria Powęzka, Marcin Kuśmierz, Oliwia Kapusta and Mariusz Barczak
Molecules 2025, 30(14), 2990; https://doi.org/10.3390/molecules30142990 - 16 Jul 2025
Viewed by 269
Abstract
Highly porous organosilicas were synthesized via direct co-condensation of two monomers, bis (triethoxysilyl) benzene and aminopropyltriethoxysilane, by adjusting the time between consecutive additions of the monomers and the ageing time of the as-obtained samples. The resulting organosilicas exhibited high porosities, with total pore [...] Read more.
Highly porous organosilicas were synthesized via direct co-condensation of two monomers, bis (triethoxysilyl) benzene and aminopropyltriethoxysilane, by adjusting the time between consecutive additions of the monomers and the ageing time of the as-obtained samples. The resulting organosilicas exhibited high porosities, with total pore volumes exceeding 2.2 cm3/g. Alongside detailed insights into the morphology, structure, and surface chemistry via a broad spectrum of various instrumental techniques, the obtained ultraporous amine-functionalized organosilicas were tested as adsorbents of diclofenac sodium, chosen here as a model drug. The results revealed remarkable differences in the physicochemical properties and adsorption efficiencies among the obtained samples, confirming that the time gap between the addition of the monomers and ageing time can be used to tune the morphological, structural, and chemical features of the obtained organosilicas and, as a consequence, their sorption efficiencies. Full article
Show Figures

Graphical abstract

29 pages, 8924 KiB  
Article
Extraction and Characterization of Tannins from the Barks of Four Tropical Wood Species and Formulation of Bioresins for Potential Industrial Applications
by Liliane Nga, Benoit Ndiwe, Achille Bernard Biwole, Jean Jalin Eyinga Biwole, Mewoli Armel, Joseph Zobo Mfomo, Anélie Petrissans, Antonio Pizzi and Antonios N. Papadopoulos
Polymers 2025, 17(13), 1837; https://doi.org/10.3390/polym17131837 - 30 Jun 2025
Viewed by 282
Abstract
The use of renewable plant resources for the formulation of adhesives is increasingly promising, thanks to their availability at an affordable price and their high content of biomolecules such as polyphenols. The study of tannins therefore remains an active and ongoing area of [...] Read more.
The use of renewable plant resources for the formulation of adhesives is increasingly promising, thanks to their availability at an affordable price and their high content of biomolecules such as polyphenols. The study of tannins therefore remains an active and ongoing area of research. This article presents a recent characterization of tannins extracted from the barks of four types of tropical trees (Entandophragma candolei, Entandophragma cylindricum, Afzelia africana and Dacryodes klaineana) and their application in the development of bioresins. Tannin extraction with hot water yielded between 25% and 40%. Tannin from Entandophragma candolei produced the highest yield. Chemical analysis confirmed the high presence of condensed tannins, with the identification of several new monomers in each tannin type, underlining their uniqueness. The most chemically stable tannins, Dacryodes klaineana and Afzelia africana, demonstrated their ability to withstand temperatures of 525 °C and 375 °C, respectively, with carbon residues of 45.05% and 43.18%. As for the resins, Entandophragma candolei tannin resin stood out for its thermal properties, notably a degradation temperature of 500 °C and a carbon residue rate of 36.72%. As for E. cylindricum resin, it boasted the highest modulus of elasticity (5268 MPa). Characterized tannins can be exploited in the technological sector. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

18 pages, 2491 KiB  
Review
Use and Roles of Tannins in Polysaccharide-Based Bioplastics and Biocomposites
by Carlo Santulli, Serena Gabrielli and Graziella Roselli
Organics 2025, 6(2), 19; https://doi.org/10.3390/org6020019 - 1 May 2025
Cited by 1 | Viewed by 1463
Abstract
Most bioplastics are based on polysaccharides, which are either synthesized from a variously sourced monomer or extracted from some biomass waste. In many cases, some lignocellulosic fibers are then added to the obtained bioplastics to form biocomposites and extend their range of applications [...] Read more.
Most bioplastics are based on polysaccharides, which are either synthesized from a variously sourced monomer or extracted from some biomass waste. In many cases, some lignocellulosic fibers are then added to the obtained bioplastics to form biocomposites and extend their range of applications beyond packaging films and generically easily biodegradable materials. Plant-extracted tannins, which, as such, might also be building blocks for bioplastics, do nonetheless represent a useful complement in their production when added to polysaccharide-based plastics and biocomposites, since they offer other functions, such as bioadhesion, coloration, and biocidal effect. The variety of species used for tannin extraction and condensation is becoming very wide and is also connected with the local availability of amounts of bio-waste from other productions, such as from the food system. This work tries to summarize the evolution and recent developments in tannin extraction and their increasing centrality in the production of polysaccharide-based plastics, adhesives, and natural fiber composites. Full article
(This article belongs to the Special Issue Chemistry of Heterocyclic Compounds)
Show Figures

Figure 1

19 pages, 7332 KiB  
Article
Synthesis of Curcumin Derivatives via Knoevenagel Reaction Within a Continuously Driven Microfluidic Reactor Using Polymeric Networks Containing Piperidine as a Catalyst
by Naresh Killi, Katja Rumpke and Dirk Kuckling
Gels 2025, 11(4), 278; https://doi.org/10.3390/gels11040278 - 8 Apr 2025
Viewed by 1644
Abstract
The use of organo-catalysis in continuous-flow reactor systems is gaining attention in medicinal chemistry due to its cost-effectiveness and reduced chemical waste. In this study, bioactive curcumin (CUM) derivatives were synthesized in a continuously operated microfluidic reactor (MFR), using piperidine-based polymeric networks as [...] Read more.
The use of organo-catalysis in continuous-flow reactor systems is gaining attention in medicinal chemistry due to its cost-effectiveness and reduced chemical waste. In this study, bioactive curcumin (CUM) derivatives were synthesized in a continuously operated microfluidic reactor (MFR), using piperidine-based polymeric networks as catalysts. Piperidine methacrylate and piperidine acrylate were synthesized and subsequently copolymerized with complementary monomers (MMA or DMAA) and crosslinkers (EGDMA or MBAM) via photopolymerization, yielding different polymeric networks. Initially, batch reactions were optimized for the organo-catalytic Knoevenagel condensation between CUM and 4-nitrobenzaldehyde, under various conditions, in the presence of polymer networks. Conversion was assessed using offline 1H NMR spectroscopy, revealing an increase in conversion with enhanced swelling properties of the polymer networks, which facilitated greater accessibility of catalytic sites. In continuous-flow MFR experiments, optimized polymer gel dots exhibited superior catalytic performance, achieving a conversion of up to 72%, compared to other compositions. This improvement was attributed to the enhanced swelling in the reaction mixture (DMSO/methanol, 7:3 v/v) at 40 °C over 72 h. Furthermore, the MFR system enabled the efficient synthesis of a series of CUM derivatives, demonstrating significantly higher conversion rates than traditional batch reactions. Notably, while batch reactions required 90% catalyst loading in the gel, the MFR system achieved a comparable or superior performance with only 50% catalyst, resulting in a higher turnover number. These findings underscore the advantages of continuous-flow organo-catalysis in enhancing catalytic efficiency and sustainability in organic synthesis. Full article
(This article belongs to the Special Issue Gels: 10th Anniversary)
Show Figures

Graphical abstract

14 pages, 3152 KiB  
Article
Exceptionally High-Temperature-Resistant Kapton-Type Polyimides with Tg > 520 °C: Synthesis via Incorporation of Spirobis(indene)-bis(benzoxazole)-Containing Diamines
by Peng Xiao, Xiaojie He and Qinghua Lu
Polymers 2025, 17(7), 832; https://doi.org/10.3390/polym17070832 - 21 Mar 2025
Cited by 1 | Viewed by 770
Abstract
Polyimides (PIs), recognized for their exceptional thermal stability, are extensively employed in advanced applications, including aerospace, flexible displays, flexible solar cells, flame-retardant materials, and high-temperature filtration materials. However, with the continuous advancements in science and technology, the demand for improved thermal performance of [...] Read more.
Polyimides (PIs), recognized for their exceptional thermal stability, are extensively employed in advanced applications, including aerospace, flexible displays, flexible solar cells, flame-retardant materials, and high-temperature filtration materials. However, with the continuous advancements in science and technology, the demand for improved thermal performance of PIs in these application areas has increased significantly. In this study, four spirobis(indene)-bis(benzoxazole) diamine monomers (5a, 5aa, 5b and 5bb) were designed and synthesized. These monomers were copolymerized with pyromellitic dianhydride (PMDA) and 4,4-diaminodiphenylmethane (ODA) to develop Kapton-type PIs. By varying the copolymerization molar ratios of the different diamines, a series of novel ultrahigh-temperature-resistant PI films were successfully prepared, and it was found that incorporating a highly rigid and twisted spirobis(indene)-bis(benzoxazole) structure into the PI matrix enhances the rigidity of the polymer chains and restricts their mobility, thereby significantly improving the thermal performance of the PI films. When 5a and ODA were copolymerized at molar ratios of 1:9 and 4:6, the glass transition temperature (Tg) of Kapton-type films significantly increased from 396 °C to 467 °C and >520 °C, respectively. These PI films also exhibit exceptional mechanical properties, with the modulus increasing from 1.6 GPa to 4.7 GPa, while demonstrating low dielectric performance, as evidenced by a decrease in the dielectric constant (Dk) from 3.51 to 3.08 under a 10 GHz high-frequency electric field. Additionally, molecular dynamics simulations were employed to further explore the relationships between polymer molecular structure, condensed states, and film properties, providing theoretical guidance for the development of polymers with ultrahigh thermal resistance and superior overall performance. Full article
(This article belongs to the Special Issue Advances in High-Performance Polymer Materials)
Show Figures

Figure 1

13 pages, 1771 KiB  
Article
Tau Oligomers Resist Phase Separation
by Lathan Lucas, Phoebe S. Tsoi, Josephine C. Ferreon and Allan Chris M. Ferreon
Biomolecules 2025, 15(3), 336; https://doi.org/10.3390/biom15030336 - 26 Feb 2025
Cited by 1 | Viewed by 1095
Abstract
Tau is a microtubule-associated protein that undergoes liquid–liquid phase separation (LLPS) to form condensates under physiological conditions, facilitating microtubule stabilization and intracellular transport. LLPS has also been implicated in pathological Tau aggregation, which contributes to tauopathies such as Alzheimer’s disease. While LLPS is [...] Read more.
Tau is a microtubule-associated protein that undergoes liquid–liquid phase separation (LLPS) to form condensates under physiological conditions, facilitating microtubule stabilization and intracellular transport. LLPS has also been implicated in pathological Tau aggregation, which contributes to tauopathies such as Alzheimer’s disease. While LLPS is known to promote Tau aggregation, the relationship between Tau’s structural states and its phase separation behavior remains poorly defined. Here, we examine how oligomerization modulates Tau LLPS and uncover key distinctions between monomeric, oligomeric, and amyloidogenic Tau species. Using dynamic light scattering and fluorescence microscopy, we monitored oligomer formation over time and assessed oligomeric Tau’s ability to undergo LLPS. We found that Tau monomers readily phase separate and form condensates. As oligomerization progresses, Tau’s propensity to undergo LLPS diminishes, with oligomers still being able to phase separate, albeit with reduced efficiency. Interestingly, oligomeric Tau is recruited into condensates formed with 0-day-aged Tau, with this recruitment depending on the oligomer state of maturation. Early-stage, Thioflavin T (ThT)-negative oligomers co-localize with 0-day-aged Tau condensates, whereas ThT-positive oligomers resist condensate recruitment entirely. This study highlights a dynamic interplay between Tau LLPS and aggregation, providing insight into how Tau’s structural and oligomeric states influence its pathological and functional roles. These findings underscore the need to further explore LLPS as a likely modulator of Tau pathogenesis and distinct pathogenic oligomers as viable therapeutic targets in tauopathies. Full article
(This article belongs to the Collection Feature Papers in 'Biomacromolecules: Proteins')
Show Figures

Figure 1

19 pages, 3206 KiB  
Article
Impact of Thermal Treatment and Aging on Lignin Properties in Spruce Wood: Pathways to Value-Added Applications
by František Kačík, Eva Výbohová, Tereza Jurczyková, Adriana Eštoková, Elena Kmeťová and Danica Kačíková
Polymers 2025, 17(2), 238; https://doi.org/10.3390/polym17020238 - 18 Jan 2025
Cited by 3 | Viewed by 1142
Abstract
Thermal modification is an environmentally friendly process that does not utilize chemical agents to enhance the stability and durability of wood. The use of thermally modified wood results in a significantly extended lifespan compared with untreated wood, with minimal maintenance requirements, thereby reducing [...] Read more.
Thermal modification is an environmentally friendly process that does not utilize chemical agents to enhance the stability and durability of wood. The use of thermally modified wood results in a significantly extended lifespan compared with untreated wood, with minimal maintenance requirements, thereby reducing the carbon footprint. This study examines the impact of varying modification temperatures (160, 180, and 210 °C) on the lignin of spruce wood using the ThermoWood process and following the accelerated aging of thermally modified wood. Wet chemistry methods, including nitrobenzene oxidation (NBO), size exclusion chromatography (SEC), thermogravimetry (TG), differential thermogravimetry (DTG), and Fourier transform infrared spectroscopy (FTIR), were employed to investigate the alterations in lignin. At lower modification temperatures, the predominant reaction is the degradation of lignin, which results in a reduction in the molecular weight and an enhanced yield of NBO (vanillin and vanillic acid) products. At elevated temperatures, condensation and repolymerization reactions become the dominant processes, increasing these traits. The lignin content of aged wood is higher than that of thermally modified wood, which has a lower molecular weight and a lower decomposition temperature. The results demonstrate that lignin isolated from thermally modified wood at the end of its life cycle is a promising feedstock for carbon-based materials and the production of a variety of aromatic monomers, including phenols, aromatic aldehydes and acids, and benzene derivatives. Full article
(This article belongs to the Special Issue Advances in Applied Lignin Research)
Show Figures

Figure 1

16 pages, 2512 KiB  
Article
The Design of a Controlled-Release Polymer of a Phytopharmaceutical Agent: A Study on the Release in Different PH Environments Using the Ultrafiltration Technique
by Oscar G. Marambio, Alejandro Muñoz, Rudy Martin-Trasancos, Julio Sánchez and Guadalupe del C. Pizarro
Polymers 2024, 16(24), 3492; https://doi.org/10.3390/polym16243492 - 14 Dec 2024
Cited by 1 | Viewed by 1044
Abstract
A series of hydrophilic copolymers were prepared using 2-hydroxyethyl methacrylate (HEMA) and itaconic acid (IA) from free radical polymerization at different feed monomer ratios using ammonium persulfate (APS) initiators in water at 70 °C. The herbicide 2,4-dichlorophenoxy acetic acid (2,4-D) was grafted to [...] Read more.
A series of hydrophilic copolymers were prepared using 2-hydroxyethyl methacrylate (HEMA) and itaconic acid (IA) from free radical polymerization at different feed monomer ratios using ammonium persulfate (APS) initiators in water at 70 °C. The herbicide 2,4-dichlorophenoxy acetic acid (2,4-D) was grafted to Poly(HEMA-co-IA) by a condensation reaction. The hydrolysis of the polymeric release system, Poly(HEMA-co-IA)-2,4-D, demonstrated that the release of the herbicide in an aqueous phase depends on the polymeric system’s pH value and hydrophilic character. In addition, the swelling behavior (Wt%) was studied at different pH values using Liquid-phase Polymer Retention (LPR) in an ultrafiltration system. The acid hydrolysis of the herbicide from the conjugates follows a first-order kinetic, showing higher kinetic constants as the pH increases. The base-catalyzed hydrolysis reaction of the herbicide follows a zero-order kinetic, where the basic medium acts as a catalyst, accelerating the release rate of the herbicide and showing higher kinetic constants as the pH increases. The differences in the release rates found for the hydrogel herbicide at different pH values can be correlated with the difference in their swelling capacity, where the release rate generally increases with an increase in the swelling capacity from water solution at higher pH values. The study of the release process revealed that all samples in distilled water at a pH of 10 are representative of agricultural systems. It showed first-order swelling kinetics and an absorption capacity that conforms to the parameters for hydrogels for agricultural applications, which supports their potential for these purposes. Full article
(This article belongs to the Special Issue Advanced Polymer Materials: Synthesis, Structure, and Properties)
Show Figures

Graphical abstract

11 pages, 3140 KiB  
Article
Rational Fabrication of Polyhedral Oligomeric Silsesquioxane-Based Porous Organic Polymers Sustainably Used for Selective CO2 Adsorption
by Tiantian Li, Guodong Kang, Mengqi Liu, Congcong Sun, Jie Li, Yang Meng and Dingming Xue
Processes 2024, 12(11), 2604; https://doi.org/10.3390/pr12112604 - 20 Nov 2024
Viewed by 844
Abstract
Different types of porous materials have been developed for the efficient separation of CO2 from mixtures of gases. Nevertheless, the most porous materials cannot be used for extensive industrial applications due to their non-negligible disadvantages, such as complex synthesis routes, expensive monomers, [...] Read more.
Different types of porous materials have been developed for the efficient separation of CO2 from mixtures of gases. Nevertheless, the most porous materials cannot be used for extensive industrial applications due to their non-negligible disadvantages, such as complex synthesis routes, expensive monomers, and/or costly catalysts. Therefore, a strategy for fabricating a series of polyhedral oligomeric silsesquioxane (POSS)-based porous organic polymer materials (PBPOPs) was developed through the simple condensation reaction of octaphenylsilsesquioxane and different bromine-containing monomers. It was found that PBPOP-2 exhibits the best CO2 adsorption amount of 41 cm3·g−1 at 273 K and 760 mmHg based on the accessible specific surface area, large pore volumes, and accessible pore sizes. Furthermore, PBPOP-2 exhibits efficient CO2/N2 selectivity and complete regeneration under mild conditions, which demonstrates the potential for the selective separation of CO2 from gas mixtures. This work provides a new route to developing POSS-based POPs for CO2-capture applications. Full article
Show Figures

Figure 1

18 pages, 7800 KiB  
Article
Demonstrating the Efficacy of Core-Shell Silica Catalyst in Depolymerizing Polycarbonate
by Onofrio Losito, Pasquale Pisani, Alessia De Cataldo, Cosimo Annese, Marina Clausi, Roberto Comparelli, Daniela Pinto and Lucia D’Accolti
Polymers 2024, 16(22), 3209; https://doi.org/10.3390/polym16223209 - 19 Nov 2024
Cited by 1 | Viewed by 1538
Abstract
Polycarbonate (PC) is a highly versatile plastic material that is extensively utilized across various industries due to its superior properties, including high impact strength and heat resistance. However, its durability presents significant challenges for recycling and waste management. Polycarbonate is a thermoplastic polymer [...] Read more.
Polycarbonate (PC) is a highly versatile plastic material that is extensively utilized across various industries due to its superior properties, including high impact strength and heat resistance. However, its durability presents significant challenges for recycling and waste management. Polycarbonate is a thermoplastic polymer representative of the class of condensation reaction polymers obtained from the reaction of bisphenol A (BPA) and a carbonyl source, such as phosgene or alkyl and aryl carbonate. The recycling processes for PC waste include mechanical recycling, blending with other materials, pyrolysis, and chemical recycling. The latter is based on the cleavage of carbonate units to their corresponding monomers or derivatives through alcoholysis and/or hydrolysis and ammonolysis, normally under basic conditions and without catalysts. This study investigates the efficacy of the use of several heterogeneous catalysts based on silica gel as a robust support, including Sc(III)silicate (thortveitite), which has been previously reported for the preparation of polyesters, core-shell Si-ILs, and core-shell Si-ILs-ZnO, which has never been used before in the depolymerization of polycarbonate, proposing a sustainable and efficient method for recycling this valuable polymer. We chose to explore core-shell catalysts because these catalysts are robust and recyclable, and have been used in very harsh industrial processes. The core-shell silica catalysts used in this study were characterized by XRD; SEM_EDX, FT-IR, and ICP-OES analysis. In our experimental protocol, polycarbonate samples were exposed to the catalyst under controlled conditions (60–150 °C, for 12–24 h) using both oxygen and nitrogen nucleophiles. The depolymerization process was systematically monitored using advanced analytical techniques (GC/MS and GPC chromatography). The experimental results indicated that core-shell silica catalyst exhibits high efficacy, with up to 75% yield for the ammonolysis reaction, producing monomers of high purity. These monomers can be reused for the synthesis of new polycarbonate materials, contributing to a more sustainable approach to polycarbonate recycling. Full article
(This article belongs to the Special Issue Chemical Recycling of Polymers)
Show Figures

Graphical abstract

11 pages, 3758 KiB  
Article
One-Step Preparation of Both Micron and Nanoparticles
by Zihao Guo, Zhiyuan Zhang, Yunchen Cao, Chunyi Chen, Juan Wang, Haoran Yang, Wenbin Song, Yiyang Peng and Xiaowei Hu
Polymers 2024, 16(22), 3120; https://doi.org/10.3390/polym16223120 - 7 Nov 2024
Viewed by 1043
Abstract
The complex materials comprised of both micron and nanometer-sized particles (MNPs) present special properties different from conventional single-size particles due to their special size effect. In this study, the MNPs could be simultaneously synthesized in a one-pot medium by soap-free emulsion polymerization, without [...] Read more.
The complex materials comprised of both micron and nanometer-sized particles (MNPs) present special properties different from conventional single-size particles due to their special size effect. In this study, the MNPs could be simultaneously synthesized in a one-pot medium by soap-free emulsion polymerization, without harsh preparation conditions and material waste. In the whole process, the amphipathic siloxane oligomers would migrate to the mixed monomer droplet surface to reduce the surface energy of the system and further complete hydrolysis–condensation to obtain the SiO2 shell at the water–oil interface. On the one hand, the mixed monomers inside the above shell would migrate outward driven by the capillary force generated at the shell mesopore and be further initiated by the water-soluble initiator potassium persulfate (KPS), resulting in the formation of bowl-shaped micron particles with “lunar surface” structure. On the other hand, the residual mixed monomers dissolve in water and could be polymerized by initiating free radicals in the water phase to obtain popcorn-like nano-sized particles. The above two particles are clearly displayed in the SEM photos, and the DLS characterization further shows that the sizes of two particles are concentrated at 1.4 μm and 130 nm, respectively. Interestingly, the uniformity of obtained particles has a great relationship with the added amount of BA, and the perfect MNPs would appear when the St/BA feed mass ratio is 1:2. Moreover, the MNPs exhibit film-forming property, and the SiO2 component is evenly distributed in the formed coating. Thus, this study is not only beneficial to the theoretical research of soap-free emulsion polymerization but also to the application of multifunctional coatings. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

22 pages, 6773 KiB  
Review
Structure, Function and Engineering of the Nonribosomal Peptide Synthetase Condensation Domain
by Zhenkuai Huang, Zijing Peng, Mengli Zhang, Xinhai Li and Xiaoting Qiu
Int. J. Mol. Sci. 2024, 25(21), 11774; https://doi.org/10.3390/ijms252111774 - 1 Nov 2024
Cited by 4 | Viewed by 2576
Abstract
The nonribosomal peptide synthetase (NRPS) is a highly precise molecular assembly machinery for synthesizing structurally diverse peptides, which have broad medicinal applications. Withinthe NRPS, the condensation (C) domain is a core catalytic domain responsible for the formation of amide bonds between individual monomer [...] Read more.
The nonribosomal peptide synthetase (NRPS) is a highly precise molecular assembly machinery for synthesizing structurally diverse peptides, which have broad medicinal applications. Withinthe NRPS, the condensation (C) domain is a core catalytic domain responsible for the formation of amide bonds between individual monomer residues during peptide elongation. This review summarizes various aspects of the C domain, including its structural characteristics, catalytic mechanisms, substrate specificity, substrate gating function, and auxiliary functions. Moreover, through case analyses of the NRPS engineering targeting the C domains, the vast potential of the C domain in the combinatorial biosynthesis of peptide natural product derivatives is demonstrated. Full article
Show Figures

Figure 1

32 pages, 2193 KiB  
Review
Migration of Chemical Compounds from Packaging Materials into Packaged Foods: Interaction, Mechanism, Assessment, and Regulations
by Rakesh Kumar Gupta, Sunil Pipliya, Sangeetha Karunanithi, Gnana Moorthy Eswaran U, Sitesh Kumar, Shubham Mandliya, Prem Prakash Srivastav, Tejas Suthar, Ayaz Mukarram Shaikh, Endre Harsányi and Béla Kovács
Foods 2024, 13(19), 3125; https://doi.org/10.3390/foods13193125 - 30 Sep 2024
Cited by 13 | Viewed by 18514
Abstract
The migration of chemical compounds from packaging polymers to food presents a multifaceted challenge with implications for food safety and public health. This review explores the interaction between packaging materials and food products, focusing on permeation, migration, and sorption processes. The different migration [...] Read more.
The migration of chemical compounds from packaging polymers to food presents a multifaceted challenge with implications for food safety and public health. This review explores the interaction between packaging materials and food products, focusing on permeation, migration, and sorption processes. The different migration mechanisms of contact migration, gas phase migration, penetration migration, set-off migration, and condensation/distillation migration have been discussed comprehensively. The major migrating compounds are plasticizers, nanoparticles, antioxidants, light stabilizers, thermal stabilizers, monomers, oligomers, printing inks, and adhesives, posing potential health risks due to their association with endocrine disruption and carcinogenic effects. Advanced analytical methods help in the monitoring of migrated compounds, facilitating compliance with regulatory standards. Regulatory agencies enforce guidelines to limit migration, prompting the development of barrier coatings and safer packaging alternatives. Furthermore, there is a need to decipher the migration mechanism for mitigating it along with advancements in analytical techniques for monitoring the migration of compounds. Full article
Show Figures

Figure 1

68 pages, 13257 KiB  
Review
Organic and Metal–Organic Polymer-Based Catalysts—Enfant Terrible Companions or Good Assistants?
by Milan Králik, Peter Koóš, Martin Markovič and Pavol Lopatka
Molecules 2024, 29(19), 4623; https://doi.org/10.3390/molecules29194623 - 29 Sep 2024
Cited by 3 | Viewed by 3449
Abstract
This overview provides insights into organic and metal–organic polymer (OMOP) catalysts aimed at processes carried out in the liquid phase. Various types of polymers are discussed, including vinyl (various functional poly(styrene-co-divinylbenzene) and perfluorinated functionalized hydrocarbons, e.g., Nafion), condensation (polyesters, -amides, -anilines, -imides), and [...] Read more.
This overview provides insights into organic and metal–organic polymer (OMOP) catalysts aimed at processes carried out in the liquid phase. Various types of polymers are discussed, including vinyl (various functional poly(styrene-co-divinylbenzene) and perfluorinated functionalized hydrocarbons, e.g., Nafion), condensation (polyesters, -amides, -anilines, -imides), and additional (polyurethanes, and polyureas, polybenzimidazoles, polyporphyrins), prepared from organometal monomers. Covalent organic frameworks (COFs), metal–organic frameworks (MOFs), and their composites represent a significant class of OMOP catalysts. Following this, the preparation, characterization, and application of dispersed metal catalysts are discussed. Key catalytic processes such as alkylation—used in large-scale applications like the production of alkyl-tert-butyl ether and bisphenol A—as well as reduction, oxidation, and other reactions, are highlighted. The versatile properties of COFs and MOFs, including well-defined nanometer-scale pores, large surface areas, and excellent chemisorption capabilities, make them highly promising for chemical, electrochemical, and photocatalytic applications. Particular emphasis is placed on their potential for CO2 treatment. However, a notable drawback of COF- and MOF-based catalysts is their relatively low stability in both alkaline and acidic environments, as well as their high cost. A special part is devoted to deactivation and the disposal of the used/deactivated catalysts, emphasizing the importance of separating heavy metals from catalysts. The conclusion provides guidance on selecting and developing OMOP-based catalysts. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Figure 1

Back to TopTop