Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = comprehensive disaster defense capability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2428 KB  
Review
A Review of Transmission Line Icing Disasters: Mechanisms, Detection, and Prevention
by Jie Hu, Longjiang Liu, Xiaolei Zhang and Yanzhong Ju
Buildings 2025, 15(20), 3757; https://doi.org/10.3390/buildings15203757 - 17 Oct 2025
Viewed by 1526
Abstract
Transmission line icing poses a significant natural disaster threat to power grid security. This paper systematically reviews recent advances in the understanding of icing mechanisms, intelligent detection, and prevention technologies, while providing perspectives on future development directions. In mechanistic research, although a multi-physics [...] Read more.
Transmission line icing poses a significant natural disaster threat to power grid security. This paper systematically reviews recent advances in the understanding of icing mechanisms, intelligent detection, and prevention technologies, while providing perspectives on future development directions. In mechanistic research, although a multi-physics coupling framework has been established, characterization of dynamic evolution over complex terrain and coupled physical mechanisms remains inadequate. Detection technology is undergoing a paradigm shift from traditional contact measurements to non-contact intelligent perception. Visual systems based on UAVs and fixed platforms have achieved breakthroughs in ice recognition and thickness retrieval, yet their performance remains constrained by image quality, data scale, and edge computing capabilities. Anti-/de-icing technologies have evolved into an integrated system combining active intervention and passive defense: DC de-icing (particularly MMC-based topologies) has become the mainstream active solution for high-voltage lines due to its high efficiency and low energy consumption; superhydrophobic coatings, photothermal functional coatings, and expanded-diameter conductors show promising potential but face challenges in durability, environmental adaptability, and costs. Future development relies on the deep integration of mechanistic research, intelligent perception, and active prevention technologies. Through multidisciplinary innovation, key technologies such as digital twins, photo-electro-thermal collaborative response systems, and intelligent self-healing materials will be advanced, with the ultimate goal of comprehensively enhancing power grid resilience under extreme climate conditions. Full article
Show Figures

Figure 1

21 pages, 1716 KB  
Article
Research on the Comprehensive Evaluation Model of Risk in Flood Disaster Environments
by Yan Yu and Tianhua Zhou
Water 2025, 17(15), 2178; https://doi.org/10.3390/w17152178 - 22 Jul 2025
Cited by 1 | Viewed by 1212
Abstract
Losses from floods and the wide range of impacts have been at the forefront of hazard-triggered disasters in China. Affected by large-scale human activities and the environmental evolution, China’s defense flood situation is undergoing significant changes. This paper constructs a comprehensive flood disaster [...] Read more.
Losses from floods and the wide range of impacts have been at the forefront of hazard-triggered disasters in China. Affected by large-scale human activities and the environmental evolution, China’s defense flood situation is undergoing significant changes. This paper constructs a comprehensive flood disaster risk assessment model through systematic analysis of four key factors—hazard (H), exposure (E), susceptibility/sensitivity (S), and disaster prevention capabilities (C)—and establishes an evaluation index system. Using the Analytic Hierarchy Process (AHP), we determined indicator weights and quantified flood risk via the following formula R = H × E × V × C. After we applied this model to 16 towns in coastal Zhejiang Province, the results reveal three distinct risk tiers: low (R < 0.04), medium (0.04 ≤ R ≤ 0.1), and high (R > 0.1). High-risk areas (e.g., Longxi and Shitang towns) are primarily constrained by natural hazards and socioeconomic vulnerability, while low-risk towns benefit from a robust disaster mitigation capacity. Risk typology analysis further classifies towns into natural, social–structural, capacity-driven, or mixed profiles, providing granular insights for targeted flood management. The spatial risk distribution offers a scientific basis for optimizing flood control planning and resource allocation in the district. Full article
Show Figures

Figure 1

19 pages, 16961 KB  
Article
A Harmony-Based Approach for the Evaluation and Regulation of Water Security in the Yellow River Water-Receiving Area of Henan Province
by Zhiqiang Zhang, Weiwei Wang, Xiuyu Zhang, Hui Zhang, Li Yang, Xizhi Lv and Xu Xi
Water 2024, 16(17), 2497; https://doi.org/10.3390/w16172497 - 3 Sep 2024
Cited by 7 | Viewed by 1832
Abstract
Water security, as a crucial component of national security, plays a significant role in maintaining regional stability and ensuring the healthy and rapid development of the economy and society. The Yellow River water-receiving area of Henan Province (YRWAR-HN) is selected as the research [...] Read more.
Water security, as a crucial component of national security, plays a significant role in maintaining regional stability and ensuring the healthy and rapid development of the economy and society. The Yellow River water-receiving area of Henan Province (YRWAR-HN) is selected as the research area in this study. Firstly, a comprehensive evaluation index system is constructed based on the actual water security problems of the research area, and the single index quantification–multiple indices syntheses–poly-criteria integration method (SMI-P) is introduced to quantify the water security degree of 14 cities in the YRWAR-HN from 2010 to 2021. Then, the obstacle degree model is used to identify the key obstacle indexes that restrict the improvement of water security. Finally, the harmonious behavior set optimization method is adopted to carry out the regulation of water security, and the improvement path of water security in the YRWAR-HN is formulated. The results indicate the following: (1) the water security degree of the YRWAR-HN shows a fluctuating upward trend, increasing from 0.4348 (2010) to 0.6766 (2021), a significant rise of 55.61%. The water security level improves from the relatively unsafe level to the relatively safe level. Hebi City exhibits the fastest rate of water security improvement, while Xinxiang City shows the slowest rate. (2) The density of the river network (X1) and the proportion of investment in water conservancy and environmental protection in the total investment (X15) are the two indexes with the highest obstacle degree, with the average obstacle degrees being 15.09% and 10.79%, respectively. (3) The combination of the composite regulation scenario and improvement Path 2 is the optimal regulation strategy for water security in the YRWAR-HN. From the implementation process, Luoyang, Sanmenxia, Jiyuan, Xuchang, and Shangqiu may prioritize improving their flood and drought disaster defense capabilities and emergency response capabilities, continuously enhancing the flood prevention and disaster reduction system. Zhengzhou, Kaifeng, Xinxiang, Jiaozuo, Anyang, Hebi, Pingdingshan, and Zhoukou may prioritize resolving the regional water supply and demand conflicts, balancing development and conservation, actively seeking transboundary and external water transfers, and strengthening the capacity for water conservation and intensive utilization. Puyang City may prioritize enhancing its comprehensive water environment management capabilities, increasing investment in water conservancy and the environment, improving production processes, reducing pollutant emissions, and mitigating agricultural non-point source pollution. Full article
Show Figures

Figure 1

17 pages, 3200 KB  
Article
PRSOT: Precipitation Retrieval from Satellite Observations Based on Transformer
by Zhaoying Jia, Shengpeng Yang, Jinglin Zhang, Yushan Zhang, Zhipeng Yang, Ke Xue and Cong Bai
Atmosphere 2022, 13(12), 2048; https://doi.org/10.3390/atmos13122048 - 7 Dec 2022
Cited by 3 | Viewed by 3059
Abstract
Precipitation with high spatial and temporal resolution can improve the defense capability of meteorological disasters and provide indispensable instruction and early warning for social public services, such as agriculture, forestry, and transportation. Therefore, a deep learning-based algorithm entitled precipitation retrieval from satellite observations [...] Read more.
Precipitation with high spatial and temporal resolution can improve the defense capability of meteorological disasters and provide indispensable instruction and early warning for social public services, such as agriculture, forestry, and transportation. Therefore, a deep learning-based algorithm entitled precipitation retrieval from satellite observations based on Transformer (PRSOT) is proposed to fill the observation gap of ground rain gauges and weather radars in deserts, oceans, and other regions. In this algorithm, the multispectral infrared brightness temperatures from Himawari-8, the new-generation geostationary satellite, have been used as predictor variables and the Global Precipitation Measurement (GPM) precipitation product has been employed to train the retrieval model. We utilized two data normalization schemes, area-based and pixel-based normalization, and conducted comparative experiments. Comparing the estimated results with the GPM product on the test set, PRSOT_Pixel_based model achieved a Probability Of Detection (POD) of 0.74, a False Alarm Ratio (FAR) of 0.44 and a Critical Success Index (CSI) of 0.47 for two-class metrics, and an Accuracy (ACC) of 0.75 for multi-class metrics. Pixel-based normalization is more suitable for meteorological data, highlighting the precipitation characteristics and obtaining better comprehensive retrieval performance in visualization and evaluation metrics. In conclusion, the proposed PRSOT model has made a remarkable and essential contribution to precipitation retrieval and outperforms the benchmark machine learning model Random Forests. Full article
(This article belongs to the Special Issue Identification and Optimization of Retrieval Model in Atmosphere)
Show Figures

Figure 1

11 pages, 906 KB  
Article
Better Understanding the Catastrophe Risk in Interconnection and Comprehensive Disaster Risk Defense Capability, with Special Reference to China
by Feng Kong and Shao Sun
Sustainability 2021, 13(4), 1793; https://doi.org/10.3390/su13041793 - 7 Feb 2021
Cited by 12 | Viewed by 3644
Abstract
Catastrophe risk governance has become one of the key issues affecting global sustainable development. As great changes have taken place in the global social ecosystem, the degree of interconnection between different regions in today’s society is much greater than ever before. Various types [...] Read more.
Catastrophe risk governance has become one of the key issues affecting global sustainable development. As great changes have taken place in the global social ecosystem, the degree of interconnection between different regions in today’s society is much greater than ever before. Various types of contact networks, e.g., the production chain and supply chain, have been created, which provide diversified channels for the spread of catastrophe risk across time and space. In the context of interconnection, this paper first analyzes the drastic changes of the current disaster risk system. Severe catastrophe risk has posed a great threat to the highly growing international trade, and has also tested the capabilities of national comprehensive disaster defense. Thus, this paper analyzes the main characteristics of China’s comprehensive disaster defense capability, including physical, social, and humanistic defense capability. Finally, this paper puts forward the key points to resolve catastrophe risk from the perspective of decision-makers, including improving the decision-makers’ ability to study and judge the catastrophe chain and the impact of catastrophe, and the national resource reserve capacity to cope with the catastrophe. Full article
Show Figures

Figure 1

20 pages, 5902 KB  
Article
Optimal Deception Strategies in Power System Fortification against Deliberate Attacks
by Peng Jiang, Shengjun Huang and Tao Zhang
Energies 2019, 12(3), 342; https://doi.org/10.3390/en12030342 - 22 Jan 2019
Cited by 8 | Viewed by 3331
Abstract
As a critical infrastructure, the modern electrical network is faced with various types of threats, such as accidental natural disaster attacks and deliberate artificial attacks, thus the power system fortification has attracted great concerns in the community of academic, industry, and military. Nevertheless, [...] Read more.
As a critical infrastructure, the modern electrical network is faced with various types of threats, such as accidental natural disaster attacks and deliberate artificial attacks, thus the power system fortification has attracted great concerns in the community of academic, industry, and military. Nevertheless, the attacker is commonly assumed to be capable of accessing all information in the literature (e.g., network configuration and defensive plan are explicitly provided to the attacker), which might always be the truth since the grid data access permission is usually restricted. In this paper, the information asymmetry between defender and attacker is investigated, leading to an optimal deception strategy problem for power system fortification. Both the proposed deception and traditional protection strategies are formulated as a tri-level mixed-integer linear programming (MILP) problem and solved via two-stage robust optimization (RO) framework and the column-and-constraint generation (CCG) algorithm. Comprehensive case studies on the 6-bus system and IEEE 57-bus system are implemented to reveal the difference between these two strategies and identify the significance of information deception. Numerical results indicate that deception strategy is superior to protection strategy. In addition, detailed discussions on the performance evaluation and convergence analysis are presented as well. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

Back to TopTop