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Abstract: This work focuses on the preparation of aerogel composite beads based on Zn(II)-crosslinked
alginate and loaded with different percentages of AgNPs using a simple approach. The obtained
samples were evaluated in two different applications: the first application consists in their use as
catalysts for the reduction of MB, MO, OG and CR dyes in a simple and binary system under the
presence of NaBH4. For this, several parameters affecting the catalytic behavior of these catalysts
have been investigated and discussed such as the catalyst mass, AgNPs content, dye nature, and
the selectivity of the catalyst in a binary system. The second application concerns their antibacte-
rial activities towards two Gram-negative bacteria Escherichia coli (ATCC 25922), and Pseudomonas
aeruginosa (ATCC 27853), and a Gram-positive bacteria Staphylococcus aureus (ATCC 25923). The
physico-chemical properties of different samples were characterized by XRD, FTIR, SEM/EDS, and
TGA analysis. The obtained results confirmed the presence of AgNPs on a highly porous alginate
structure. The dispersion of a high percentage of AgNPs leads to the formation of nanoparticles on
the outer surface of the alginate which led to their leaching after the catalytic test, while the composite
having a low percentage of AgNPs showed good results through all dyes without leaching of AgNPs.
For the antibacterial application of the different samples, it was shown that a composite with a higher
percentage of AgNPs was the most effective against all bacteria.

Keywords: alginate; AgNPs; nano-catalyst; dye reduction; antibacterial activity

1. Introduction

Improving water quality is one of the major concerns of all living species. In recent
years, a significant increase in pollution has been observed in the industry field, particu-
larly in the textiles industry, which generated significant discharges, most of them being
dyes or toxic chemicals [1,2]. It is in this context many studies have been devoted to the
development of simple, ecological, and effective methods for the elimination of these toxic
pollutants [2–6]. Among the most used methods for the remediation of contaminated
water are photocatalysis, oxidation, reduction, membrane filtration, adsorption, ozonation,
coagulation, flocculation, and other processes.
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Recently the reduction of organic pollutants by nanoparticles has shown many ad-
vantages where the reaction process can be achieved in a shorter reaction time, thus the
obtained products can be used in other chemical processes. Silver nanoparticles have shown
their efficiency for this type of reaction, their role lies in the transport of electrons from the
donor (reducing agent) to the acceptor (pollutant). However, silver nanoparticles suffer
from an aggregation problem due to the interactions that exist between them, which re-
duces their use in the catalysis field. To overcome this problem, several supports have been
used such as zeolites [7,8], mesoporous silica [9], polymers [10], activated carbon [11,12],
clays [13], metal oxides [14], and MOFs [15] to stabilize the metal nanoparticles.

Polymers have been considered essential materials in our lives due to their wide
range of applications such in food, automotive, packaging, pharmaceuticals, agriculture,
aeronautics, cosmetics, biomedical, optoelectronics, catalytic supports and also as use-
ful materials for the elimination of pollutants due to their functional groups which are
considered as active sites [16–19]. Very particular attention has been targeted towards
biopolymers due to their compatibility with living systems by constituting a good alter-
native to polymers [20–22]. Polysaccharides are sustainable, environmentally friendly
and ubiquitous biological materials from which they are found in algae (e.g., alginate),
animals (e.g., chitosan), plants (e.g., starch, cellulose, pectin, guar gum) and microbes (e.g.,
dextran); these biomaterials comprise a monosaccharide repeating unit and a large number
of functional groups. Among the remarkable properties of these compounds is that they
present a gelling potential, strong hydrophilic character and rigid structure, and large
surface area [20]. Thus, recent work on this type of material has led to new applications in
the biomolecular and nanomaterial fields [23–30].

In the last years, polysaccharides have been considered as ideal carriers for the stabi-
lization of metallic nanoparticles MNPs [31–35]. The presence of functional groups can lead
to a good dispersion of nanoparticles on their surface, which makes them efficient catalytic
supports for a wide variety of reactions [31–35]. These biomaterials can easily form gels in
the presence of divalent or trivalent cations, by ionic crosslinking and coordination between
functional groups and metal ions, which can broaden their application field, particularly
in the catalysis and treatment of bacteria [8,33,36,37]. As they have the ability to protect
metallic nanoparticles against aggregation [8,31,35,38–40]. Among the polysaccharides,
alginate has become one of the major interests of scientific research, particularly in the field
of nanomaterials. Thus it is easier to control their shapes (beads, films, etc.) which facilitates
their recovery compared to other supports having ultrafine particles which require other
treatments for their recovery during the reuse process [22,41]. This kind of material can
easily activate nucleophilic and electrophilic reactions by carboxylate groups and hydrogen
bonding as a bifunctional heterogeneous organocatalyst [42–44]. Alginate hydrogels have
different physicochemical properties which strongly depend on the nature of the crosslink-
ing ion, the source of alginate, the concentration, and the gelling method used. Following
these properties mentioned above, alginate-based materials have been used in several fields
such as biomedicine, biology, catalysis, adsorption, and separation [17,22,45–47]. The most
important property of alginates is their ability to react with divalent and trivalent cations to
form beads and films of hydrogels, resulting in a stable and ordered three-dimensional net-
work described as the “egg box” model [42,48,49]. Their properties differ depending on the
nature of the crosslinking agent used, which can significantly influence their applications,
particularly in catalysis and in the treatment of bacteria.

This paper deals with the dispersion of silver nanoparticles on alginate crosslinked
by a zinc divalent cation. Zinc was chosen as the cross-linking agent because of its an-
tibacterial properties and its diverse involvement in innate and adaptive immune response
processes [50–52]. Zinc also exhibits strong catalytic activity in electrochemistry, oxidation
process and is considered as a biomaterial in biodegradable implantation. AgNPs are
considered as antibacterial agents, antiseptics and excellent reducing agents in nanocataly-
sis [9,53,54]. Therefore, the use of a bimetallic composite can improve the performance of
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the resulting material towards antibacterial applications due to the effect of the synergy
between Zn2+ and AgNPs species which have action towards different bacterial strains.

The objective of this work is to synthesize nanocomposite materials based on algi-
nate cross-linked by Zn2+ and supported by AgNPs silver nanoparticles with different
percentages using a simpler and greener approach. These composite beads have been
explored as an environmentally friendly heterogeneous catalyst for the reduction of dyes
in a simple and binary system using NaBH4 as a reducing agent. To understand the effect
of the Zn2+ crosslinking agent and AgNPs, another application was used which consists of
the application of the composite beads in the antibacterial activity towards three types of
bacteria. All the obtained results were correlated according to the content of AgNPs, Zn2+

and their activities.

2. Experimental
2.1. Chemicals and Reagents

Sodium Alginate (low density, Sigma Aldrich, Saint Louis, MO, USA), Zinc Nitrate
(Zn(NO3)2, Riedel-deHaen, Seelze, Germany), Silver Nitrate (AgNO3, Riedel-deHaen),
Sodium Borohydride (NaBH4, 98%, Sigma-Aldrich), Methylene Blue (MB, C16H18ClN3S,
Genaxis Biothechnology, Vadodara, India), Methyl Orange (MO, C14H14N3NaO3S), Orange
G (OG, C16H10N2Na2O7S2), and Congo Red (CR, C32H22N6Na2O6S2) were supplied from
Sigma-Aldrich. Distilled water was involved throughout all the experiments.

2.2. Preparation of Zn–Alginate(AgNPs)

The synthesis of the nanocomposite beads Zn–AlG(AgNPs) was carried out in the
following steps: firstly, a 2% alginate solution was prepared in 100 mL of distilled water
and agitated vigorously. After homogenization of the solution the mixture was loaded
into a sterile syringe and dripped under magnetic agitation into a zinc solution (2 g of
Zn(NO3)2 dissolved in 100 mL of distilled water). The latter plays the role of a crosslinking
agent, each drop is transformed into transparent bead by complete crosslinking. These
beads remained in a zinc solution for 24 h. Finally, the hydrogel beads were rinsed with
distilled water to remove excess of Zn2+. Afterward, these beads were added in a solution
of silver nitrate AgNO3 with different concentrations (0.5%, 1%, 2%, and 3%) for two days,
then were washed three times with distilled water. These hydrogel beads were dried by
lyophilization for 12 h and transformed into aerogel beads.

All aerogel beads loaded with Ag+ were treated with freshly prepared solution of
NaBH4 (1M). A black color was observed once these beads were added to the NaBH4
solution, which confirms the reduction of Ag+ ions to (Ag0NPs). The obtained materials
were named as follows: Zn–AlG(Ag 0.5%), Zn–AlG(Ag 1%), Zn–AlG(Ag 2%), Zn–AlG(Ag 3%)
according to the percentage of silver used, and a Zn–AlG without silver was kept as a
reference sample. The preparation steps are well detailed in Figure 1.

2.3. Catalytic Test

The catalytic reduction of the designed catalyst was studied towards different dyes
under the presence of NaBH4 as model reactions. The procedure is very similar to previ-
ously published work, but with slight modifications [36,55,56]. For this, two systems have
been investigated based on the simple and binary systems, to determine the selectivity
of obtained materials. For the simple system a concentration of 0.1 mM of dye was used
in each test. Firstly 1.5 mL of dye solution and a catalyst amount was added in a quartz
cuvette and then 1.5 mL of freshly prepared NaBH4 (8 mM) was added. The cuvette
containing the reaction mixture was placed in a UV-vis (Specord 210 Analytik Jena UV–vis
instrument) in which the reaction was monitored in situ and every 30 s an analysis was
carried out. Several parameters affecting the reaction were optimized and discussed such
as the effect of the AgNPs content, the catalyst mass, and the dye nature (MB, CR, MO,
and OG).
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Figure 1. Preparation steps of the composite beads.

For the binary system, three systems are selected as model reactions (MB+OG, MB+MO,
and MB+CR); each system contains the MB dye and one of the other azo dyes (CR, MO,
and OG). For this, the best catalyst optimized under the previous conditions was used in
this study, using the following operating conditions: [dyes] = 0.05 mM; Vdyes = 1.5 mL;
[NaBH4] = 8mM; VNaBH4 = 1.5 mL, and the catalyst mass = 5.3 mg.

The dye conversion was calculated using Equation (1) and rate constant kapp (s−1 or
min−1) was determined graphically using first-order kinetics as shown in Equation (2).
Where C0 and Ct represent the initial and final dye concentration, respectively.

Conversion (%) =
C0 − Ct

C0
× 100 (1)

Ln
(

Ct

C0

)
= −kapp × t (2)

2.4. Evaluation of Antibacterial Activity

The antibacterial action of Zn–AlG(Ag NPs) nanocomposite was evaluated by the
conventional disc method [57]. For this study, some bacterial pathogens were used. Gram-
negative and gram-positive bacteria are as follows: Escherichia coli (ATCC 25922), Pseu-
domonas aeruginosa (ATCC 27853), and Gram-positive bacteria Staphylococcus aureus (ATCC
25923) were cultured on Mueller–Hinton agar at 37 ◦C for 18 h. The composites were
modeled in the form of discs using a Perkin-Elmer pelletizer (Waltham, MA, USA). The
first step entails preparing the inoculum from a pure culture of the bacteria that will be
tested on the isolation medium, scraping a few perfectly isolated colonies with a sterile
swab, well-homogenizing the bacterial suspension, and then adding them to 9 mL of sterile
physiological water at 0.9%, its opacity must be equivalent to 0.5 McFarland (106 CFU).
Once the Muller–Hinton agars are inoculated with a pure culture of the strain to be studied
in the kneaded dishes, the discs of each composite at different concentrations are placed on
the surface of the agar using sterilized forceps, and incubated at 37 ◦C for 24 h. The effects
of the compounds are measured by the size of the distinct halo of inhibition that surrounds
the contact zone. The antibiotic gentamicin and the parent material Zn–AlG were also used
to compare them with the obtained materials.
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2.5. Characterization of Composite Beads

All samples were analyzed by Fourier transform infrared spectroscopy (FTIR) using
Bruker alpha Platinum-ATR instrument. The designed materials were characterized by XRD
analysis using a Bruker D8 powder diffractometer (Cu-Kα radiation). A thermobalance
(Perkin-Elmer STA 6000) was used to measure the thermal stability and mass losses of
obtained samples under nitrogen flow. Scanning electron microscopy coupled with energy
dispersive X-ray spectroscopy (SEM-EDS) was used to evaluate the morphology of obtained
samples using a TESCAN VEGA (LMU) SEM with an INCAx-act (Oxford Instruments,
Concord, MA, USA).

3. Results and Discussion
3.1. Characterization of Materials
3.1.1. XRD

The XRD patterns of parent material Zn–ALG and Zn–ALG(AgNPs) containing differ-
ent percentages of AgNPs are shown in Figure 2. The parent material presented some weak
peaks between 2θ = 13, 45◦, and 22.50◦ mainly due to the strong interactions generated
between its chains by intermolecular hydrogen bonding. These peaks correspond to the
reflections of the following planes (110) and (200) located at 2θ = 13.45◦ and 22.50◦, respec-
tively [58]. The modified materials show new peaks characteristic of AgNPs; the peaks
observed at 2θ = 38.34◦, 44.18◦, 65.55◦, and 77.17◦ correspond to the following reflections
(111), (200), (220), and (311), respectively, which confirms the good formation of AgNPs
with a face-centered cubic structure [59]. It is observed that the increase in the AgNPs
content on the surface of the Zn–AlG leads to the formation of a crystalline composite,
which is mainly due to the covering of the external surface of the alginate by AgNPs.

Figure 2. XRD patterns of obtained composite beads.

3.1.2. FTIR

The FTIR spectra of different materials are shown in Figure 3. All spectra are identical
compared to the parent material (Zn–AlG) but with slight modifications. Alginate is
characterized by a broad band at 3269 cm−1 which is attributed to the stretching of the –OH
groups present in the polymer chain as well as in the physisorbed water molecules [8,36,40],
the weak band around 2922–2895 cm−1 is attributed to the vibration of –CH bonds. The
low bands around 1567−1591 cm−1 and 1405−1415 cm−1 are attributed to the stretching
of COO−, these bands overlap with characteristic bands of –OH [8,36,40]. It is clear
that these bands shifted slightly when increasing the AgNPs content, probably due to
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several interactions between the silver nanoparticles and the functional groups of the
alginate [55]. Interactions between alginate and silver (before NaBH4 treatment) can form
different metallic complexes. According to Nakamoto, the most probable structures are
uncoordinated or ionic structures, bidentate chelating structures, unidentate structures,
and bidentate bridging structures [60].

Figure 3. FTIR spectra of obtained composite beads.

3.1.3. TGA

The samples were analyzed by thermogravimetric analysis in order to study the
thermal behavior of obtained samples. As shown in Figure 4, all materials exhibited
three stages of degradation, the first stage of degradation takes place in the range of
30 to 120 ◦C which is mainly due to dehydration of physisorbed water molecules [8,36,40].
These results are in agreement with those obtained by the FTIR which confirmed the
presence of physisorbed water molecules. This hydrophilic character is the result of several
interactions between the water molecules and the functional groups containing composite
beads (−COO−, and −OH).

Figure 4. TGA curves of obtained samples.
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The second stage is characterized by the degradation of the alginate biopolymer
(between 120−400 ◦C) which leads to the formation of intermediate products. In this step,
about 37% of mass losses were obtained for the samples Zn–AlG(Ag 0.5% and 3%), and
about 7% for Zn–AlG(Ag 1% and 2%). At the third stage of degradation (>400 ◦C), about
16% mass loss was obtained for all the composite Zn–AlG samples (Ag 0.5% and 3%), and
22% for Zn–AlG(parent material), and Zn–AlG(Ag 1% and 2%) which is mainly due to the
degradation of the intermediate products of the second stage [8,36,40].

3.1.4. SEM

Figure 5 presents the images of the internal and external morphology of the composite
aerogel beads at different magnifications. The dimensions of the aerogel beads remained
the same after the lyophilization treatment, the external surface of the beads became rough
due to the dehydration of water molecules after the lyophilization treatment [8,36,40].
This shows that many pores appeared making the beads poly-porous structure, this also
confirms the cross-linking of alginate by Zn2+. It is clear that the parent material and
its modified counterparts presented a homogeneous surface and no trace of AgNPs was
observed mainly due to their good dispersion (results in agreement with the EDS mapping
analysis) in the alginate matrix except for the case of composite beads Zn–AlG(Ag 3%)
which has presented AgNPs on its external surface.

Figure 5. SEM/EDS mapping images of Zn–AlG (AgNPs) composite beads.

3.1.5. EDS

The EDS characterization made it possible to confirm the presence of Zn2+ ions in the
alginate matrix as well as the silver after treatment of the beads. EDS analysis (Figure 6,
(Zn–AlG)) showed that the beads were mainly composed of oxygen, carbon and 4.71% zinc.
The composition of beads is very similar from the point of view of their chemical structure.
After modifying the parent material Zn–alginate by different percentages of AgNPs, it was
found that the content of the latter increases with the increase of AgNPs. These results are
in agreement with those obtained by XRD analysis.
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Figure 6. EDS of Zn–ALG(AgNPs) composite beads.

3.2. Reduction of Dyes
3.2.1. Reduction of Organic Pollutants in a Simple System

(a) Effect of the catalyst mass

The mass of catalyst represent a very important role in the conversion of reactants [15,55,61–63].
For this reason, a study was carried out on the reduction of MB dye as a prototype reaction
using the following conditions: Zn–AlG(Ag 3%) catalyst, [MB] = 0.1 mM, [NaBH4] = 8 mM,
the mass of catalyst was varied between 2–5.3 mg. The obtained results are presented in
Figure 7.

Figure 7. Mass effect of Zn–AlG(Ag 3%) catalyst, (a) UV-vis of BM dye during the reduction reaction,
condition: one catalyst bead, [NaBH4] = 8 mM, [MB] = 0.1 mM. (b) Correlation between catalysts
mass, reaction time and MB dye conversion.

Figure 7a shows the repetitive UV-vis spectra of the MB dye during the reduction
reaction. This material (Zn–AlG(Ag 3%)) exhibits significant catalytic activity towards
the MB dye in which the reaction time does not exceed 840 s. It should be noted that this
reaction took place at a lower concentration of NaBH4 showing its performance. However,
during the addition of catalysts based on metallic nanoparticles, a strong decrease in the
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intensity of the MB dye was observed due to the hydrogenation process. The reduction
of the MB dye by Zn–AlG(Ag 3%) essentially leads to the formation of leuco-MB which
is colorless and less toxic compared to the MB dye. This product is characterized by the
band located at 257 nm. The disappearance of the bands at 292 nm and 613 nm and 664 nm
confirms the total conversion of MB dye into Leuco-MB [8,40,63].

Figure 7b shows the correlation between catalyst mass, reaction time, and MB dye
conversion. It is clear that the masse of Zn–AlG(Ag 3%) significantly influences the reaction
time also the conversion of MB dye. Better conversion was obtained only in 240 s when
using 5.3 mg of Zn–AlG(Ag 3%). This behavior is related to the increase in the number of
sites compared to the number of molecules of MB when increasing the mass of catalyst,
which implies a rapid reduction. These results are in agreement with the literature [15,61,62].

Comparison of these results with other materials conducted in the literature clearly
shows the performance of this system to reduce MB dye in shorter reaction time and also
at low NaBH4 concentration. It must also be taken into account that the rate constant
was greater than the values indicated in the Table S1, which confirms a good reduction
of MB dye has been obtained only at a low concentration of NaBH4 and low mass of
catalyst [31,34].

(b) Effect of silver content

In this part, effect of the AgNPs content was carried out by varying only the catalyst
(Zn–AlG(Ag 3%), Zn–AlG(Ag 2%), Zn–AlG(Ag 1%), Zn–AlG(Ag 0.5%) and Zn–AlG and
keeping the other parameters constant. As shown in Figure 8, it is clear that the nature
of the catalyst significantly influences the conversion of MB dye and the reaction time.
According to this figure, the presence of AgNPs in the catalyst accelerates the process
of the reduction in which the catalyst Zn–AlG(Ag 3%) presented the best performance.
However, it was found that strong leaching of AgNPs takes place when using catalysts
with higher content of AgNPs. So in terms of stability, the Zn–AlG(Ag 0.5%) catalyst
was the most stable, suggesting that low AgNPs contents are chemically bonded with the
biopolymer (due to the presence of strong sites), but at higher levels of AgNPs it is assumed
that they are just deposited on the surface by weak interactions (Hydrogen, and Vander
walls). Therefore, the Zn–AlG(Ag 0.5%) catalyst was used for the rest of our work due to
its stability.

(c) Effect of the nature of the dyes

Figure 8. Correlation between AgNPs content, reaction time and MB conversion.

The selectivity of a catalyst differs from one pollutant to another, this is why we
have used different azo dyes (OG, MO and CR) while maintaining the conditions previously
optimized, the obtained results are represented in the Figure 9. According to these Figure 9a–d,
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it is clear that the catalyst Zn–AlG(Ag 0.5%) represented better results in terms of dyes
conversion. However, it was more efficient with the OG dye in which its degradation was
faster compared to the other dyes. A reaction time of 480 s was sufficient for the total
degradation of the OG dye.

Figure 9. (a–c) UV-vis of different dyes (MO, CR and OG) during the reduction reaction. (d) Correla-
tion between dye type, reaction time and dye conversion.

The comparison of the rate constant of this catalyst has shown good results in terms of
efficiency [31,33,34,36,37], using only lower concentration of reducing agent NaBH4 (see
Table S1).

3.2.2. Reduction of Organic Pollutants in a Binary System

Reduction in a binary system is one of the least studied reactions, this reaction model
can give more information about catalyst selectivity. To study this reaction, three reaction
models were studied based on a mixture between the MB dye and another azo dye (MO,
OG, and CR). As shown in this Figure 10, our catalytic system showed significant selectivity
and total conversion towards the cationic MB dye. Thus, for the other azo dyes, a low
conversion was observed. This behavior is linked to the nature of the surface of the
catalyst [7,64]. It is necessary to take into account that the addition of NaBH4 leads to
the formation of an electronic layer on the surface of the nanoparticles which generates
attraction forces between the nanoparticles and the cationic MB dye subsequently leading
to a faster reduction of the latter. These results are in agreement with the literature [7,64].
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Figure 10. (a–c) UV-vis of dyes in a binary system, (a) MB/MO, (b) MB/OG and (d) MB/CR.
(d) Conversion of different dyes in a binary system.

3.2.3. Catalyst Reuse

The Zn–AlG(0.5% Ag) catalyst was used in six consecutive cycles toward the reduction
of MB dye as a model reaction (see Figure 11). In each reuse, the catalyst was recovered
easily (due to its shape and size), washed only with water, and then tested for another cycle.
Figure 11 clearly shows that this catalyst was effective in the reduction of the MB dye in
which the conversion of MB dye was almost total in each reuse. However, it was necessary
to increase the reaction time up to 30 min to reduce the total MB during the sixth reuse.
Similar behavior has been observed in previously published work [14].

Figure 11. Reuse of the Zn-ALG(Ag 0.5%) catalyst.



Polymers 2022, 14, 4829 12 of 17

3.2.4. Mechanism of Reduction

The mechanism of reduction of OG, MB, CR, and MO has been investigated in several
studies (see Figure 12), in general, the first step consists of the diffusion of reactants inside
the pores of the catalyst, as it has been shown in this study, the first step was characterized
by a large induction zone due to the tortuous diffusion of reagents inside the pores (see
Figure S1). After dissociation and diffusion of NaBH4 electronic layers and hydride species
form on the surface of silver nanoparticles which causes interactions with organic pollutants.
The second step concerns the transport of electrons from NaBH4 to the organic pollutant
acceptor. At this step, several intermediate hydrogenation reactions can take place caused
by the transfer of electrons and the active H species (coming from the cleavage of the H-B)
leading subsequently to the formation of the desired products. The reduction of azo dyes
under the action of a catalyst and the reducing agent NaBH4 leads in the first step to the
formation of an unstable intermediate product (hydrazine) which will be subjected to a
second hydrogenation subsequently leading to the formation of amino derivatives [65,66].
As shown in Figure 9, the presence of new bands around 249 nm confirms the presence
of amino derivatives [63]. For the reduction reaction of the dye MB to Leuco-MB, the
reaction takes place in the groups –N=C– and -C=N+(CH3)2 which leads to the formation
of –NH–CH– and –CH–HN+(CH3)2, respectively [67,68]. The hydrogenation of the MB
dye generates the formation of a new band located around 258 nm in the UV-vis spectrum
characteristic of the presence of Leuco-MB product.

Figure 12. Proposed mechanism for catalytic reduction of different pollutants on the Zn-ALG(Ag
0.5%) catalyst.

3.3. Antibacterial Properties

According to the results mentioned below, it turned out that a zone of inhibition
around the discs was observed against Escherichia coli. This bacterium does not have a
very high resistance potential against all the materials presented in Table 1 and Figure S2.
A salient fact could emerge from these results, and which concerns the Pseudomonas
aeruginosa strain. This bacterium showed a certain variable sensitivity for these synthesized
materials. However, it was found that the parent material Zn–AlG showed no activity via
this bacterium. The Zn–AlG(Ag 1%) sample presented moderate activity with an inhibition
diameter of 16 mm. It should be noted that the highest antibacterial activity was recorded by
Zn–AlG(Ag 2%), with an inhibition halo value of 22 mm. So for the materials, Zn–AlG(Ag 0.5%),
Zn–AlG(Ag 3%), and (Na–AlG) showed a inhibition zone between 20–19 mm. These results
indicated that Escherichia coli was more sensitive than Pseudomonas aeruginosa germs.
Almost the same remarks were observed for the S.a bacterium but the materials Na–AlG,
Zn–AlG(Ag 3%), and Zn–AlG(Ag 1%) were the most efficient, hence an inhibition zone
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of approximately 19–18 mm was obtained but it is still lower compared to the antibiotic
Gentamycin.

Table 1. Antibacterial results.

Zn–AlG
(Ag 0.5%)

Zn–AlG
(Ag 1%)

Zn–AlG
(Ag 2%)

Zn–AlG
(Ag 3%) Zn–AlG Na–AlG Gent

E.c 15 mm 19 mm 17 mm 25 mm 20 mm 19 mm 26 mm

P.a 20 mm 16 mm 22 mm 19 mm 0 mm 19 mm 27 mm

S.a 17 mm 18 mm 16 mm 18 mm 4 mm 19 mm 28 mm

This antibacterial activity is linked to the synergistic effect between Zn2+ and AgNPs
and as well as the functional groups containing alginate [9,69–71]. According to the
literature, Zn2+ and AgNPs have been considered as good antibacterial agents for a variety
of bacteria. The activity of different materials lies in the ease of diffusion of Zn2+ and Ag+

metal ions (due to the partial dissolution of AgNPs) which are considered to be the major
component linked to the antibacterial action [72].

4. Conclusions

The Zn–AlG composite beads was well prepared by crosslinking the alginate with Zn2+

ions. The hydrogel beads were subjected to different treatments with different concentra-
tions of Ag+, chemical treatment with NaBH4, then by freeze-drying. The characterization
of obtained composite beads clearly showed the presence of AgNPs in the structure of the
alginate and no other phase corresponding to ZnO or ZnNPs was obtained. The results
confirm the presence of a porous structure due to the crosslinking of the alginate by Zn2+

and also due to the freeze-drying treatment. At higher concentrations of AgNPs, it was
found the presence of nanoparticles on the outer surface of Zn-ALG corresponding to
AgNPs. The application of these composite beads in the reduction of dyes in a simple
system showed excellent results compared to the materials conducted in the literature using
only low concentrations of NaBH4. The reaction time was as follows 480 s, 750 s, 750 s, and
840 s for the OG, MO, CR, and MB dyes, respectively. In the binary system, the reduction
of the dyes was more selective towards the MB dye, following the electrostatic attraction
between the electronic layer coming from the NaBH4 and the MB dye. It was shown that
the use of the composite having a higher percentage of AgNPs (Zn-ALG(Ag 3%)) leads
to strong leaching of Ag species in the reaction medium. Thus, in terms of stability and
performance, the composite Zn–AlG(Ag 0.5%) was selected as the best catalyst, from where
it was tested in six reuses without losing its performance. The antibacterial application
showed encouraging results, in which Zn–AlG(Ag 1%), Zn–AlG(Ag 2%), Zn–AlG(Ag 3%)
composites were selected as the most effective materials.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14224829/s1, Figure S1: Plot of Ln(Ct/C0) versus time;
Figure S2. Digital images for antibacterial tests of different samples of Zn-ALG(AgNPs); Table S1:
Comparative study between different materials carried out in the literature.
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