Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = colonic epithelial permeability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3360 KiB  
Article
PTEN Inactivation in Mouse Colonic Epithelial Cells Curtails DSS-Induced Colitis and Accelerates Recovery
by Larissa Kotelevets, Francine Walker, Godefroy Mamadou, Bruno Eto, Thérèse Lehy and Eric Chastre
Cancers 2025, 17(14), 2346; https://doi.org/10.3390/cancers17142346 - 15 Jul 2025
Viewed by 480
Abstract
Background: PTEN is a tumor suppressor that controls many pathophysiological pathways, including cell proliferation, differentiation, apoptosis and invasiveness. Although PTEN down-modulation is a critical event in neoplastic progression, it becomes apparent that transient and local inhibition of PTEN activity might be beneficial [...] Read more.
Background: PTEN is a tumor suppressor that controls many pathophysiological pathways, including cell proliferation, differentiation, apoptosis and invasiveness. Although PTEN down-modulation is a critical event in neoplastic progression, it becomes apparent that transient and local inhibition of PTEN activity might be beneficial for the healing process. Methods: In the present study, we investigated the impact of PTEN invalidation in mouse intestinal epithelium under a physiological condition and after dextran sulfate sodium (DSS) treatment to induce experimental colitis. PTEN conditional knockout was induced in intestinal epithelial cells after crossing villin-Cre and PTENflox/flox mice. Results: PTEN invalidation alleviates experimental colitis induced by DSS, as evidenced by decreased weight loss during the acute phase, the lower expression of inflammation markers, including the proinflammatory cytokines IFN-γ, CXCL1 and CXCL2, reduced mucosal lesions, and faster recovery after resolution of inflammation. This protective effect might result in part from the sustained proliferation of colonic epithelium, leading to hyperplasia and increased colonic crypt depth under physiological conditions, which was further exacerbated in the vicinity of mucosal injury induced by DSS treatment. Furthermore, PTEN knockout decreased paracellular permeability, thereby enhancing the intestinal barrier function. This process was associated with the reinforcement of claudin-3 immunostaining, especially on the surface epithelium of villin-Cre PTENflox/flox mice. Conclusions: PTEN inactivation exerts a protective effect on the onset of colitis, and the transient and local down-modulation of PTEN might constitute an approach to drive recovery following acute intestinal inflammation. Full article
(This article belongs to the Special Issue PTEN: Regulation, Signalling and Targeting in Cancer)
Show Figures

Graphical abstract

28 pages, 4235 KiB  
Article
MH002, a Novel Butyrate-Producing Consortium of Six Commensal Bacterial Strains Has Immune-Modulatory and Mucosal-Healing Properties
by Iris Pinheiro, Selin Bolca, Lien Van den Bossche, Wiebe Vanhove, Sara Van Ryckeghem, Davide Gottardi, Debby Laukens and Sam Possemiers
Int. J. Mol. Sci. 2025, 26(13), 6167; https://doi.org/10.3390/ijms26136167 - 26 Jun 2025
Viewed by 960
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory condition of the gastrointestinal tract. It is generally accepted that IBD is characterized by an inappropriate immune response to the intestinal microbiome in genetically susceptible individuals. Despite the available treatment options ranging from salicylates [...] Read more.
Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory condition of the gastrointestinal tract. It is generally accepted that IBD is characterized by an inappropriate immune response to the intestinal microbiome in genetically susceptible individuals. Despite the available treatment options ranging from salicylates and corticosteroids, to immunosuppressants and biologics, there is still a high unmet medical need for patients who respond poorly to drugs or are not able to tolerate them. Microbiome-based therapeutics offer a valid treatment strategy for IBD with enhanced safety. A butyrate-producing consortium of six commensal strains (MH002) was evaluated in a series of in vitro, ex vivo, and in vivo experiments mimicking multiple IBD-related dysfunctions, namely disrupted intestinal permeability and immune activation. MH002 rapidly produced high levels of butyrate in fed-batch cultures, and significantly increased butyrate levels within one day after administration to IBD-derived gut microbial communities in vitro. Both in Caco-2/peripheral blood mononuclear cells (PBMCs) co-cultures, and IBD patients-derived organoids and colonic explants, MH002 reduced inflammation and restored epithelial barrier integrity. In addition, MH002 promoted wound repair in vitro. Finally, MH002 protected mice and rats from chemically induced colitis. Altogether, results showed that MH002 presents a novel therapeutic avenue for the treatment of IBD. Full article
(This article belongs to the Special Issue Inflammatory Bowel Disease and Microbiome)
Show Figures

Figure 1

28 pages, 9411 KiB  
Article
Localization and Expression of Aquaporin 1 (AQP1) in the Tissues of the Spiny Dogfish (Squalus acanthias)
by Christopher P. Cutler and Bryce MacIver
Int. J. Mol. Sci. 2025, 26(12), 5593; https://doi.org/10.3390/ijms26125593 - 11 Jun 2025
Viewed by 388
Abstract
Aquaporin 1 is a membrane water channel protein, which was studied here in spiny dogfish (Squalus acanthias) osmoregulatory tissues using a variety of techniques. The cloning of aquaporin 1 (AQP1) in the spiny dogfish identified a splice variant version [...] Read more.
Aquaporin 1 is a membrane water channel protein, which was studied here in spiny dogfish (Squalus acanthias) osmoregulatory tissues using a variety of techniques. The cloning of aquaporin 1 (AQP1) in the spiny dogfish identified a splice variant version of the mRNA/protein (AQP1SV1/AQP1SV1). Polymerase chain reaction (PCR) in a range of tissues showed AQP1 to be expressed at very high levels in the rectal gland with ubiquitous mRNA expression at lower levels in other tissues. Northern blotting showed that AQP1 had a mRNA size of 5.3 kb in kidney total RNA. The level of AQP1 mRNA was significantly lower in the rectal glands of fish acclimated to 120% seawater (SW; vs. 75% SW (p = 0.0007) and 100% SW (p = 0.0025)) but was significantly higher in those fish in the kidney (vs. 100% SW (p = 0.0178)) and intestine (vs. 75% SW (p= 0.0355) and 100% SW (p = 0.0285)). Quantitative PCR determined that AQP1SV1 mRNA levels were also significantly lower in the rectal glands of both 120% (p = 0.0134) and 100% SW (p = 0.0343) fish in comparison to 75% SW-acclimated dogfish. Functional expression in Xenopus oocytes showed that AQP1 exhibited significant apparent membrane water permeability (p = 0.000008–0.0158) across a range of pH values, whereas AQP1SV1 showed no similar permeability. Polyclonal antibodies produced against AQP1 (AQP1 and AQP1/2 antibodies) and AQP1SV1 had bands at the expected sizes of 28 kDa and 24 kDa, respectively, as well as some other banding. The weak AQP1 antibody and the stronger AQP1/2 antibody exhibited staining in the apical membranes of rectal gland secretory tubules, particularly towards the periphery of the gland. In the gill, the AQP1/2 antibody in particular showed staining in secondary-lamellar pavement-cell basal membranes, and in blood vessels and connective tissue in the gill arch. In the spiral valve intestine side wall and valve flap, the AQP1/2 antibody stained muscle tissue and blood vessel walls and, after tyramide signal amplification, showed some staining in the apical membranes of epithelial cells at the ends of the luminal surface of epithelial folds. In the rectum/colon, there was also some muscle and blood vessel staining, but the AQP1 and AQP1/2 antibodies both stained a layer of cells at the base of the surface epithelium. In the kidney convoluted bundle zone, all three antibodies stained bundle sheath membranes to variable extents, and the AQP1/2 antibody also showed staining in the straight bundle zone bundle sheath. In the kidney sinus zone, the AQP1/2 antibody stained the apical membranes of late distal tubule (LDT) nephron loop cells most strongly, with the strongest staining in the middle of the LDT loop and in patches towards the start of the LDT loop. There was also a somewhat less strong staining of segments of the first sinus zone nephron loop, particularly in the intermediate I (IS-I) tubule segment. Some tubules appeared to show no or only low levels of staining. The results suggest that AQP1 plays a role in rectal gland fluid secretion, kidney fluid reabsorption and gill pavement-cell volume regulation and probably a minor role in intestinal/rectal/colon fluid absorption. Full article
(This article belongs to the Special Issue New Insights into Aquaporins: 2nd Edition)
Show Figures

Graphical abstract

13 pages, 1993 KiB  
Article
A Probiotic Mixture of Lactobacillus rhamnosus LR 32, Bifidobacterium lactis BL 04, and Bifidobacterium longum BB 536 Counteracts the Increase in Permeability Induced by the Mucosal Mediators of Irritable Bowel Syndrome by Acting on Zonula Occludens 1
by Maria Raffaella Barbaro, Francesca Bianco, Cesare Cremon, Giovanni Marasco, Vincenzo Stanghellini and Giovanni Barbara
Int. J. Mol. Sci. 2025, 26(6), 2656; https://doi.org/10.3390/ijms26062656 - 15 Mar 2025
Cited by 2 | Viewed by 2277
Abstract
Irritable Bowel Syndrome (IBS) is a disorder of gut- brain interaction characterized by recurrent abdominal pain associated with altered bowel habits. The therapeutic options for IBS patients include the use of probiotics. The aim of this study was to assess the effect of [...] Read more.
Irritable Bowel Syndrome (IBS) is a disorder of gut- brain interaction characterized by recurrent abdominal pain associated with altered bowel habits. The therapeutic options for IBS patients include the use of probiotics. The aim of this study was to assess the effect of a multi-strain probiotic made up by Lactobacillus rhamnosus LR 32, Bifidobacterium lactis BL 04, and Bifidobacterium longum BB 536 (Serobioma, Bromatech s.r.l., Milano, Italy) on an in vitro model of the intestinal epithelial barrier in the presence of mucosal mediators that are released by IBS patients. IBS (n = 28; IBS with predominant diarrhea, IBS-D = 10; IBS with predominant constipation, IBS-C = 9; and IBS with mixed bowel habits, IBS-M = 9) patients, diagnosed according to the Rome IV criteria, and asymptomatic controls (ACs, n = 7) were enrolled. Mucosal mediators that were spontaneously released by colonic biopsies were collected (supernatants). Two doses of Serobioma were tested with/without IBS/AC mediators. RNA was extracted from Caco-2 cells to evaluate the tight junction (TJ) expression. Serobioma (106 CFU/mL) significantly reinforced the Caco-2 monolayer compared to growth medium alone (p < 0.05). IBS supernatants significantly increased Caco-2 paracellular permeability compared to the AC supernatants. The co-incubation of Caco-2 cells with IBS supernatants and Serobioma (106 CFU/mL) avoided the paracellular permeability alterations that were induced by IBS supernatants alone (p < 0.001), and, in particular, IBS-D and IBS-M ones. The co-incubation of Serobioma (106 CFU/mL) and IBS-D supernatants significantly increased ZO-1 expression compared to Caco-2 cells incubated with supernatants alone (p < 0.05), as confirmed via qPCR analyses. Serobioma (106 CFU/mL) counteracts the paracellular permeability changes that are induced by IBS supernatants, in particular IBS-D and IBS-M supernatants, likely modulating ZO-1 expression. Full article
Show Figures

Figure 1

10 pages, 858 KiB  
Article
Untargeted Metabolomic Profiling of Colonic Mucosa in Individuals with Irritable Bowel Syndrome
by Patrycja Krynicka, Mariusz Kaczmarczyk, Karolina Skonieczna-Żydecka, Daniel Styburski, Konrad Podsiadło, Danuta Cembrowska-Lech, Krzysztof Dąbkowski, Anna Deskur, Wiesława Rogoza-Mateja, Małgorzata Ławniczak, Andrzej Białek, Anastasios Koulaouzidis and Wojciech Marlicz
Biomedicines 2025, 13(3), 629; https://doi.org/10.3390/biomedicines13030629 - 5 Mar 2025
Cited by 1 | Viewed by 1388
Abstract
Background: Irritable Bowel Syndrome (IBS) is a complex disorder characterized by altered gut–brain interactions, with gastrointestinal microbiota and metabolic dysregulation playing key roles in its pathophysiology. Identifying specific metabolic alterations within the colonic mucosa may enhance our understanding of IBS and contribute to [...] Read more.
Background: Irritable Bowel Syndrome (IBS) is a complex disorder characterized by altered gut–brain interactions, with gastrointestinal microbiota and metabolic dysregulation playing key roles in its pathophysiology. Identifying specific metabolic alterations within the colonic mucosa may enhance our understanding of IBS and contribute to improved diagnostic and therapeutic approaches. Methods: This cross-sectional study analyzed the metabolomic profiles of colonic mucosal biopsies from 44 IBS patients assessed with ROME IV criteria and 69 healthy controls undergoing colonoscopy. Untargeted metabolomic profiling was conducted using liquid chromatography–mass spectrometry (LC-MS), and differential metabolite analysis was performed via fold-change calculations and machine learning-based classification. Results: IBS patients exhibited distinct mucosal metabolic profiles, with significantly elevated levels of N-acetylneuraminic acid and 1-palmitoylglycerol, suggesting compromised epithelial integrity and increased gut permeability. In contrast, cis-4-hydroxycyclohexanecarboxylic acid, a metabolite associated with protective mucosal functions, was reduced. Random Forest analysis identified these metabolites as key discriminatory features between IBS and control groups, reinforcing their potential role as biomarkers for IBS-related mucosal alterations. Conclusions: Our study highlights the unique metabolomic signatures of IBS at the mucosal level, emphasizing the role of microbial metabolites in disease pathology. These findings may facilitate the development of novel diagnostic tools and targeted therapeutic strategies, advancing personalized management for IBS patients. Full article
(This article belongs to the Special Issue New Technologies in Digestive Endoscopy)
Show Figures

Figure 1

16 pages, 2784 KiB  
Article
Dietary Bovine Lactoferrin Reduces the Deleterious Effects of Lipopolysaccharide Injection on Mice Intestine
by Anne Blais, Natsuko Takakura, Marta Grauso, Caroline Puel-Artero, François Blachier and Annaïg Lan
Nutrients 2024, 16(23), 4040; https://doi.org/10.3390/nu16234040 - 26 Nov 2024
Cited by 2 | Viewed by 1251
Abstract
Background/Objectives: Injection of lipopolysaccharides (LPS) in experimental models induces a systemic inflammatory response that is associated with deleterious effects on intestinal morphology and physiology. In this study, we have studied in female mice the effects of dietary supplementation with bovine lactoferrin (bLF) given [...] Read more.
Background/Objectives: Injection of lipopolysaccharides (LPS) in experimental models induces a systemic inflammatory response that is associated with deleterious effects on intestinal morphology and physiology. In this study, we have studied in female mice the effects of dietary supplementation with bovine lactoferrin (bLF) given before intraperitoneal injection of LPS on jejunum and colon. Methods: The first study evaluated the efficiency of different bLF and LPS concentrations to determine the optimal experimental conditions. For the second study mice were fed with 1% bLF before the LPS challenge (3 mg/kg body weight). Plasmatic markers of inflammation, intestinal morphology, permeability, and expression of genes related to epithelial differentiation, epithelial barrier function and intestinal inflammation in both small intestine and colon were evaluated. Results: bLF ingestion before the LPS challenge reduced the TNF-α circulating concentration, compared to control animals. This decrease in plasma TNF-α was correlated with improved intestinal permeability. The morphology of jejunal epithelium, which was affected by LPS challenge, was partly maintained by bLF. Measurement of the expression of genes encoding proteins involved in epithelial differentiation, intestinal inflammation, and epithelial barrier function suggests an overall protective effect of bLF against the adverse effects of LPS in the jejunum. In the colon, the effects of bLF ingestion on the subsequent LPS challenge, although protective, remain different when compared with those observed on jejunum. Conclusions: Taken together, our data indicate that bLF dietary supplementation does have a protective effect on the deleterious intestinal alterations induced by LPS systemic inflammation. Full article
Show Figures

Figure 1

18 pages, 3513 KiB  
Article
Cystathionine Gamma-Lyase Regulates TNF-α-Mediated Injury Response in Human Colonic Epithelial Cells and Colonoids
by Francisco Arroyo Almenas, Gábor Törő, Peter Szaniszlo, Manjit Maskey, Ketan K. Thanki, Walter A. Koltun, Gregory S. Yochum, Irina V. Pinchuk, Celia Chao, Mark R. Hellmich and Katalin Módis
Antioxidants 2024, 13(9), 1067; https://doi.org/10.3390/antiox13091067 - 31 Aug 2024
Cited by 1 | Viewed by 1611
Abstract
Cystathionine gamma-lyase (CSE) and TNF-α are now recognized as key regulators of intestinal homeostasis, inflammation, and wound healing. In colonic epithelial cells, both molecules have been shown to influence a variety of biological processes, but the specific interactions between intracellular signaling pathways regulated [...] Read more.
Cystathionine gamma-lyase (CSE) and TNF-α are now recognized as key regulators of intestinal homeostasis, inflammation, and wound healing. In colonic epithelial cells, both molecules have been shown to influence a variety of biological processes, but the specific interactions between intracellular signaling pathways regulated by CSE and TNF-α are poorly understood. In the present study, we investigated these interactions in normal colonocytes and an organoid model of the healthy human colon using CSE-specific pharmacological inhibitors and siRNA-mediated transient gene silencing in analytical and functional assays in vitro. We demonstrated that CSE and TNF-α mutually regulated each other’s functions in colonic epithelial cells. TNF-α treatment stimulated CSE activity within minutes and upregulated CSE expression after 24 h, increasing endogenous CSE-derived H2S production. In turn, CSE activity promoted TNF-α-induced NF-ĸB and ERK1/2 activation but did not affect the p38 MAPK signaling pathway. Inhibition of CSE activity completely abolished the TNF-α-induced increase in transepithelial permeability and wound healing. Our data suggest that CSE activity may be essential for effective TNF-α-mediated intestinal injury response. Furthermore, CSE regulation of TNF-α-controlled intracellular signaling pathways could provide new therapeutic targets in diseases of the colon associated with impaired epithelial wound healing. Full article
(This article belongs to the Special Issue Hydrogen Sulfide Signaling in Biological Systems)
Show Figures

Figure 1

27 pages, 7337 KiB  
Article
Entamoeba histolytica: EhADH, an Alix Protein, Participates in Several Virulence Events through Its Different Domains
by Dxinegueela Zanatta, Abigail Betanzos, Elisa Azuara-Liceaga, Sarita Montaño and Esther Orozco
Int. J. Mol. Sci. 2024, 25(14), 7609; https://doi.org/10.3390/ijms25147609 - 11 Jul 2024
Cited by 2 | Viewed by 2692
Abstract
Entamoeba histolytica is the protozoan causative of human amoebiasis. The EhADH adhesin (687 aa) is a protein involved in tissue invasion, phagocytosis and host-cell lysis. EhADH adheres to the prey and follows its arrival to the multivesicular bodies. It is an accessory protein [...] Read more.
Entamoeba histolytica is the protozoan causative of human amoebiasis. The EhADH adhesin (687 aa) is a protein involved in tissue invasion, phagocytosis and host-cell lysis. EhADH adheres to the prey and follows its arrival to the multivesicular bodies. It is an accessory protein of the endosomal sorting complexes required for transport (ESCRT) machinery. Here, to study the role of different parts of EhADH during virulence events, we produced trophozoites overexpressing the three domains of EhADH, Bro1 (1–400 aa), Linker (246–446 aa) and Adh (444–687 aa) to evaluate their role in virulence. The TrophozBro11–400 slightly increased adherence and phagocytosis, but these trophozoites showed a higher ability to destroy cell monolayers, augment the permeability of cultured epithelial cells and mouse colon, and produce more damage to hamster livers. The TrophozLinker226–446 also increased the virulence properties, but with lower effect than the TrophozBro11–400. In addition, this fragment participates in cholesterol transport and GTPase binding. Interestingly, the TrophozAdh444–687 produced the highest effect on adherence and phagocytosis, but it poorly influenced the monolayers destruction; nevertheless, they augmented the colon and liver damage. To identify the protein partners of each domain, we used recombinant peptides. Pull-down assays and mass spectrometry showed that Bro1 domain interplays with EhADH, Gal/GalNAc lectin, EhCPs, ESCRT machinery components and cytoskeleton proteins. While EhADH, ubiquitin, EhRabB, EhNPC1 and EhHSP70 were associated to the Linker domain, and EhADH, EhHSP70, EhPrx and metabolic enzymes interacted to the Adh domain. The diverse protein association confirms that EhADH is a versatile molecule with multiple functions probably given by its capacity to form distinct molecular complexes. Full article
(This article belongs to the Special Issue Molecular Dynamics of Membrane Proteins)
Show Figures

Graphical abstract

15 pages, 4954 KiB  
Article
Colonic Epithelial Permeability to Ions Is Restored after Vedolizumab Treatment and May Predict Clinical Response in Inflammatory Bowel Disease Patients
by Michele Cicala, Manuele Gori, Paola Balestrieri, Annamaria Altomare, Alessandro Tullio, Simone Di Cola, Sander Dejongh, Maria Giovanna Graziani, Cristiano Pagnini, Simone Carotti, Giuseppe Perrone, Mentore Ribolsi, Marcello Fiorani, Michele P. L. Guarino and Ricard Farré
Int. J. Mol. Sci. 2024, 25(11), 5817; https://doi.org/10.3390/ijms25115817 - 27 May 2024
Cited by 2 | Viewed by 1537
Abstract
Vedolizumab (VDZ) is used for treating inflammatory bowel disease (IBD) patients. A study investigating colonic epithelial barrier function ex vivo following VDZ is lacking. This work aims to evaluate ex vivo the colonic epithelial barrier function in IBD patients at baseline and during [...] Read more.
Vedolizumab (VDZ) is used for treating inflammatory bowel disease (IBD) patients. A study investigating colonic epithelial barrier function ex vivo following VDZ is lacking. This work aims to evaluate ex vivo the colonic epithelial barrier function in IBD patients at baseline and during VDZ treatment, and to investigate the relationships between barrier function and clinical parameters. Colonic specimens were obtained from 23 IBD patients before, and at 24 and 52 weeks after VDZ treatment, and from 26 healthy volunteers (HV). Transepithelial electrical resistance (TEER, permeability to ions) and paracellular permeability were measured in Ussing chambers. IBD patients showed increased epithelial permeability to ions (TEER, 13.80 ± 1.04 Ω × cm2 vs. HV 20.70 ± 1.52 Ω × cm2, p < 0.001) without changes in paracellular permeability of a 4 kDa probe. VDZ increased TEER (18.09 ± 1.44 Ω × cm2, p < 0.001) after 52 weeks. A clinical response was observed in 58% and 25% of patients at week 24, and in 62% and 50% at week 52, in ulcerative colitis and Crohn’s disease, respectively. Clinical and endoscopic scores were strongly associated with TEER. TEER < 14.65 Ω × cm2 predicted response to VDZ (OR 11; CI 2–59). VDZ reduces the increased permeability to ions observed in the colonic epithelium of IBD patients before treatment, in parallel to a clinical, histological (inflammatory infiltrate), and endoscopic improvement. A low TEER predicts clinical response to VDZ therapy. Full article
Show Figures

Figure 1

20 pages, 5969 KiB  
Article
Ziziphus jujuba Miller Ethanol Extract Restores Disrupted Intestinal Barrier Function via Tight Junction Recovery and Reduces Inflammation
by Ye Jin Yang, Min Jung Kim, Ho Jeong Lee, Won-Yung Lee, Ju-Hye Yang, Hun Hwan Kim, Min Sub Shim, Ji Woong Heo, Jae Dong Son, Woo H. Kim, Gon Sup Kim, Hu-Jang Lee, Young-Woo Kim, Kwang Youn Kim and Kwang Il Park
Antioxidants 2024, 13(5), 575; https://doi.org/10.3390/antiox13050575 - 7 May 2024
Cited by 7 | Viewed by 3412
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition caused by the disruption of the intestinal barrier. The intestinal barrier is maintained by tight junctions (TJs), which sustain intestinal homeostasis and prevent pathogens from entering the microbiome and mucosal tissues. Ziziphus jujuba Miller [...] Read more.
Inflammatory bowel disease (IBD) is a chronic inflammatory condition caused by the disruption of the intestinal barrier. The intestinal barrier is maintained by tight junctions (TJs), which sustain intestinal homeostasis and prevent pathogens from entering the microbiome and mucosal tissues. Ziziphus jujuba Miller (Z. jujuba) is a natural substance that has been used in traditional medicine as a therapy for a variety of diseases. However, in IBD, the efficacy of Z. jujuba is unknown. Therefore, we evaluated ZJB in Caco2 cells and a dextran sodium sulfate (DSS)-induced mouse model to demonstrate its efficacy in IBD. Z. jujuba extracts were prepared using 70% ethanol and were named ZJB. ZJB was found to be non-cytotoxic and to have excellent antioxidant effects. We confirmed its anti-inflammatory properties via the down-regulation of inflammatory factors, including inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). To evaluate the effects of ZJB on intestinal barrier function and TJ improvement, the trans-epithelial electrical resistance (TEER) and fluorescein isothiocyanate-dextran 4 kDa (FITC-Dextran 4) permeability were assessed. The TEER value increased by 61.389% and permeability decreased by 27.348% in the 200 μg/mL ZJB group compared with the 50 ng/mL IL-6 group after 24 h. Additionally, ZJB alleviated body weight loss, reduced the disease activity index (DAI) score, and induced colon shortening in 5% DSS-induced mice; inflammatory cytokines, tumor necrosis factor (TNF)-α, and interleukin (IL)-6 were down-regulated in the serum. TJ proteins, such as Zonula occludens (ZO)-1 and occludin, were up-regulated by ZJB in an impaired Caco2 mouse model. Additionally, according to the liquid chromatography results, in tandem with mass spectrometry (LC-MS/MS) analysis, seven active ingredients were detected in ZJB. In conclusion, ZJB down-regulated inflammatory factors, protected intestinal barrier function, and increased TJ proteins. It is thus a safe, natural substance with the potential to be used as a therapeutic agent in IBD treatment. Full article
Show Figures

Figure 1

20 pages, 2131 KiB  
Article
Serendipitous Identification of Azine Anticancer Agents Using a Privileged Scaffold Morphing Strategy
by Silvia Cesarini, Ilaria Vicenti, Federica Poggialini, Silvia Filippi, Eleonora Mancin, Lia Fiaschi, Elisa De Marchi, Federica Giammarino, Chiara Vagaggini, Bruno Mattia Bizzarri, Raffaele Saladino, Elena Dreassi, Maurizio Zazzi and Lorenzo Botta
Molecules 2024, 29(7), 1452; https://doi.org/10.3390/molecules29071452 - 24 Mar 2024
Cited by 2 | Viewed by 1717
Abstract
The use of privileged scaffolds as a starting point for the construction of libraries of bioactive compounds is a widely used strategy in drug discovery and development. Scaffold decoration, morphing and hopping are additional techniques that enable the modification of the chosen privileged [...] Read more.
The use of privileged scaffolds as a starting point for the construction of libraries of bioactive compounds is a widely used strategy in drug discovery and development. Scaffold decoration, morphing and hopping are additional techniques that enable the modification of the chosen privileged framework and better explore the chemical space around it. In this study, two series of highly functionalized pyrimidine and pyridine derivatives were synthesized using a scaffold morphing approach consisting of triazine compounds obtained previously as antiviral agents. Newly synthesized azines were evaluated against lymphoma, hepatocarcinoma, and colon epithelial carcinoma cells, showing in five cases acceptable to good anticancer activity associated with low cytotoxicity on healthy fibroblasts. Finally, ADME in vitro studies were conducted on the best derivatives of the two series showing good passive permeability and resistance to metabolic degradation. Full article
(This article belongs to the Special Issue Organic Synthesis and Application of Bioactive Molecules)
Show Figures

Graphical abstract

16 pages, 2769 KiB  
Article
Ketogenic Diet High in Saturated Fat Promotes Colonic Claudin Expression without Changes in Intestinal Permeability to Iohexol in Healthy Mice
by Lotta Toivio, Hanna Launonen, Jere Lindén, Markku Lehto, Heikki Vapaatalo, Hanne Salmenkari and Riitta Korpela
Nutrients 2024, 16(1), 18; https://doi.org/10.3390/nu16010018 - 20 Dec 2023
Cited by 6 | Viewed by 2735 | Correction
Abstract
Ketogenic diets (KDs) have been studied in preclinical models of intestinal diseases. However, little is known of how the fat source of these diets influences the intestinal barrier. Herein, we studied the impact of four-week feeding with KD high either in saturated fatty [...] Read more.
Ketogenic diets (KDs) have been studied in preclinical models of intestinal diseases. However, little is known of how the fat source of these diets influences the intestinal barrier. Herein, we studied the impact of four-week feeding with KD high either in saturated fatty acids (SFA-KD) or polyunsaturated linoleic acid (LA-KD) on paracellular permeability of the intestine to iohexol in healthy male C57BL/6J mice. We investigated jejunal and colonic tight junction protein expression, histological changes, and inflammatory markers (Il1b, Il6, Tnf, and Lcn2), as well as the activity and expression of intestinal alkaline phosphatase (IAP) in feces and jejunal tissue, respectively, and plasma lipopolysaccharide. KDs did not change intestinal permeability to iohexol after two or twenty-six days of feeding regardless of fat quality. SFA-KD, but not LA-KD, upregulated the colonic expression of tight junction proteins claudin-1 and -4, as well as the activity of IAP. Both KDs resulted in increased epithelial vacuolation in jejunum, and this was pronounced in SFA-KD. Jejunal Il1β expression was lower and colonic Il6 expression higher in LA-KD compared to SFA-KD. In colon, Tnf mRNA was increased in LA-KD when compared to controls. Overall, the results suggest that KDs do not influence intestinal permeability to iohexol but elicit changes in colonic tight junction proteins and inflammatory markers in both jejunum and colon. Future research will show whether these changes become of importance upon proinflammatory insults. Full article
(This article belongs to the Special Issue Dietary Nutrition on Gastrointestinal Health)
Show Figures

Figure 1

19 pages, 4903 KiB  
Article
A Colonic Organoid Model Challenged with the Large Toxins of Clostridioides difficile TcdA and TcdB Exhibit Deregulated Tight Junction Proteins
by Martina Schneemann, Lucas Heils, Verena Moos, Franziska Weiß, Susanne M. Krug, January Weiner, Dieter Beule, Ralf Gerhard, Jörg-Dieter Schulzke and Roland Bücker
Toxins 2023, 15(11), 643; https://doi.org/10.3390/toxins15110643 - 4 Nov 2023
Cited by 1 | Viewed by 3270
Abstract
Background: Clostridioides difficile toxins TcdA and TcdB are responsible for diarrhea and colitis. Lack of functional studies in organoid models of the gut prompted us to elucidate the toxin’s effects on epithelial barrier function and the molecular mechanisms for diarrhea and inflammation. Methods: [...] Read more.
Background: Clostridioides difficile toxins TcdA and TcdB are responsible for diarrhea and colitis. Lack of functional studies in organoid models of the gut prompted us to elucidate the toxin’s effects on epithelial barrier function and the molecular mechanisms for diarrhea and inflammation. Methods: Human adult colon organoids were cultured on membrane inserts. Tight junction (TJ) proteins and actin cytoskeleton were analyzed for expression via Western blotting and via confocal laser-scanning microscopy for subcellular localization. Results: Polarized intestinal organoid monolayers were established from stem cell-containing colon organoids to apply toxins from the apical side and to perform functional measurements in the organoid model. The toxins caused a reduction in transepithelial electrical resistance in human colonic organoid monolayers with sublethal concentrations. Concomitantly, we detected increased paracellular permeability fluorescein and FITC-dextran-4000. Human colonic organoid monolayers exposed to the toxins exhibited redistribution of barrier-forming TJ proteins claudin-1, -4 and tricellulin, whereas channel-forming claudin-2 expression was increased. Perijunctional F-actin cytoskeleton organization was affected. Conclusions: Adult stem cell-derived human colonic organoid monolayers were applicable as a colon infection model for electrophysiological measurements. The TJ changes noted can explain the epithelial barrier dysfunction and diarrhea in patients, as well as increased entry of luminal antigens triggering inflammation. Full article
(This article belongs to the Special Issue Enterotoxins and Mucosal Pathomechanisms)
Show Figures

Figure 1

21 pages, 7220 KiB  
Article
Beneficial Effects of Lactobacilli Species on Intestinal Homeostasis in Low-Grade Inflammation and Stress Rodent Models and Their Implication in the Modulation of the Adhesive Junctional Complex
by Célia Chamignon, Geoffroy Mallaret, Julie Rivière, Marthe Vilotte, Sead Chadi, Alejandra de Moreno de LeBlanc, Jean Guy LeBlanc, Frédéric Antonio Carvalho, Marco Pane, Pierre-Yves Mousset, Philippe Langella, Sophie Lafay and Luis G. Bermúdez-Humarán
Biomolecules 2023, 13(9), 1295; https://doi.org/10.3390/biom13091295 - 24 Aug 2023
Cited by 3 | Viewed by 2690
Abstract
Intestinal barrier integrity is essential in order to maintain the homeostasis of mucosal functions and efficient defensive reactions against chemical and microbial challenges. An impairment of the intestinal barrier has been observed in several chronic diseases. The gut microbiota and its impact on [...] Read more.
Intestinal barrier integrity is essential in order to maintain the homeostasis of mucosal functions and efficient defensive reactions against chemical and microbial challenges. An impairment of the intestinal barrier has been observed in several chronic diseases. The gut microbiota and its impact on intestinal homeostasis is well described and numerous studies suggest the ability of some probiotic strains to protect the intestinal epithelial integrity and host homeostasis. In this work, we aimed to assess the beneficial effects of three Lactobacillus strains (Lacticaseibacillus rhamnosus LR04, Lacticaseibacillus casei LC03, and Lactiplantibacillus plantarum CNCM I-4459) and their mechanism of action in low-grade inflammation or neonatal maternal separation models in mice. We compared the impact of these strains to that of the well-known probiotic Lacticaseibacillus rhamnosus GG. Our results demonstrated that the three strains have the potential to restore the barrier functions by (i) increasing mucus production, (ii) restoring normal permeability, and (iii) modulating colonic hypersensitivity. Moreover, gene expression analysis of junctional proteins revealed the implication of Claudin 2 and Cingulin in the mechanisms that underlie the interactions between the strains and the host. Taken together, our data suggest that LR04, CNCM I-4459, and LC03 restore the functions of an impaired intestinal barrier. Full article
(This article belongs to the Special Issue Probiotics and Their Metabolites)
Show Figures

Figure 1

28 pages, 2830 KiB  
Review
Extracellular Cysteine Proteases of Key Intestinal Protozoan Pathogens—Factors Linked to Virulence and Pathogenicity
by Raúl Argüello-García, Julio César Carrero and M. Guadalupe Ortega-Pierres
Int. J. Mol. Sci. 2023, 24(16), 12850; https://doi.org/10.3390/ijms241612850 - 16 Aug 2023
Cited by 7 | Viewed by 3321
Abstract
Intestinal diseases caused by protistan parasites of the genera Giardia (giardiasis), Entamoeba (amoebiasis), Cryptosporidium (cryptosporidiosis) and Blastocystis (blastocystosis) represent a major burden in human and animal populations worldwide due to the severity of diarrhea and/or inflammation in susceptible hosts. These pathogens interact with [...] Read more.
Intestinal diseases caused by protistan parasites of the genera Giardia (giardiasis), Entamoeba (amoebiasis), Cryptosporidium (cryptosporidiosis) and Blastocystis (blastocystosis) represent a major burden in human and animal populations worldwide due to the severity of diarrhea and/or inflammation in susceptible hosts. These pathogens interact with epithelial cells, promoting increased paracellular permeability and enterocyte cell death (mainly apoptosis), which precede physiological and immunological disorders. Some cell-surface-anchored and molecules secreted from these parasites function as virulence markers, of which peptide hydrolases, particularly cysteine proteases (CPs), are abundant and have versatile lytic activities. Upon secretion, CPs can affect host tissues and immune responses beyond the site of parasite colonization, thereby increasing the pathogens’ virulence. The four intestinal protists considered here are known to secrete predominantly clan A (C1- and C2-type) CPs, some of which have been characterized. CPs of Giardia duodenalis (e.g., Giardipain-1) and Entamoeba histolytica (EhCPs 1-6 and EhCP112) degrade mucin and villin, cause damage to intercellular junction proteins, induce apoptosis in epithelial cells and degrade immunoglobulins, cytokines and defensins. In Cryptosporidium, five Cryptopains are encoded in its genome, but only Cryptopains 4 and 5 are likely secreted. In Blastocystis sp., a legumain-activated CP, called Blastopain-1, and legumain itself have been detected in the extracellular medium, and the former has similar adverse effects on epithelial integrity and enterocyte survival. Due to their different functions, these enzymes could represent novel drug targets. Indeed, some promising results with CP inhibitors, such as vinyl sulfones (K11777 and WRR605), the garlic derivative, allicin, and purified amoebic CPs have been obtained in experimental models, suggesting that these enzymes might be useful drug targets. Full article
(This article belongs to the Special Issue Microbial Proteases: Structure, Function and Role in Pathogenesis)
Show Figures

Figure 1

Back to TopTop