Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = computed radiography (CR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6549 KiB  
Review
Imaging of Acute Complications of Community-Acquired Pneumonia in the Paediatric Population—From Chest Radiography to MRI
by Efthymia Alexopoulou, Spyridon Prountzos, Maria Raissaki, Argyro Mazioti, Pablo Caro-Dominguez, Franz Wolfgang Hirsch, Jovan Lovrenski and Pierluigi Ciet
Children 2024, 11(1), 122; https://doi.org/10.3390/children11010122 - 18 Jan 2024
Cited by 7 | Viewed by 7711
Abstract
The most common acute infection and leading cause of death in children worldwide is pneumonia. Clinical and laboratory tests essentially diagnose community-acquired pneumonia (CAP). CAP can be caused by bacteria, viruses, or atypical microorganisms. Imaging is usually reserved for children who do not [...] Read more.
The most common acute infection and leading cause of death in children worldwide is pneumonia. Clinical and laboratory tests essentially diagnose community-acquired pneumonia (CAP). CAP can be caused by bacteria, viruses, or atypical microorganisms. Imaging is usually reserved for children who do not respond to treatment, need hospitalisation, or have hospital-acquired pneumonia. This review discusses the imaging findings for acute CAP complications and the diagnostic role of each imaging modality. Pleural effusion, empyema, necrotizing pneumonia, abscess, pneumatocele, pleural fistulas, and paediatric acute respiratory distress syndrome (PARDS) are acute CAP complications. When evaluating complicated CAP patients, chest radiography, lung ultrasonography, computed tomography (CT), and magnetic resonance imaging (MRI) can be used, with each having their own pros and cons. Imaging is usually not needed for CAP diagnosis, but it is essential for complicated cases and follow-ups. Lung ultrasound can supplement chest radiography (CR), which starts the diagnostic algorithm. Contrast-enhanced computed tomography (CECT) is used for complex cases. Advances in MRI protocols make it a viable alternative for diagnosing CAP and its complications. Full article
(This article belongs to the Special Issue Pediatric Respiratory Diseases: Diagnosis, Treatment, and Prevention)
Show Figures

Figure 1

13 pages, 2010 KiB  
Article
Radiation Dose Reduction in Different Digital Radiography Systems: Impact on Assessment of Defined Bony Structures in Bearded Dragons (Pogona vitticeps)
by Natalie Steiner, Eberhard Ludewig, Wiebke Tebrün and Michael Pees
Animals 2023, 13(10), 1613; https://doi.org/10.3390/ani13101613 - 11 May 2023
Viewed by 2257
Abstract
Three different digital detector systems were used to study the effect of a defined radiation dose reduction on the image quality of digital radiographs in bearded dragons (Pogona vitticeps). A series of radiographs of seven bearded-dragon cadavers with a body mass [...] Read more.
Three different digital detector systems were used to study the effect of a defined radiation dose reduction on the image quality of digital radiographs in bearded dragons (Pogona vitticeps). A series of radiographs of seven bearded-dragon cadavers with a body mass ranging from 132 g to 499 g were taken in dorsoventral projection. The digital systems employed included two computed radiography systems (CR) (one system with a needle-based and one with a powdered-based scintillator) and one direct radiography system (DR). Three levels of the detector dose were selected: A standard dose (defined based on the recommended exposure value of the CRP, D/100%), a half dose (D/50%), and a quarter dose (D/25%). Four image criteria and one overall assessment were defined for each of four anatomic skeletal regions (femur, rib, vertebra, and phalanx) and evaluated blinded by four veterinarians using a predefined scoring system. The results were assessed for differences between reviewers (interobserver variability), radiography systems, and dosage settings (intersystem variability). The comparison of the ratings was based on visual grading characteristic (VGC) analysis. Dose reduction led to significantly lower scores in all criteria by every reviewer, indicating a linear impairment of image quality in different skeletal structures in bearded dragons. Scores did not differ significantly between the different systems used, indicating no advantage in using a computed or direct radiography system to evaluate skeletal structures in bearded dragons. The correlation was significant (p ≤ 0.05) for interobserver variability in 100% of the cases, with correlation coefficients between 0.50 and 0.59. While demonstrating the efficacy of the use of digital radiography in bearded dragons and the similar quality in using different computed or direct radiography systems, this study also highlights the importance of the appropriate level of detector dose and demonstrates the limits of post-processing algorithm to compensate for insufficient radiation doses in bearded dragons. Full article
(This article belongs to the Special Issue Advances in Herpetological Medicine and Surgery)
19 pages, 2299 KiB  
Article
Design and Implementation of a Cloud PACS Architecture
by Jacek Kawa, Bartłomiej Pyciński, Michał Smoliński, Paweł Bożek, Marek Kwasecki, Bartosz Pietrzyk and Dariusz Szymański
Sensors 2022, 22(21), 8569; https://doi.org/10.3390/s22218569 - 7 Nov 2022
Cited by 8 | Viewed by 9472
Abstract
The limitations of the classic PACS (picture archiving and communication system), such as the backward-compatible DICOM network architecture and poor security and maintenance, are well-known. They are challenged by various existing solutions employing cloud-related patterns and services. However, a full-scale cloud-native PACS has [...] Read more.
The limitations of the classic PACS (picture archiving and communication system), such as the backward-compatible DICOM network architecture and poor security and maintenance, are well-known. They are challenged by various existing solutions employing cloud-related patterns and services. However, a full-scale cloud-native PACS has not yet been demonstrated. The paper introduces a vendor-neutral cloud PACS architecture. It is divided into two main components: a cloud platform and an access device. The cloud platform is responsible for nearline (long-term) image archive, data flow, and backend management. It operates in multi-tenant mode. The access device is responsible for the local DICOM (Digital Imaging and Communications in Medicine) interface and serves as a gateway to cloud services. The cloud PACS was first implemented in an Amazon Web Services environment. It employs a number of general-purpose services designed or adapted for a cloud environment, including Kafka, OpenSearch, and Memcached. Custom services, such as a central PACS node, queue manager, or flow worker, also developed as cloud microservices, bring DICOM support, external integration, and a management layer. The PACS was verified using image traffic from, among others, computed tomography (CT), magnetic resonance (MR), and computed radiography (CR) modalities. During the test, the system was reliably storing and accessing image data. In following tests, scaling behavior differences between the monolithic Dcm4chee server and the proposed solution are shown. The growing number of parallel connections did not influence the monolithic server’s overall throughput, whereas the performance of cloud PACS noticeably increased. In the final test, different retrieval patterns were evaluated to assess performance under different scenarios. The current production environment stores over 450 TB of image data and handles over 4000 DICOM nodes. Full article
(This article belongs to the Topic Advanced Systems Engineering: Theory and Applications)
Show Figures

Figure 1

13 pages, 596 KiB  
Article
Is It Possible to Replace Conventional Radiography (CR) with a Dose Neutral Computed Tomography (CT) of the Cervical Spine in Emergency Radiology—An Experimental Cadaver Study
by Zsuzsanna Deak, Lindis Brummund, Sonja Kirchhoff, Markus Körner, Lucas Geyer, Fabian Mück, Mariano Scaglione, Maximilian Reiser and Ulrich Linsenmaier
Diagnostics 2022, 12(8), 1872; https://doi.org/10.3390/diagnostics12081872 - 2 Aug 2022
Cited by 3 | Viewed by 4142
Abstract
The purpose of this experimental study on recently deceased human cadavers was to investigate whether (I) the radiation exposure of the cervical spine CT can be reduced comparable to a dose level of conventional radiography (CR); and (II) whether and which human body [...] Read more.
The purpose of this experimental study on recently deceased human cadavers was to investigate whether (I) the radiation exposure of the cervical spine CT can be reduced comparable to a dose level of conventional radiography (CR); and (II) whether and which human body parameters can be predictive for higher dose reduction potential (in this context). Materials and Methods: Seventy serial CT scans of the cervical spine of 10 human cadavers undergoing postmortem virtual autopsy were taken using stepwise decreasing upper limits of the tube current (300 mAs, 150 mAs, 110 mAs, 80 mAs, 60 mAs, 40 mAs, and 20 mAs) at 120 kVp. An additional scan acquired at a fixed tube current of 300 mAs served as a reference. Images were reconstructed with filtered back projection and the upper (C1-4) and lower (C4-7) cervical spine were evaluated by three blinded readers for image quality, regarding diagnostic value and resolution of anatomical structures according to a semiquantitative three-point-scale. Dose values and individual physical parameters were recorded. The relationship of diagnostic IQ, dose reduction level, and patients’ physical parameters were investigated. The high-contrast resolution of the applied CT protocols was tested in an additional phantom study. Results: The IQ of the upper cervical spine was diagnostic at 1.69 ± 0.58 mGy (CTDI) corresponding to 0.20 ± 0.07 mSv (effective dose) in all cadavers. IQ of the lower cervical spine was diagnostic at 4.77 ± 1.86 mGy corresponding to 0.560 ± 0.21 mSv (effective dose) in seven cadavers and at 2.60 ± 0.93 mGy corresponding to 0.31 ± 0.11 mSv in four cadavers. Significant correlation was detected for BMI (0.8366; p = 0.002548) and the anteroposterior (a.p.) chest diameter (0.8363; p = 0.002566), shoulder positioning (0.79799; p = 0.00995), and radiation exposure. Conclusions: Conventional radiography can be replaced with a nearly dose-neutral CT scan of the cervical spine. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

8 pages, 597 KiB  
Article
The Comparison of Lower Extremity Length and Angle between Computed Radiography-Based Teleoroentgenogram and EOS® Imaging System
by Kwang-Rak Park, Jae-Ho Lee, Dae-Soo Kim, Ho Ryu, Jaeho Kim, Chang-Jin Yon and Si-Wook Lee
Diagnostics 2022, 12(5), 1052; https://doi.org/10.3390/diagnostics12051052 - 22 Apr 2022
Cited by 11 | Viewed by 18376
Abstract
Background and objectives: The differences between computed radiography-based teleoroentgenograms (CR-based teleoroentgenograms) and an EOS® imaging system were evaluated by measuring lower extremity lengths and alignments. Materials and methods: The leg length [L], femur length [F], tibia length [T], and hip–knee–ankle (HKA) angle [...] Read more.
Background and objectives: The differences between computed radiography-based teleoroentgenograms (CR-based teleoroentgenograms) and an EOS® imaging system were evaluated by measuring lower extremity lengths and alignments. Materials and methods: The leg length [L], femur length [F], tibia length [T], and hip–knee–ankle (HKA) angle were measured in 101 patients with lower extremity disease by a CR-based teleoroentgenogram with computed radiography and an EOS®. The additive length of the femoral and tibial segments (F + T) was determined by adding the two length values. Then, the differences among all five parameters between the two techniques were analyzed. The magnification (mm) was calculated by subtracting the length measurements on the EOS® from those in the scanogram. Furthermore, the magnification percentage (%) was calculated by dividing the magnification with the measurements on the EOS®. Results: The magnification errors (mean ± standard deviation), when comparing both right and left sides, were 7.80 ± 1.41%, 7.3 ± 6.01%, 5.16 ± 1.25%, and 6.45 ± 0.94% for L, F, T, and F + T, respectively. For limb length, the CR-based teleoroentgenogram had an average magnification of 6.8% (range, 5.2 to 7.8%) compared to the EOS® imaging. The two groups displayed a statistical difference (p < 0.01), except for the HKA angle. Conclusions: The CR-based teleoroentgenogram had a magnification of about 6.8% compared to the EOS® imaging system in evaluating lower extremity length. Therefore, more attention must be given to CR-based teleoroentgenograms to correct angular deformities. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

14 pages, 6209 KiB  
Article
A Study on Soot and Ash Accumulation Characteristics of Diesel Particulate Filter Substrate Using Nondestructive Computed Radiography X-ray Imaging Technique
by Giyoung Park, Hoyoung Ryu, Manjae Kwon and Seangwock Lee
Appl. Sci. 2021, 11(20), 9483; https://doi.org/10.3390/app11209483 - 13 Oct 2021
Cited by 1 | Viewed by 3555
Abstract
The diesel particulate filter of a diesel engine is an after-treatment device that removes particulate matter from exhaust emissions by filtering and oxidating them through a regeneration process. When the diesel particulate filter is damaged, a vehicle inspection is usually performed; if the [...] Read more.
The diesel particulate filter of a diesel engine is an after-treatment device that removes particulate matter from exhaust emissions by filtering and oxidating them through a regeneration process. When the diesel particulate filter is damaged, a vehicle inspection is usually performed; if the cause is not found through using on-board diagnostics, then the diesel particulate filter is removed, and a visual test is conducted. However, it is not easy to find the exact cause of the diesel particulate filter being damaged, and a visual test takes a long time as the diesel particulate filter substrate is covered by a canister. In this study, using the computed radiography X-ray imaging technique, X-ray images were taken after placing an accumulated amount of carbon powder, similar to soot and ash powder in the substrate. Results confirmed that carbon powder and ash powder were shown in white in X-ray images, leading to a conclusion that distinguishing between carbon powder and ash powder is possible by analyzing the pixel value through the image processing technique. However, since pixel values alone are insufficient for exact quantitative evaluation, various studies and analyses are necessary for quantitative evaluation. Full article
(This article belongs to the Topic Industrial Engineering and Management)
Show Figures

Figure 1

11 pages, 1585 KiB  
Article
Diagnostic Performance of Dual-Energy Subtraction Radiography for the Detection of Pulmonary Emphysema: An Intra-Individual Comparison
by Julia A. Mueller, Katharina Martini, Matthias Eberhard, Mathias A. Mueller, Alessandra A. De Silvestro, Philipp Breiding and Thomas Frauenfelder
Diagnostics 2021, 11(10), 1849; https://doi.org/10.3390/diagnostics11101849 - 7 Oct 2021
Cited by 3 | Viewed by 2881
Abstract
Purpose/Objectives: To compare the diagnostic performance of dual-energy subtraction (DE) and conventional radiography (CR) for detecting pulmonary emphysema using computed tomography (CT) as a reference standard. Methods and Materials: Sixty-six patients (24 female, median age 73) were retrospectively included after obtaining lateral and [...] Read more.
Purpose/Objectives: To compare the diagnostic performance of dual-energy subtraction (DE) and conventional radiography (CR) for detecting pulmonary emphysema using computed tomography (CT) as a reference standard. Methods and Materials: Sixty-six patients (24 female, median age 73) were retrospectively included after obtaining lateral and posteroanterior chest X-rays with a dual-shot DE technique and chest CT within ±3 months. Two experienced radiologists first evaluated the standard CR images and, second, the bone-/soft tissue weighted DE images for the presence (yes/no), degree (1–4), and quadrant-based distribution of emphysema. CT was used as a reference standard. Inter-reader agreement was calculated. Sensitivity and specificity for the correct detection and localization of emphysema was calculated. Further degree of emphysema on CR and DE was correlated with results from CT. A p-value < 0.05 was considered as statistically significant. Results: The mean interreader agreement was substantial for CR and moderate for DE (kCR = 0.611 vs. kDE = 0.433; respectively). Sensitivity, as well as specificity for the detection of emphysema, was comparable between CR and DE (sensitivityCR 96% and specificityCR 75% vs. sensitivityDE 91% and specificityDE 83%; p = 0.157). Similarly, there was no significant difference in the sensitivity or specificity for emphysema localization between CR and DE (sensitivityCR 50% and specificityCR 100% vs. sensitivityDE 57% and specificityDE 100%; p = 0.157). There was a slightly better correlation with CT of emphysema grading in DE compared to CR (rDE = 0.75 vs. rCR = 0.68; p = 0.108); these differences were not statistically significant, however. Conclusion: Diagnostic accuracy for the detection, quantification, and localization of emphysema between CR and DE is comparable. Interreader agreement, however, is better with CR compared to DE Full article
Show Figures

Figure 1

8 pages, 1251 KiB  
Article
Diagnostic Performance and Radiation Dose of the EOS System to Image Enchondromatosis: A Phantom Study
by Domenico Albano, Alessandro Loria, Cristiana Fanciullo, Alberto Bruno, Carmelo Messina, Antonella del Vecchio and Luca Maria Sconfienza
Appl. Sci. 2020, 10(24), 8941; https://doi.org/10.3390/app10248941 - 15 Dec 2020
Cited by 7 | Viewed by 2673
Abstract
Background: Radiation doses and capability of EOS, conventional radiography (CR), and computed tomography (CT) to detect and measure enchondromas in a dedicated five-year-old anthropomorphic phantom were compared. Methods: To simulate enchondromas, minced pieces of chicken bone and cartilage were packed in conventional kitchen [...] Read more.
Background: Radiation doses and capability of EOS, conventional radiography (CR), and computed tomography (CT) to detect and measure enchondromas in a dedicated five-year-old anthropomorphic phantom were compared. Methods: To simulate enchondromas, minced pieces of chicken bone and cartilage were packed in conventional kitchen plastic foil to create ovoidal/rounded masses and randomly hung on the phantom. The phantom was imaged five times with CR, CT, and EOS, each time changing the number and position of inserts. All images were reviewed by a senior radiologist and a radiology resident. Results: EOS and CR detected all inserts in 4/5 cases (80%), while in one case 1/17 inserts was not seen. Excellent agreement of EOS with CR (88% reproducibility; bias = 14 mm; repeatability coefficient (CoR) 2.9; 95% CI from −2.8 to 3.1 mm; p = 0.5) and CT (81% reproducibility; bias = 15 mm; CoR 5.2; 95% CI from −5.5 to 5.2 mm; p = 0.7) was found. EOS showed 71% interobserver reproducibility (CoR 7.2; bias = 0.6 mm; 95% CI from −6.6 to 7.8 mm; p = 0.25). The EOS-Fast radiation dose was also significantly lower than the median radiation dose of CR (644.7 (599.4–651.97) mGy•cm2, p = 0.004). Conclusions: Low-dose EOS has the same capability as CR to detect and measure enchondroma-like inserts on a phantom and may be considered to monitor patients with multiple enchondromas. Full article
(This article belongs to the Special Issue Applications of Medical Physics)
Show Figures

Figure 1

18 pages, 6140 KiB  
Article
Detection and Diagnosis of Defect in GIS Based on X-ray Digital Imaging Technology
by Tianhui Li, Xianhai Pang, Boyan Jia, Yanwei Xia, Siming Zeng, Hongliang Liu, Hao Tian, Fen Lin and Dan Wang
Energies 2020, 13(3), 661; https://doi.org/10.3390/en13030661 - 4 Feb 2020
Cited by 12 | Viewed by 3823
Abstract
For better application of X-ray digital imaging technology in defect detection in Gas Insulated Switchgear (GIS), it is essential to investigate the typical defect and establish the defect database, which has not been adequately performed in previous work. Systematic experimental research is also [...] Read more.
For better application of X-ray digital imaging technology in defect detection in Gas Insulated Switchgear (GIS), it is essential to investigate the typical defect and establish the defect database, which has not been adequately performed in previous work. Systematic experimental research is also needed to accumulate data and experience. In this research, an experimental platform, including Computed Radiography (CR) imaging system and a GIS model, is built, and extensive tests of different kinds of typical defects are studied. The influence X-ray irradiation on SF6 under different tube voltage levels is firstly examined, which proves that the withstand voltage of SF6 gas has not been affected and no dissociation has been found. Then, several kinds of defects are tested by X-ray digital imaging technology. The successful application examples of “visual” detection of defects further prove the practicability and validity of the X-ray digital imaging technique. Finally, the image database of typical defects inside of GIS is established and the defect risk is also analyzed in three levels, which would be useful for the defect severity diagnosis and risk assessment. Full article
Show Figures

Figure 1

53 pages, 1541 KiB  
Review
Storage Phosphors for Medical Imaging
by Paul Leblans, Dirk Vandenbroucke and Peter Willems
Materials 2011, 4(6), 1034-1086; https://doi.org/10.3390/ma4061034 - 9 Jun 2011
Cited by 184 | Viewed by 30095
Abstract
Computed radiography (CR) uses storage phosphor imaging plates for digital imaging. Absorbed X-ray energy is stored in crystal defects. In read-out the energy is set free as blue photons upon optical stimulation. In the 35 years of CR history, several storage phosphor families [...] Read more.
Computed radiography (CR) uses storage phosphor imaging plates for digital imaging. Absorbed X-ray energy is stored in crystal defects. In read-out the energy is set free as blue photons upon optical stimulation. In the 35 years of CR history, several storage phosphor families were investigated and developed. An explanation is given as to why some materials made it to the commercial stage, while others did not. The photo stimulated luminescence mechanism of the current commercial storage phosphors, BaFBr:Eu2+ and CsBr:Eu2+ is discussed. The relation between storage phosphor plate physical characteristics and image quality is explained. It is demonstrated that the morphology of the phosphor crystals in the CR imaging plate has a very significant impact on its performance. Full article
(This article belongs to the Special Issue Luminescent Materials 2011)
Show Figures

Graphical abstract

Back to TopTop