Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = composite aerogel beads

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 11379 KiB  
Article
Silk Fibroin–Alginate Aerogel Beads Produced by Supercritical CO2 Drying: A Dual-Function Conformable and Haemostatic Dressing
by Maria Rosaria Sellitto, Domenico Larobina, Chiara De Soricellis, Chiara Amante, Giovanni Falcone, Paola Russo, Beatriz G. Bernardes, Ana Leite Oliveira and Pasquale Del Gaudio
Gels 2025, 11(8), 603; https://doi.org/10.3390/gels11080603 - 2 Aug 2025
Viewed by 472
Abstract
Infection control and bleeding management in deep wounds remain urgent and unmet clinical challenges that demand innovative, multifunctional, and sustainable solutions. Unlike previously reported sodium alginate and silk fibroin-based gel formulations, the present work introduces a dual-functional system combining antimicrobial and haemostatic activity [...] Read more.
Infection control and bleeding management in deep wounds remain urgent and unmet clinical challenges that demand innovative, multifunctional, and sustainable solutions. Unlike previously reported sodium alginate and silk fibroin-based gel formulations, the present work introduces a dual-functional system combining antimicrobial and haemostatic activity in the form of conformable aerogel beads. This dual-functional formulation is designed to absorb exudate, promote clotting, and provide localized antimicrobial action, all essential for accelerating wound repair in high-risk scenarios within a single biocompatible system. Aerogel beads were obtained by supercritical drying of a silk fibroin–sodium alginate blend, resulting in highly porous, spherical structures measuring 3–4 mm in diameter. The formulations demonstrated efficient ciprofloxacin encapsulation (42.75–49.05%) and sustained drug release for up to 12 h. Fluid absorption reached up to four times their weight in simulated wound fluid and was accompanied by significantly enhanced blood clotting, outperforming a commercial haemostatic dressing. These findings highlight the potential of silk-based aerogel beads as a multifunctional wound healing platform that combines localized antimicrobial delivery, efficient fluid and exudate management, biodegradability, and superior haemostatic performance in a single formulation. This work also shows for the first time how the prilling encapsulation technique with supercritical drying is able to successfully produce silk fibroin and sodium alginate composite aerogel beads. Full article
(This article belongs to the Special Issue Aerogels and Composites Aerogels)
Show Figures

Figure 1

17 pages, 7872 KiB  
Article
Catalytic Reduction of Dyes and Antibacterial Activity of AgNPs@Zn@Alginate Composite Aerogel Beads
by Fadila Benali, Bouhadjar Boukoussa, Nour-El-Houda Benkhedouda, Amina Cheddad, Ismail Issam, Jibran Iqbal, Mohammed Hachemaoui, Mohamed Abboud and Adel Mokhtar
Polymers 2022, 14(22), 4829; https://doi.org/10.3390/polym14224829 - 9 Nov 2022
Cited by 20 | Viewed by 3070
Abstract
This work focuses on the preparation of aerogel composite beads based on Zn(II)-crosslinked alginate and loaded with different percentages of AgNPs using a simple approach. The obtained samples were evaluated in two different applications: the first application consists in their use as catalysts [...] Read more.
This work focuses on the preparation of aerogel composite beads based on Zn(II)-crosslinked alginate and loaded with different percentages of AgNPs using a simple approach. The obtained samples were evaluated in two different applications: the first application consists in their use as catalysts for the reduction of MB, MO, OG and CR dyes in a simple and binary system under the presence of NaBH4. For this, several parameters affecting the catalytic behavior of these catalysts have been investigated and discussed such as the catalyst mass, AgNPs content, dye nature, and the selectivity of the catalyst in a binary system. The second application concerns their antibacterial activities towards two Gram-negative bacteria Escherichia coli (ATCC 25922), and Pseudomonas aeruginosa (ATCC 27853), and a Gram-positive bacteria Staphylococcus aureus (ATCC 25923). The physico-chemical properties of different samples were characterized by XRD, FTIR, SEM/EDS, and TGA analysis. The obtained results confirmed the presence of AgNPs on a highly porous alginate structure. The dispersion of a high percentage of AgNPs leads to the formation of nanoparticles on the outer surface of the alginate which led to their leaching after the catalytic test, while the composite having a low percentage of AgNPs showed good results through all dyes without leaching of AgNPs. For the antibacterial application of the different samples, it was shown that a composite with a higher percentage of AgNPs was the most effective against all bacteria. Full article
(This article belongs to the Special Issue Smart Natural-Based Polymers)
Show Figures

Graphical abstract

20 pages, 4740 KiB  
Article
Adsorption Capacity of Tetracycline in Solution by Cu-BTC@Carboxyl-Functionalized Carbon Nanotubes@Copper Alginate Composite Aerogel Beads
by Yang Zhang, Yanhui Li, Mingzhen Wang, Bing Chen, Yaohui Sun, Kewei Chen and Qiujv Du
Coatings 2022, 12(9), 1298; https://doi.org/10.3390/coatings12091298 - 3 Sep 2022
Cited by 13 | Viewed by 2767
Abstract
In order to remove tetracycline (TC) from sewage more effectively, the adsorption performance of TC on alginate composite aerogel beads containing carbon nanomaterials was studied systematically. Carboxylated functionalized carbon nanotubes (F-CNTs)@Cu-based metal-organic framework (Cu-BTC) carbon nanomaterial composites (F-C) were prepared by a hydrothermal [...] Read more.
In order to remove tetracycline (TC) from sewage more effectively, the adsorption performance of TC on alginate composite aerogel beads containing carbon nanomaterials was studied systematically. Carboxylated functionalized carbon nanotubes (F-CNTs)@Cu-based metal-organic framework (Cu-BTC) carbon nanomaterial composites (F-C) were prepared by a hydrothermal method, and the F-C powders were coated and fixed by macromolecular polymer copper alginate (CA). Then, F-CNTs@Cu-BTC@CA composite aerogel beads (F-C-CA) were prepared by a vacuum freeze-drying method. The new composite was characterized by BET, SEM, FTIR, and TGA, and its physical and chemical properties were analyzed. The results of batch adsorption experiments showed that F-C-CA aerogel beads had excellent adsorption capacity for TC. At 303 K, 10 mg F-C-CA aerogel beads adsorbed 20 mL 100 mg·L−1 TC solution; the removal rate reached 94% after 48 h. After kinetic analysis, the adsorption process of F-C-CA on TC was found to be more coherent with the pseudo-second-order kinetic model (chemisorption process). The isotherm fitting analysis indicated that the adsorption behavior was more suitable to the Langmuir model (monolayer adsorption), and the fitted maximum adsorption was 297 mg·g−1. Full article
(This article belongs to the Special Issue Fluid Interfaces in Colloidal Systems: Aerosols, Foams, and Emulsions)
Show Figures

Figure 1

14 pages, 4269 KiB  
Article
Robust SiO2–Al2O3/Agarose Composite Aerogel Beads with Outstanding Thermal Insulation Based on Coal Gangue
by Jie Gu, Chao Ji, Rui Fu, Xin Yang, Zhichen Wan, Lishuo Wen, Qiqi Song, Yinghui Liu, Yaxiong Wang and Huazheng Sai
Gels 2022, 8(3), 165; https://doi.org/10.3390/gels8030165 - 6 Mar 2022
Cited by 16 | Viewed by 4533
Abstract
Advanced SiO2–Al2O3 aerogel materials have outstanding potential in the field of thermal insulation. Nevertheless, the creation of a mechanically robust and low-cost SiO2–Al2O3 aerogel material remains a considerable challenge. In this study, SiO [...] Read more.
Advanced SiO2–Al2O3 aerogel materials have outstanding potential in the field of thermal insulation. Nevertheless, the creation of a mechanically robust and low-cost SiO2–Al2O3 aerogel material remains a considerable challenge. In this study, SiO2–Al2O3 aerogel based on coal gangue, which is a type of zero-cost inorganic waste, was constructed in porous agarose aerogel beads, followed by simple chemical vapor deposition of trimethylchlorosilane to fabricate SiO2–Al2O3/agarose composite aerogel beads (SCABs). The resulting SCABs exhibited a unique nanoscale interpenetrating network structure, which is lightweight and has high specific surface area (538.3 m2/g), hydrophobicity (approximately 128°), and excellent thermal stability and thermal insulation performance. Moreover, the compressive strength of the SCABs was dramatically increased by approximately a factor of ten compared to that of native SiO2–Al2O3 aerogel beads. The prepared SCABs not only pave the way for the design of a novel aerogel material for use in thermal insulation without requiring expensive raw materials, but also provide an effective way to comprehensively use coal gangue. Full article
(This article belongs to the Special Issue Advances in Aerogel Composites)
Show Figures

Figure 1

28 pages, 3442 KiB  
Review
Production and Surface Modification of Cellulose Bioproducts
by Sumedha Liyanage, Sanjit Acharya, Prakash Parajuli, Julia L. Shamshina and Noureddine Abidi
Polymers 2021, 13(19), 3433; https://doi.org/10.3390/polym13193433 - 7 Oct 2021
Cited by 73 | Viewed by 9044
Abstract
Petroleum-based synthetic plastics play an important role in our life. As the detrimental health and environmental effects of synthetic plastics continue to increase, the renewable, degradable and recyclable properties of cellulose make subsequent products the “preferred environmentally friendly” alternatives, with a small carbon [...] Read more.
Petroleum-based synthetic plastics play an important role in our life. As the detrimental health and environmental effects of synthetic plastics continue to increase, the renewable, degradable and recyclable properties of cellulose make subsequent products the “preferred environmentally friendly” alternatives, with a small carbon footprint. Despite the fact that the bioplastic industry is growing rapidly with many innovative discoveries, cellulose-based bioproducts in their natural state face challenges in replacing synthetic plastics. These challenges include scalability issues, high cost of production, and most importantly, limited functionality of cellulosic materials. However, in order for cellulosic materials to be able to compete with synthetic plastics, they must possess properties adequate for the end use and meet performance expectations. In this regard, surface modification of pre-made cellulosic materials preserves the chemical profile of cellulose, its mechanical properties, and biodegradability, while diversifying its possible applications. The review covers numerous techniques for surface functionalization of materials prepared from cellulose such as plasma treatment, surface grafting (including RDRP methods), and chemical vapor and atomic layer deposition techniques. The review also highlights purposeful development of new cellulosic architectures and their utilization, with a specific focus on cellulosic hydrogels, aerogels, beads, membranes, and nanomaterials. The judicious choice of material architecture combined with a specific surface functionalization method will allow us to take full advantage of the polymer’s biocompatibility and biodegradability and improve existing and target novel applications of cellulose, such as proteins and antibodies immobilization, enantiomers separation, and composites preparation. Full article
Show Figures

Graphical abstract

19 pages, 35888 KiB  
Article
Chlamydomonas angulosa (Green Alga) and Nostoc commune (Blue-Green Alga) Microalgae-Cellulose Composite Aerogel Beads: Manufacture, Physicochemical Characterization, and Cd (II) Adsorption
by Kyojung Hwang, Gu-Joong Kwon, Jiwook Yang, Minyoung Kim, Won Joung Hwang, Wonjae Youe and Dae-Young Kim
Materials 2018, 11(4), 562; https://doi.org/10.3390/ma11040562 - 5 Apr 2018
Cited by 15 | Viewed by 5211
Abstract
This study presents composite aerogel beads prepared by mixing dissolved cellulose with Chlamydomonas angulosa and Nostoc commune cells, respectively, at 0.1, 0.3, and 0.5% (w/w). The manufactured composites (termed regenerated cellulose (RC)), with C. angulosa (RCCA-(1, 3, and [...] Read more.
This study presents composite aerogel beads prepared by mixing dissolved cellulose with Chlamydomonas angulosa and Nostoc commune cells, respectively, at 0.1, 0.3, and 0.5% (w/w). The manufactured composites (termed regenerated cellulose (RC)), with C. angulosa (RCCA-(1, 3, and 5)), and with N. commune (RCNC-(1, 3, and 5)) were analyzed. Both RCCA-5 and RCNC-5 showed the high specific surface area to be about 261.3 and 332.8 m2·g−1. In the microstructure analysis, network structures were observed in the cross-sections of RC, RCCA-5, and RCNC-5. The pyrolysis temperature of the RCCA-5 and RCNC-5 composite aerogel beads was rapidly increased about 250 °C during the mixing of cellulose with C. angulosa and N. commune. The chemical analysis of RC, RCCA-5, and RCNC-5 showed peaks corresponding to various functional groups, such as amide, carboxyl, and hydroxyl groups from protein, lipid, and carbohydrate. RCNC-5 at pH 6 demonstrated highest Cd2+ removal rate about 90.3%, 82.1%, and 63.1% at 10, 25, and 50 ppm Cd2+, respectively. At pH 6, Cd2+ adsorption rates per unit weight of the RCNC-5 were about 0.9025, 2.0514, and 3.1547 mg/g at 10, 25, and 50 ppm, respectively. The peaks assigned to the amide, carboxyl, and hydroxyl groups in RCCA-5, RCNC-5, and RC were shifted or disappeared immediately after adsorption of Cd2+. The specific surface area, total pore volume, and mean pore diameter of composites was decreased due to adsorption of Cd2+ on the developed materials. As can be seen in the X-ray powder diffraction (XRD) spectrum, significant changes in the molecular structure of the composite aerogel beads were not observed even after adsorption of Cd2+. Full article
(This article belongs to the Section Porous Materials)
Show Figures

Figure 1

15 pages, 2771 KiB  
Article
Sorption of Cu(II) Ions on Chitosan-Zeolite X Composites: Impact of Gelling and Drying Conditions
by Amal Djelad, Amine Morsli, Mike Robitzer, Abdelkader Bengueddach, Francesco Di Renzo and Françoise Quignard
Molecules 2016, 21(1), 109; https://doi.org/10.3390/molecules21010109 - 19 Jan 2016
Cited by 34 | Viewed by 7969
Abstract
Chitosan-zeolite Na-X composite beads with open porosity and different zeolite contents were prepared by an encapsulation method. Preparation conditions had to be optimised in order to stabilize the zeolite network during the polysaccharide gelling process. Composites and pure reference components were characterized using [...] Read more.
Chitosan-zeolite Na-X composite beads with open porosity and different zeolite contents were prepared by an encapsulation method. Preparation conditions had to be optimised in order to stabilize the zeolite network during the polysaccharide gelling process. Composites and pure reference components were characterized using X-ray diffraction (XRD); scanning electron microscopy (SEM); N2 adsorption–desorption; and thermogravimetric analysis (TG). Cu(II) sorption was investigated at pH 6. The choice of drying method used for the storage of the adsorbent severely affects the textural properties of the composite and the copper sorption effectiveness. The copper sorption capacity of chitosan hydrogel is about 190 mg·g−1. More than 70% of this capacity is retained when the polysaccharide is stored as an aerogel after supercrititcal CO2 drying, but nearly 90% of the capacity is lost after evaporative drying to a xerogel. Textural data and Cu(II) sorption data indicate that the properties of the zeolite-polysaccharide composites are not just the sum of the properties of the individual components. Whereas a chitosan coating impairs the accessibility of the microporosity of the zeolite; the presence of the zeolite improves the stability of the dispersion of chitosan upon supercritical drying and increases the affinity of the composites for Cu(II) cations. Chitosan-zeolite aerogels present Cu(II) sorption properties. Full article
(This article belongs to the Special Issue Chitin, Chitosan and Related Enzymes)
Show Figures

Graphical abstract

Back to TopTop