Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,944)

Search Parameters:
Keywords = coloring temperature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
55 pages, 2972 KB  
Review
The Impact of Brewing Methods on the Quality of a Cup of Coffee
by Alessandro Genovese, Nicola Caporaso and Antonietta Baiano
Beverages 2025, 11(5), 125; https://doi.org/10.3390/beverages11050125 (registering DOI) - 25 Aug 2025
Abstract
A comprehensive overview is provided on factors and processes influencing the final quality of a cup of coffee, with an emphasis on the brewing method’s central role. Coffee quality assessment, both at the bean and cup level, combines objective parameters (color, moisture, bean [...] Read more.
A comprehensive overview is provided on factors and processes influencing the final quality of a cup of coffee, with an emphasis on the brewing method’s central role. Coffee quality assessment, both at the bean and cup level, combines objective parameters (color, moisture, bean defects, density) with a notable degree of subjectivity, as consumer sensory perception is ultimately decisive. The brewing technique is described as a critical determinant of the final chemical, physical, and sensory attributes. Key parameters such as aroma profile, pH, titratable acidity, total and filtered solids, lipid and fatty acid content, viscosity, foam (crema), and colorimetric indices are detailed as essential metrics in coffee quality evaluation. Roasting creates most of coffee’s key aroma compounds. The brewing method further shapes the extraction of both volatile and other bioactive compounds like caffeine, chlorogenic acids, and lipids. Brewing methods significantly affect acidity, “body,” and crema stability, while water quality, temperature, and pressure are shown to impact extraction results and sensory properties. Attention is paid to how methods such as Espresso, filter, French press, and cold brew yield distinct physicochemical and sensory profiles in the cup. Overall, the review highlights the multifaceted nature of coffee cup quality and the interplay between raw material, processing, and preparation, ultimately shaping the coffee sensory experience and market value. Full article
Show Figures

Graphical abstract

21 pages, 747 KB  
Article
Qualitative and Antioxidant Evaluation of High-Moisture Plant-Based Meat Analogs Obtained by Extrusion
by Viorica Bulgaru, Ilkay Sensoy, Natalia Netreba, Angela Gurev, Ulunay Altanlar, Sergiu Paiu, Veronica Dragancea, Rodica Sturza and Aliona Ghendov-Mosanu
Foods 2025, 14(17), 2939; https://doi.org/10.3390/foods14172939 - 23 Aug 2025
Viewed by 105
Abstract
This study investigated meat analogs produced by high-moisture extrusion from mixtures of pea protein isolate and soryz flour, and chickpea flour and hazelnut meal in a 1:1 ratio, at two distinct heating temperature profiles: 40-60-80-100 °C and 60-80-100-120 °C. Physicochemical indicators, texture and [...] Read more.
This study investigated meat analogs produced by high-moisture extrusion from mixtures of pea protein isolate and soryz flour, and chickpea flour and hazelnut meal in a 1:1 ratio, at two distinct heating temperature profiles: 40-60-80-100 °C and 60-80-100-120 °C. Physicochemical indicators, texture and chromatic parameters, protein digestibility, and antioxidant activity of the meat analogs were assessed, and antioxidant activity of the product in terms of simulating gastrointestinal digestibility in vitro was performed. The results obtained for the analyzed meat analog indicators were greatly influenced by the type of plant-based raw material used and the heating temperature profiles. A higher temperature regime leads to a slight decrease in the content of nutritive compounds in the final products. All meat analog samples showed good water and oil holding capacity. A decrease in hardness was observed for the mixtures compared to pea protein isolate, which can be attributed to protein content. The digestibility of the processed meat analog proteins ranged between 86.84% and 69.37%. PCA was applied to illustrate the relationships between physicochemical characteristics, protein digestibility, antioxidant activity, texture profile analysis, and CIELab color parameters in high-moisture meat analogs. Full article
Show Figures

Figure 1

20 pages, 5185 KB  
Article
Relationship Between Energy Efficiency and Color Consistency in LED Lighting
by Irena Fryc and Maciej Listowski
Energies 2025, 18(17), 4482; https://doi.org/10.3390/en18174482 - 23 Aug 2025
Viewed by 181
Abstract
This study presents the first comprehensive investigation establishing the relationship between color consistency and luminous efficacy of radiation (LER) in phosphor-converted light-emitting diodes (LEDs), introducing novel selection criteria for energy-efficient applications. A systematic analysis of LED sources with nominal correlated color temperature (CCT) [...] Read more.
This study presents the first comprehensive investigation establishing the relationship between color consistency and luminous efficacy of radiation (LER) in phosphor-converted light-emitting diodes (LEDs), introducing novel selection criteria for energy-efficient applications. A systematic analysis of LED sources with nominal correlated color temperature (CCT) values of 3000 K and 4000 K across color-rendering index (CRI Ra) thresholds (≥60 and ≥80) was conducted, evaluating spectral power distributions (SPD) and chromaticities relative to 3-step, 5-step color-consistency circles, and 7-step American National Standards Institute (ANSI) quadrangles. Novel findings reveal a previously uncharacterized strong positive correlation between color consistency and luminous efficacy across all analyzed LED sources. LEDs with chromaticities within 3-step color-consistency circles consistently demonstrated superior LER values compared to 5-step boundaries, while sources outside established circles showed significantly inferior energy performance despite meeting nominal CCT requirements. The research establishes that tighter color-consistency tolerances directly correlate with enhanced luminous efficacy, revealing an intrinsic relationship between color quality and energy performance. These breakthrough findings introduce a paradigm shift in LED selection methodology, providing lighting professionals with evidence-based criteria that simultaneously optimize color consistency and energy efficiency, enabling more sustainable lighting solutions through integrated quality–performance assessment. Full article
Show Figures

Figure 1

20 pages, 6859 KB  
Article
Experimental Investigation of Thermal Conductivity of Selected 3D-Printed Materials
by Maria Tychanicz-Kwiecień, Sebastian Grosicki and Marek Markowicz
Materials 2025, 18(17), 3950; https://doi.org/10.3390/ma18173950 - 22 Aug 2025
Viewed by 216
Abstract
This study presents the results of experimental studies on the thermal conductivity of specimens made from selected pure polymer filaments manufactured with the use of FFF 3D-printing technology. The tested samples were made of polylactic acid (PLA), polyethylene terephthalate glycol (PET-G), and acrylonitrile [...] Read more.
This study presents the results of experimental studies on the thermal conductivity of specimens made from selected pure polymer filaments manufactured with the use of FFF 3D-printing technology. The tested samples were made of polylactic acid (PLA), polyethylene terephthalate glycol (PET-G), and acrylonitrile butadiene styrene (ABS). In particular, the effects of the infill patterns and infill density on the tested samples were examined in order to characterize the influence of these parameters on the materials’ effective thermal conductivity. Honeycomb and grid infill patterns of the tested samples with infill densities of 40%, 60%, 80%, and 100% were examined. The influence of temperature on thermal conductivity was studied as well. Thermal conductivity was measured using the guarded heat flow method, according to the ASTM E1530 standard within the defined temperature ranges of 20–60 °C for ABS and PET-G and 20–50 °C for PLA material. Samples of the tested materials were manufactured with the use of the Fused Filament Fabrication method (FFF), and filaments with a uniform black color were used. The obtained results were analyzed in terms of thermal conductivity variation after samples’ infill pattern and infill density modifications, which provides extended thermal property characterization of the polymeric filaments adopted for 3D printing. Full article
Show Figures

Figure 1

19 pages, 2260 KB  
Article
Design, Production and Quality Assessment of Antioxidant-Enriched Olive Paste Dips Using Agro-Food By-Products
by Efimia Dermesonlouoglou, Athanasios Limnaios, Ioanna Bouskou, Athina Ntzimani, Maria Tsevdou and Petros Taoukis
Molecules 2025, 30(17), 3459; https://doi.org/10.3390/molecules30173459 - 22 Aug 2025
Viewed by 200
Abstract
This study focuses on the design, development and quality assessment of an innovative shelf-stable olive paste dip, aiming at the valorization of by-products of tomato processing and olive oil production (Product 1: OPD). Bioactive compounds (BACs), i.e., total carotenoids and phenolic components, were [...] Read more.
This study focuses on the design, development and quality assessment of an innovative shelf-stable olive paste dip, aiming at the valorization of by-products of tomato processing and olive oil production (Product 1: OPD). Bioactive compounds (BACs), i.e., total carotenoids and phenolic components, were extracted from tomato and olive pomace, respectively. For further enrichment, BACs were incorporated in olive paste dips into a second product (OPDEnr) in encapsulated form (Product 2: OPDEnr). The total carotenoids (TC) of OPD and OPDEnr were 20.0 ± 2.0 and 30.2 ± 1.0 mg/kg, respectively. Similarly, the total phenolic content (TPC) and the antioxidant activity (AA) were 1.62 ± 0.08 and 3.05 ± 0.10 mg GAE/g, and 0.801 ± 0.075 and 0.976 ± 0.032 mg Trolox/g, respectively. The quality of the developed olive paste dip product prototypes was assessed using the Accelerated Shelf Life Testing (ASLT) methodology at a temperature range of 20–40 °C. Both OPDEnr and OPD were microbiologically stable during storage (i.e., not exceeding 4 logCFU/g for total mesophilic counts), and no lipid oxidation evolution was observed (Peroxide Value, PV did not exceed 4 meq O2/kg), while TC, TPC and AA values remained stable. The shelf life of OPDEnr and OPD was determined based on the overall sensory quality and was found to be 120 and 211 d at 25 °C, respectively. OPDEnr and OPD were characterized by a high quality (color and texture), with an overall sensory score of 8.0/9.0 and 9.0/9.0, respectively, in the acceptability–hedonic scale 1 (dislike extremely)-9 (like extremely), and they could potentially be consumed as an antioxidant-enriched olive paste dip. Full article
Show Figures

Figure 1

16 pages, 464 KB  
Article
Physiological and Metabolic Responses to Water Restriction in Ewes Under Semi-Arid Conditions
by Claudenilde de Jesus Pinheiro Costa, Gherman Garcia Leal de Araújo, André Luiz Rodrigues Magalhães, Alberício Pereira de Andrade, Silvia Helena Nogueira Turco, Maria Helena Tavares de Matos, Diego César Nunes da Silva, Cleyton de Almeida Araújo, Roberta de Lima Valença, Thieres George Freire da Silva, Fleming Sena Campos and Glayciane Costa Gois
Vet. Sci. 2025, 12(9), 790; https://doi.org/10.3390/vetsci12090790 - 22 Aug 2025
Viewed by 170
Abstract
The aim of this study was to evaluate the effect of different water restrictions on the thermoregulation and blood hematological and metabolite parameters of crossbred Santa Inês ewes in a semi-arid climate. Thirty-two ewes were subjected to four water supply levels (100%, 80%, [...] Read more.
The aim of this study was to evaluate the effect of different water restrictions on the thermoregulation and blood hematological and metabolite parameters of crossbred Santa Inês ewes in a semi-arid climate. Thirty-two ewes were subjected to four water supply levels (100%, 80%, 60%, and 40%), in a completely randomized design with eight replications. The confinement period lasted 77 days, with 14 days allocated for adaptation. Respiratory rate, heart rate, and rectal temperature exhibited a quadratic response. There was an increase in red blood cells and urea. The enzyme alanine aminotransferase decreased linearly with water restriction. Urinary creatinine decreased along with water supply. Regarding urine color characteristics, all groups showed different colors, ranging from clear to cloudy. For the chemical characteristics of urine, a quadratic effect was observed for pH, with the highest value (8.75) at 60%. An increase was observed in total urine proteins and urobilinogen. Crossbred Santa Inês ewes in a semi-arid climate exhibit physiological adaptations to water supply reduction up to 40%. Following an 80% reduction in water supply, animals exhibit mild dehydration, characterized by increased serum urea levels and decreased alanine aminotransferase activity. Full article
Show Figures

Figure 1

20 pages, 1616 KB  
Article
The Influence of PEF, Pulsed Light, Microwave and Conventional Heat Treatments on Quality Parameters of Berry Fruit Juice Blends
by Natalia Polak, Stanisław Kalisz, Artur Wiktor and Bartosz Kruszewski
Appl. Sci. 2025, 15(17), 9234; https://doi.org/10.3390/app15179234 - 22 Aug 2025
Viewed by 148
Abstract
Due to the degradative effect of the traditional pasteurization process related to the long exposure of high temperatures to the food matrix, alternative methods of food preservation are being investigated. In the case of liquid fruit products, unconventional thermal and non-thermal methods can [...] Read more.
Due to the degradative effect of the traditional pasteurization process related to the long exposure of high temperatures to the food matrix, alternative methods of food preservation are being investigated. In the case of liquid fruit products, unconventional thermal and non-thermal methods can be used for this purpose. The aim of the study was to evaluate the effect of various preservation methods: conventional pasteurization (PT), microwave pasteurization (MP), hot bottling (HB), pulsed electric field (PEF) and pulsed light (PL) on selected quality parameters of mixed juices. In the studied samples, extract (TTS), active acidity (pH), titratable acidity (TTA), nephelometric turbidity (NT), total polyphenol content (TPC), color parameters and antioxidant activity (AA) were determined. Qualitative and quantitative chromatographic analysis of anthocyanins was also performed. The different influence of the preservation methods and the raw materials used on the individual characteristics was demonstrated. The TTS and TTA changes did not exceed 4%, while no changes in pH were observed. Thermal methods increased turbidity significantly, with HB increasing it to the greatest extent. Non-thermal methods caused greater degradation of TPC, anthocyanins, and AA, while they caused significantly less color change. The microwave pasteurization resulted in an increase in TPC in two out of three studied juice blends. Based on the obtained results, it can be concluded that thermal methods allowed for the preservation of a greater amount of bioactive compounds, which translates into a potentially greater health-promoting value of the produced juice blends. Full article
(This article belongs to the Special Issue Sustainable Innovations in Food Production, Packaging and Storage)
Show Figures

Figure 1

14 pages, 2657 KB  
Article
The Effect of Heat Treatment on Yellow-Green Beryl Color and Its Enhancement Mechanism
by Binru Hao, Shuxin Zhao and Qingfeng Guo
Crystals 2025, 15(8), 746; https://doi.org/10.3390/cryst15080746 - 21 Aug 2025
Viewed by 194
Abstract
Beryl is classified as a cyclosilicate mineral, and its color is primarily determined by the type and oxidation state of trace elements. In this study, natural yellow-green beryl was used as the research subject, and heat treatment experiments were performed at various temperatures [...] Read more.
Beryl is classified as a cyclosilicate mineral, and its color is primarily determined by the type and oxidation state of trace elements. In this study, natural yellow-green beryl was used as the research subject, and heat treatment experiments were performed at various temperatures under both oxidizing and reducing atmospheres. A combination of analytical techniques, including electron probe microanalysis (EPMA), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, and ultraviolet-visible spectroscopy (UV-Vis), were employed to systematically investigate the composition, structure, and chromogenic mechanisms of beryl before and after heat treatment. The experimental results indicate that heat treatment under both atmospheres can lead to the transformation of yellow-green beryl into blue, with 500–600 °C under a reducing atmosphere identified as the optimal treatment condition. With increasing temperature, beryl gradually dehydrates, resulting in a faded blue color and reduced transparency. Even after treatment at 700 °C, no significant changes in unit cell parameters were observed, and both type I and type II water were retained, indicating that the color change is not attributed to crystal structure transformation or phase transitions. The study reveals that the essential mechanism of color modification through heat treatment lies in the valence change between Fe2+ and Fe3+ occupying channel and octahedral sites. The observed color variation is attributed to changes in absorption band intensity resulting from charge transfers of O2− → Fe3+ and Fe2+ → Fe3+. This study provides theoretical insights and technical references for the color enhancement of beryl through heat treatment. Full article
(This article belongs to the Collection Topic Collection: Mineralogical Crystallography)
Show Figures

Figure 1

19 pages, 5991 KB  
Article
Temperature- and Emission Wavelength-Dependent Time Responses of Strontium Aluminates
by Virginija Vitola, Tinko Eftimov, Kristian Nikolov, Samia Fouzar and Katrina Krizmane
Crystals 2025, 15(8), 744; https://doi.org/10.3390/cryst15080744 - 20 Aug 2025
Viewed by 186
Abstract
In this paper, we study the temperature- and emission wavelength-dependent time responses of previously reported precursor-driven Eu2+- and Dy3+-doped strontium-aluminate phosphors to create unique luminescent anti-counterfeiting tags suitable for detection with smartphones. A smartphone was used to detect the [...] Read more.
In this paper, we study the temperature- and emission wavelength-dependent time responses of previously reported precursor-driven Eu2+- and Dy3+-doped strontium-aluminate phosphors to create unique luminescent anti-counterfeiting tags suitable for detection with smartphones. A smartphone was used to detect the red–green–blue (RGB) components of the rise and decay time responses of the samples in a temperature range from 0 °C to 100 °C. The RGB color-dependent detection revealed a finer excitation/relaxation kinetics structure of the individual samples, which becomes evident in the decay responses. The results suggest another possibility for multilevel encoding and temperature sensor applications, and provides a foundation for developing a more accurate theoretical model of the energy transitions in phosphorescent materials. Full article
(This article belongs to the Section Polycrystalline Ceramics)
Show Figures

Figure 1

26 pages, 9783 KB  
Article
Assessing the Impact of the Indoor Light Environment of Office Facilities on Multidimensional Human Responses
by Ki Rim Kim, Kyung Sun Lee and Hyesung Cho
Buildings 2025, 15(16), 2955; https://doi.org/10.3390/buildings15162955 - 20 Aug 2025
Viewed by 169
Abstract
This study investigates the effects of adjustable indoor light variables (illuminance and correlated color temperature [CCT]) typically found in office environments on human physiological, psychological, and cognitive responses. An experiment involving 72 participants was conducted, producing 360 data points. Each participant was exposed [...] Read more.
This study investigates the effects of adjustable indoor light variables (illuminance and correlated color temperature [CCT]) typically found in office environments on human physiological, psychological, and cognitive responses. An experiment involving 72 participants was conducted, producing 360 data points. Each participant was exposed to 5 of 18 light environment conditions, which combined different levels of illuminance and CCT. Human responses were measured through skin conductivity, heart rate variability (SDNN, RMSSD, LF/HF ratio), preference, visual comfort, fatigue, work speed, and work accuracy. Correlation and multiple regression analyses were performed to evaluate both the direct effects and interrelationships among the variables. The results showed that psychological responses were most sensitive to light conditions. Illuminance significantly influenced visual comfort and fatigue, while both illuminance and CCT affected preference. Although physiological responses and work performance showed no direct statistical significance with light conditions, they were significantly correlated with psychological responses. These findings suggest that psychological responses may serve as mediators between light environments and other human reactions. Therefore, a more integrated evaluation framework is needed for light design. This study emphasizes the importance of considering psychological well-being in indoor light and provides practical implications for advancing human-centric light design in smart office environments. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

16 pages, 2576 KB  
Article
Enhancement in Three-Dimensional Depth with Bionic Image Processing
by Yuhe Chen, Chaoping Chen, Baoen Han and Yunfan Yang
Computers 2025, 14(8), 340; https://doi.org/10.3390/computers14080340 - 20 Aug 2025
Viewed by 162
Abstract
This study proposes an image processing framework based on Bionic principles to optimize 3D visual perception in virtual reality (VR) systems. By simulating the physiological mechanisms of the human visual system, the framework significantly enhances depth perception and visual fidelity in VR content. [...] Read more.
This study proposes an image processing framework based on Bionic principles to optimize 3D visual perception in virtual reality (VR) systems. By simulating the physiological mechanisms of the human visual system, the framework significantly enhances depth perception and visual fidelity in VR content. The research focuses on three core algorithms: Gabor texture feature extraction algorithm based on directional selectivity of neurons in the V1 region of the visual cortex, which enhances edge detection capability through fourth-order Gaussian kernel; improved Retinex model based on adaptive mechanism of retinal illumination, achieving brightness balance under complex illumination through horizontal–vertical dual-channel decomposition; the RGB adaptive adjustment algorithm, based on the three color response characteristics of cone cells, integrates color temperature compensation with depth cue optimization, enhances color naturalness and stereoscopic depth. Build a modular processing system on the Unity platform, integrate the above algorithms to form a collaborative optimization process, and ensure per-frame processing time meets VR real-time constraints. The experiment uses RMSE, AbsRel, and SSIM metrics, combined with subjective evaluation to verify the effectiveness of the algorithm. The results show that compared with traditional methods (SSAO, SSR, SH), our algorithm demonstrates significant advantages in simple scenes and marginal superiority in composite metrics for complex scenes. Collaborative processing of three algorithms can significantly improve depth map noise and enhance the user’s subjective experience. The research results provide a solution that combines biological rationality and engineering practicality for visual optimization in fields such as implantable metaverse, VR healthcare, and education. Full article
Show Figures

Figure 1

13 pages, 5108 KB  
Article
Method for Generating Real-Time Indoor Detailed Illuminance Maps Based on Deep Learning with a Single Sensor
by Seung-Taek Oh, You-Bin Lee and Jae-Hyun Lim
Sensors 2025, 25(16), 5154; https://doi.org/10.3390/s25165154 - 19 Aug 2025
Viewed by 290
Abstract
Emerging lighting technology aims to enhance indoor light quality while conserving energy through control systems that integrate with natural light. In related technologies, it is crucial to identify quickly and accurately indoor light environments that are constantly changing due to natural light. Consequently, [...] Read more.
Emerging lighting technology aims to enhance indoor light quality while conserving energy through control systems that integrate with natural light. In related technologies, it is crucial to identify quickly and accurately indoor light environments that are constantly changing due to natural light. Consequently, a large number of sensors must be installed, but installing multiple sensors would cause an increasing data processing load and inconvenience to users’ activities. Some have attempted to calculate natural light characteristics, such as solar radiation and color temperature cycles, and implement natural light lighting technology by applying deep learning technology. However, there are only a few cases of using deep learning to analyze indoor illuminance, which is essential for commercializing natural light lighting technology. Research on minimizing the number of sensors is also lacking. This paper proposes a method for generating a detailed indoor illuminance map using deep learning, which calculates the illuminance values of the entire indoor area with a single illuminance sensor. A dataset was constructed by collecting dynamically changing indoor illuminance and the position of the sun, and a single sensor was selected through analysis. Then, a DNN model was built to calculate the illuminance of every region of an indoor space by inputting the illuminance measured by a single sensor and the position of the sun, and it was applied to generate a detailed indoor illuminance map. Research has demonstrated that calculating the illuminance levels across an entire indoor area is feasible. Specifically, on clear days with a color temperature anomaly of about 1%, a detailed illuminance map of the indoor space was created, achieving an average MAE of 2.0 Lux or an MAPE of 2.5%. Full article
Show Figures

Figure 1

37 pages, 3563 KB  
Review
Systematic Evaluation of Biodegradation of Azo Dyes by Microorganisms: Efficient Species, Physicochemical Factors, and Enzymatic Systems
by Domingo Cesar Carrascal-Hernández, Erney José Orozco-Beltrán, Daniel Insuasty, Edgar Márquez and Carlos David Grande-Tovar
Int. J. Mol. Sci. 2025, 26(16), 7973; https://doi.org/10.3390/ijms26167973 - 18 Aug 2025
Viewed by 456
Abstract
Modern culture, strongly influenced by the growth of sectors such as the fashion and textile industries, has generated an environmental trend that is difficult to reverse. It is estimated that between 60 and 70% of the dyes used in these sectors are synthetic, [...] Read more.
Modern culture, strongly influenced by the growth of sectors such as the fashion and textile industries, has generated an environmental trend that is difficult to reverse. It is estimated that between 60 and 70% of the dyes used in these sectors are synthetic, which offer great versatility, a low cost, and a broad spectrum of colors, making them indispensable in many sectors. Among these synthetic dyes, azo dyes stand out due to their excellent chromophoric properties, structural stability, and ease of synthesis. However, these compounds are considered xenobiotics with a strong recalcitrant potential. This review article comprehensively examines the biodegradation potential of azo contaminants by microorganisms, including bacteria, fungi, microalgae, and consortia, using the PRISMA 2020 methodology. In this regard, this study identified 720 peer-reviewed articles on this topic that are outstanding. The analysis of these studies focused on the effect of parameters such as pH, temperature, and exposure time, as well as the enzymatic degradation pathways associated with the degradation efficiency of these contaminants. For example, the results identified that microorganisms such as Meyerozyma guilliermondii, Trametes versicolor, Pichia kudriavzevi, Chlorella vulgaris, and Candida tropicalis possess significant potential for degrading azo dyes (up to 90%). This degradative efficiency was attributed to the high enzymatic activity that cleaves the azo bonds of these contaminants through specialized enzymes, such as azoreductases, laccases, and peroxidases. Furthermore, the results highlight synergistic effects or metabolic cooperation between species that enhance the biodegradation of these contaminants, suggesting an eco-friendly alternative for environmental remediation. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

20 pages, 2430 KB  
Article
Shade Nets Increase Plant Growth but Not Fruit Yield in Organic Jalapeño Pepper (Capsicum annuum L.)
by Mamata Bashyal, Timothy W. Coolong and Juan Carlos Díaz-Pérez
Agriculture 2025, 15(16), 1757; https://doi.org/10.3390/agriculture15161757 - 16 Aug 2025
Viewed by 386
Abstract
Colored shade nets have gained attention due to their ability to reduce light intensity and alter the light spectrum, thereby influencing vegetable crop quality and yield. However, limited research has examined their effects on jalapeño pepper (Capsicum annuum L.) growth and yield. [...] Read more.
Colored shade nets have gained attention due to their ability to reduce light intensity and alter the light spectrum, thereby influencing vegetable crop quality and yield. However, limited research has examined their effects on jalapeño pepper (Capsicum annuum L.) growth and yield. This study evaluated the impact of four nets—black, red, silver, and white (40% shade factor)—compared to an unshaded control. The red net altered light quality by increasing the proportion of red and far-red wavelengths, while the other nets reduced light intensity without spectral modification. Although differences in mean air temperature were minimal between shaded and unshaded conditions, root zone temperatures were consistently lower under shade nets. Shade treatments significantly increased plant height, stem diameter, and leaf chlorophyll content relative to the unshaded control. The highest rates of leaf transpiration and stomatal conductance were recorded under unshaded and white net conditions. Net photosynthesis, electron transport rate, intercellular CO2 concentration, or photosynthetic water use efficiency were similar among net treatments. Marketable and total yields did not differ significantly among net treatments in either year; however, in 2021, they were positively associated with light intensity. In conclusion, while colored shade nets promoted vegetative growth, they did not enhance fruit yield relative to unshaded conditions in jalapeño pepper. Full article
Show Figures

Figure 1

25 pages, 16018 KB  
Article
Textures and Inclusions in Mengyin Diamonds: Insights on Their Formation Within the Southeastern North China Craton
by Yu-Meng Sun, Yi-Qi Wang, Liang Zhang, Li-Qiang Yang, Zhi-Yuan Chu and Hao-Shuai Wang
Minerals 2025, 15(8), 856; https://doi.org/10.3390/min15080856 - 14 Aug 2025
Viewed by 314
Abstract
Beyond its renowned gemological value, diamond serves as a vital economic mineral and a unique messenger from Earth’s deep interior, preserving invaluable geological information. Since the Mengyin region is the source of China’s greatest diamond deposits, research on the diamonds there not only [...] Read more.
Beyond its renowned gemological value, diamond serves as a vital economic mineral and a unique messenger from Earth’s deep interior, preserving invaluable geological information. Since the Mengyin region is the source of China’s greatest diamond deposits, research on the diamonds there not only adds to our understanding of their origins but also offers an essential glimpse into the development of the North China Craton’s mantle lithosphere. In this article, 50 diamond samples from Mengyin were investigated using gemological microscopy, Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, DiamondView™, and X-ray micro-computed tomography (CT) scanning technologies. The types of Mengyin diamonds are mainly Type IaAB, Type IaB, and Type IIa, and the impurity elements are N and H. Inclusions in diamonds serve as direct indicators of mantle-derived components, providing crucial constraints on the pressure–temperature (P–T) conditions during their crystallization. Mengyin diamonds have both eclogite-type and peridotite-type inclusions. It formed at depths ranging from 147 to 176 km, which corresponds to source pressures of approximately 4.45–5.35 GPa, as determined by the Raman shifts of olivine inclusions. The discovery of coesite provides key mineralogical evidence for subduction of an ancient oceanic plate in the source region. The surface morphology of diamonds varies when they are reabsorbed by melts from the mantle, reflecting distinctive features that record subsequent geological events. Distinctive surface features observed on Mengyin diamonds include fusion pits, tile-like etch patterns, and growth steps. Specifically, regular flat-bottomed negative trigons are mainly formed during diamond resorption in kimberlite melts with a low CO2 (XCO2 < ~0.5) and high H2O content. The samples exhibit varying fluorescence under DiamondView™, displaying blue, green, and a combination of blue and green colors. This diversity indicates that the diamonds have undergone a complex process of non-uniform growth. The nitrogen content of the melt composition also varies significantly throughout the different growth stages. The N3 center is responsible for the blue fluorescence, suggesting that it originated in a long-term, hot, high-nitrogen craton, and the varied ring band structure reveals localized, episodic environmental variations. Radiation and medium-temperature annealing produce H3 centers, which depict stagnation throughout the ascent of kimberlite magma and are responsible for the green fluorescence. Full article
Show Figures

Figure 1

Back to TopTop