Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = conchiolin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 10426 KB  
Review
Bridging Nature and Engineering: Protein-Derived Materials for Bio-Inspired Applications
by Taufiq Nawaz, Liping Gu, Jaimie Gibbons, Zhong Hu and Ruanbao Zhou
Biomimetics 2024, 9(6), 373; https://doi.org/10.3390/biomimetics9060373 - 20 Jun 2024
Cited by 10 | Viewed by 5512
Abstract
The sophisticated, elegant protein-polymers designed by nature can serve as inspiration to redesign and biomanufacture protein-based materials using synthetic biology. Historically, petro-based polymeric materials have dominated industrial activities, consequently transforming our way of living. While this benefits humans, the fabrication and disposal of [...] Read more.
The sophisticated, elegant protein-polymers designed by nature can serve as inspiration to redesign and biomanufacture protein-based materials using synthetic biology. Historically, petro-based polymeric materials have dominated industrial activities, consequently transforming our way of living. While this benefits humans, the fabrication and disposal of these materials causes environmental sustainability challenges. Fortunately, protein-based biopolymers can compete with and potentially surpass the performance of petro-based polymers because they can be biologically produced and degraded in an environmentally friendly fashion. This paper reviews four groups of protein-based polymers, including fibrous proteins (collagen, silk fibroin, fibrillin, and keratin), elastomeric proteins (elastin, resilin, and wheat glutenin), adhesive/matrix proteins (spongin and conchiolin), and cyanophycin. We discuss the connection between protein sequence, structure, function, and biomimetic applications. Protein engineering techniques, such as directed evolution and rational design, can be used to improve the functionality of natural protein-based materials. For example, the inclusion of specific protein domains, particularly those observed in structural proteins, such as silk and collagen, enables the creation of novel biomimetic materials with exceptional mechanical properties and adaptability. This review also discusses recent advancements in the production and application of new protein-based materials through the approach of synthetic biology combined biomimetics, providing insight for future research and development of cutting-edge bio-inspired products. Protein-based polymers that utilize nature’s designs as a base, then modified by advancements at the intersection of biology and engineering, may provide mankind with more sustainable products. Full article
(This article belongs to the Special Issue Bio-Inspired Design for Structure Applications)
Show Figures

Graphical abstract

12 pages, 3080 KB  
Article
Hydrolyzed Conchiolin Protein (HCP) Extracted from Pearls Antagonizes both ET-1 and α-MSH for Skin Whitening
by Shan Yang, Zhekun Wang, Yunwei Hu, Kaile Zong, Xingjiang Zhang, Hui Ke, Pan Wang, Yuyo Go, Xi Hui Felicia Chan, Jianxin Wu and Qing Huang
Int. J. Mol. Sci. 2023, 24(8), 7471; https://doi.org/10.3390/ijms24087471 - 18 Apr 2023
Cited by 6 | Viewed by 5243
Abstract
Pearl powder is a famous traditional Chinese medicine that has a long history in treating palpitations, insomnia, convulsions, epilepsy, ulcers, and skin lightining. Recently, several studies have demonstrated the effects of pearl extracts on protection of ultraviolet A (UVA) induced irritation on human [...] Read more.
Pearl powder is a famous traditional Chinese medicine that has a long history in treating palpitations, insomnia, convulsions, epilepsy, ulcers, and skin lightining. Recently, several studies have demonstrated the effects of pearl extracts on protection of ultraviolet A (UVA) induced irritation on human skin fibroblasts and inhibition of melanin genesis on B16F10 mouse melanoma cells. To further explore the effect we focused on the whitening efficacy of pearl hydrolyzed conchiolin protein (HCP) on human melanoma MNT-1 cells under the irritation of alpha-melanocyte-stimulating hormone (α-MSH) or endothelin 1 (ET-1) to evaluate the intracellular tyrosinase and melanin contents, as well as the expression levels of tyrosinase (TYR), tyrosinase related protein 1 (TRP-1), and dopachrome tautomerase (DCT) genes and related proteins. We found that HCP could decrease the intracellular melanin content by reducing the activity of intracellular tyrosinase and inhibiting the expression of TYR, TRP-1, DCT genes and proteins. At the same time, the effect of HCP on melanosome transfer effect was also investigated in the co-culture system of immortalized human keratinocyte HaCaT cells with MNT-1. The result indicated that HCP could promote the transfer of melanosomes in MNT-1 melanocytes to HaCaT cells, which might accelerate the skin whitening process by quickly transferring and metabolizing melanosomes during keratinocyte differentiation. Further study is needed to explore the mechanism of melanosome transfer with depigmentation. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

47 pages, 5509 KB  
Review
Progress in Modern Marine Biomaterials Research
by Yuliya Khrunyk, Slawomir Lach, Iaroslav Petrenko and Hermann Ehrlich
Mar. Drugs 2020, 18(12), 589; https://doi.org/10.3390/md18120589 - 25 Nov 2020
Cited by 98 | Viewed by 12490
Abstract
The growing demand for new, sophisticated, multifunctional materials has brought natural structural composites into focus, since they underwent a substantial optimization during long evolutionary selection pressure and adaptation processes. Marine biological materials are the most important sources of both inspiration for biomimetics and [...] Read more.
The growing demand for new, sophisticated, multifunctional materials has brought natural structural composites into focus, since they underwent a substantial optimization during long evolutionary selection pressure and adaptation processes. Marine biological materials are the most important sources of both inspiration for biomimetics and of raw materials for practical applications in technology and biomedicine. The use of marine natural products as multifunctional biomaterials is currently undergoing a renaissance in the modern materials science. The diversity of marine biomaterials, their forms and fields of application are highlighted in this review. We will discuss the challenges, solutions, and future directions of modern marine biomaterialogy using a thorough analysis of scientific sources over the past ten years. Full article
(This article belongs to the Special Issue Marine Biomaterials 2020)
Show Figures

Figure 1

15 pages, 2297 KB  
Article
Relation between Biofilm and Virulence in Vibrio tapetis: A Transcriptomic Study
by Sophie Rodrigues, Christine Paillard, Sabine Van Dillen, Ali Tahrioui, Jean-Marc Berjeaud, Alain Dufour and Alexis Bazire
Pathogens 2018, 7(4), 92; https://doi.org/10.3390/pathogens7040092 - 26 Nov 2018
Cited by 16 | Viewed by 5403
Abstract
Marine pathogenic bacteria are able to form biofilms on many surfaces, such as mollusc shells, and they can wait for the appropriate opportunity to induce their virulence. Vibrio tapetis can develop such biofilms on the inner surface of shells of the Ruditapes philippinarum [...] Read more.
Marine pathogenic bacteria are able to form biofilms on many surfaces, such as mollusc shells, and they can wait for the appropriate opportunity to induce their virulence. Vibrio tapetis can develop such biofilms on the inner surface of shells of the Ruditapes philippinarum clam, leading to the formation of a brown conchiolin deposit in the form of a ring, hence the name of the disease: Brown Ring Disease. The virulence of V. tapetis is presumed to be related to its capacity to form biofilms, but the link has never been clearly established at the physiological or genetic level. In the present study, we used RNA-seq analysis to identify biofilm- and virulence-related genes displaying altered expression in biofilms compared to the planktonic condition. A flow cell system was employed to grow biofilms to obtain both structural and transcriptomic views of the biofilms. We found that 3615 genes were differentially expressed, confirming that biofilm and planktonic lifestyles are very different. As expected, the differentially expressed genes included those involved in biofilm formation, such as motility- and polysaccharide synthesis-related genes. The data show that quorum sensing is probably mediated by the AI-2/LuxO system in V. tapetis biofilms. The expression of genes encoding the Type VI Secretion System and associated exported proteins are strongly induced, suggesting that V. tapetis activates this virulence factor when living in biofilm. Full article
Show Figures

Figure 1

Back to TopTop