Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = collagen aggrecan fragments

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 351 KiB  
Review
Beyond the Surface: Nutritional Interventions Integrated with Diagnostic Imaging Tools to Target and Preserve Cartilage Integrity: A Narrative Review
by Salvatore Lavalle, Rosa Scapaticci, Edoardo Masiello, Valerio Mario Salerno, Renato Cuocolo, Roberto Cannella, Matteo Botteghi, Alessandro Orro, Raoul Saggini, Sabrina Donati Zeppa, Alessia Bartolacci, Vilberto Stocchi, Giovanni Piccoli and Francesco Pegreffi
Biomedicines 2025, 13(3), 570; https://doi.org/10.3390/biomedicines13030570 - 24 Feb 2025
Cited by 2 | Viewed by 1733
Abstract
This narrative review provides an overview of the various diagnostic tools used to assess cartilage health, with a focus on early detection, nutrition intervention, and management of osteoarthritis. Early detection of cartilage damage is crucial for effective patient management. Traditional diagnostic tools like [...] Read more.
This narrative review provides an overview of the various diagnostic tools used to assess cartilage health, with a focus on early detection, nutrition intervention, and management of osteoarthritis. Early detection of cartilage damage is crucial for effective patient management. Traditional diagnostic tools like radiography and conventional magnetic resonance imaging (MRI) sequences are more suited to detecting late-stage structural changes. This paper highlights advanced imaging techniques, including sodium MRI, T2 mapping, T1ρ imaging, and delayed gadolinium-enhanced MRI of cartilage, which provide valuable biochemical information about cartilage composition, particularly the glycosaminoglycan content and its potential links to nutrition-related factors influencing cartilage health. Cartilage degradation is often linked with inflammation and measurable via markers like CRP and IL-6 which, although not specific to cartilage breakdown, offer insights into the inflammation affecting cartilage. In addition to imaging techniques, biochemical markers, such as collagen breakdown products and aggrecan fragments, which reflect metabolic changes in cartilage, are discussed. Emerging tools like optical coherence tomography and hybrid positron emission tomography–magnetic resonance imaging (PET-MRI) are also explored, offering high-resolution imaging and combined metabolic and structural insights, respectively. Finally, wearable technology and biosensors for real-time monitoring of osteoarthritis progression, as well as the role of artificial intelligence in enhancing diagnostic accuracy through pattern recognition in imaging data are addressed. While these advanced diagnostic tools hold great potential for early detection and monitoring of osteoarthritis, challenges remain in clinical translation, including validation in larger populations and integration into existing clinical workflows and personalized treatment strategies for cartilage-related diseases. Full article
(This article belongs to the Special Issue Applications of Imaging Technology in Human Diseases)
14 pages, 937 KiB  
Article
Relevance of Biomarkers in Serum vs. Synovial Fluid in Patients with Knee Osteoarthritis
by Stefania Kalogera, Mylène P. Jansen, Anne-Christine Bay-Jensen, Peder Frederiksen, Morten A. Karsdal, Christian S. Thudium and Simon C. Mastbergen
Int. J. Mol. Sci. 2023, 24(11), 9483; https://doi.org/10.3390/ijms24119483 - 30 May 2023
Cited by 13 | Viewed by 3395
Abstract
The association between structural changes and pain sensation in osteoarthritis (OA) remains unclear. Joint deterioration in OA leads to the release of protein fragments that can either systemically (serum) or locally (synovial fluid; SF) be targeted as biomarkers and describe structural changes and [...] Read more.
The association between structural changes and pain sensation in osteoarthritis (OA) remains unclear. Joint deterioration in OA leads to the release of protein fragments that can either systemically (serum) or locally (synovial fluid; SF) be targeted as biomarkers and describe structural changes and potentially pain. Biomarkers of collagen type I (C1M), type II (C2M), type III (C3M), type X (C10C), and aggrecan (ARGS) degradation were measured in the serum and SF of knee OA patients. Spearman’s rank correlation was used to assess the correlation of the biomarkers’ levels between serum and SF. Linear regression adjusted for confounders was used to evaluate the associations between the biomarkers’ levels and clinical outcomes. The serum C1M levels were negatively associated with subchondral bone density. The serum C2M levels were negatively associated with KL grade and positively associated with minimum joint space width (minJSW). The C10C levels in SF were negatively associated with minJSW and positively associated with KL grade and osteophyte area. Lastly, the serum C2M and C3M levels were negatively associated with pain outcomes. Most of the biomarkers seemed to mainly be associated with structural outcomes. The overall biomarkers of extracellular matrix (ECM) remodeling in serum and SF may provide different information and reflect different pathogenic processes. Full article
(This article belongs to the Special Issue New Molecular Mechanisms and Markers in Inflammatory Disorders)
Show Figures

Figure 1

13 pages, 3274 KiB  
Article
Characterization and Advancement of an Evaluation Method for the Treatment of Spontaneous Osteoarthritis in STR/ort Mice: GRGDS Peptides as a Potential Treatment for Osteoarthritis
by Mei-Feng Chen, Chih-Chien Hu, Yung-Heng Hsu, Yu-Tien Chiu, Kai-Lin Chen, Steve W. N. Ueng and Yuhan Chang
Biomedicines 2023, 11(4), 1111; https://doi.org/10.3390/biomedicines11041111 - 6 Apr 2023
Cited by 4 | Viewed by 3354
Abstract
STR/ort mice spontaneously exhibit the typical osteoarthritis (OA) phenotype. However, studies describing the relationship between cartilage histology, epiphyseal trabecular bone, and age are lacking. We aimed to evaluate the typical OA markers and quantify the subchondral bone trabecular parameters in STR/ort male mice [...] Read more.
STR/ort mice spontaneously exhibit the typical osteoarthritis (OA) phenotype. However, studies describing the relationship between cartilage histology, epiphyseal trabecular bone, and age are lacking. We aimed to evaluate the typical OA markers and quantify the subchondral bone trabecular parameters in STR/ort male mice at different weeks of age. We then developed an evaluation model for OA treatment. We graded the knee cartilage damage using the Osteoarthritis Research Society International (OARSI) score in STR/ort male mice with or without GRGDS treatment. We measured the levels of typical OA markers, including aggrecan fragments, matrix metallopeptidase-13 (MMP-13), collagen type X alpha 1 chain (COL10A1), and SRY-box transcription factor 9 (Sox9), and quantified epiphyseal trabecular parameters. Compared to the young age group, elderly mice showed an increased OARSI score, decreased chondrocyte columns of the growth plate, elevated expression of OA markers (aggrecan fragments, MMP13, and COL10A1), and decreased expression of Sox9 at the articular cartilage region in elderly STR/ort mice. Aging also significantly enhanced the subchondral bone remodeling and microstructure change in the tibial plateau. Moreover, GRGDS treatment mitigated these subchondral abnormalities. Our study presents suitable evaluation methods to characterize and measure the efficacy of cartilage damage treatments in STR/ort mice with spontaneous OA. Full article
(This article belongs to the Topic Animal Models of Human Disease)
Show Figures

Figure 1

18 pages, 5218 KiB  
Article
Isolation, Identification, and Characterization of Bioactive Peptides in Human Bone Cells from Tortoiseshell and Deer Antler Gelatin
by Tsung-Jung Ho, Jung-Hsing Lin, Shinn Zong Lin, Wan-Ting Tsai, Jia-Ru Wu and Hao-Ping Chen
Int. J. Mol. Sci. 2023, 24(2), 1759; https://doi.org/10.3390/ijms24021759 - 16 Jan 2023
Cited by 7 | Viewed by 3258
Abstract
Tortoiseshell and deer antler gelatin has been used to treat bone diseases in Chinese society. A pepsin-digested gelatin peptide with osteoblast-proliferation-stimulating properties was identified via LC-MS/MS. The resulting pentapeptide, TSKYR, was presumably subjected to further degradation into TSKY, TSK, and YR fragments in [...] Read more.
Tortoiseshell and deer antler gelatin has been used to treat bone diseases in Chinese society. A pepsin-digested gelatin peptide with osteoblast-proliferation-stimulating properties was identified via LC-MS/MS. The resulting pentapeptide, TSKYR, was presumably subjected to further degradation into TSKY, TSK, and YR fragments in the small intestine. The above four peptides were chemically synthesized. Treatment of tripeptide TSK can lead to a significant 30- and 50-fold increase in the mineralized nodule area and density in osteoblast cells and a 47.5% increase in the number of chondrocyte cells. The calcium content in tortoiseshell was relatively higher than in human soft tissue. The synergistic effects of calcium ions and the peptides were observed for changes in osteoblast proliferation and differentiation. Moreover, these peptides can enhance the expression of RUNX2, OCN, FGFR2, and FRFR3 genes in osteoblasts, and aggrecan and collagen type II in chondrocyte (patent pending). Full article
Show Figures

Figure 1

13 pages, 12140 KiB  
Article
The Endplate Role in Degenerative Disc Disease Research: The Isolation of Human Chondrocytes from Vertebral Endplate—An Optimised Protocol
by Lidija Gradišnik, Uroš Maver, Boris Gole, Gorazd Bunc, Matjaž Voršič, Janez Ravnik, Tomaž Šmigoc, Roman Bošnjak and Tomaž Velnar
Bioengineering 2022, 9(4), 137; https://doi.org/10.3390/bioengineering9040137 - 25 Mar 2022
Cited by 14 | Viewed by 4381
Abstract
Background: Degenerative disc disease is a progressive and chronic disorder with many open questions regarding its pathomorphological mechanisms. In related studies, in vitro organ culture systems are becoming increasingly essential as a replacement option for laboratory animals. Live disc cells are highly appealing [...] Read more.
Background: Degenerative disc disease is a progressive and chronic disorder with many open questions regarding its pathomorphological mechanisms. In related studies, in vitro organ culture systems are becoming increasingly essential as a replacement option for laboratory animals. Live disc cells are highly appealing to study the possible mechanisms of intervertebral disc (IVD) degeneration. To study the degenerative processes of the endplate chondrocytes in vitro, we established a relatively quick and easy protocol for isolating human chondrocytes from the vertebral endplates. Methods: The fragments of human lumbar endplates following lumbar fusion were collected, cut, ground and partially digested with collagenase I in Advanced DMEM/F12 with 5% foetal bovine serum. The sediment was harvested, and cells were seeded in suspension, supplemented with special media containing high nutrient levels. Morphology was determined with phalloidin staining and the characterisation for collagen I, collagen II and aggrecan with immunostaining. Results: The isolated cells retained viability in appropriate laboratory conditions and proliferated quickly. The confluent culture was obtained after 14 days. Six to 8 h after seeding, attachments were observed, and proliferation of the isolated cells followed after 12 h. The cartilaginous endplate chondrocytes were stable with a viability of up to 95%. Pheno- and geno-typic analysis showed chondrocyte-specific expression, which decreased with passages. Conclusions: The reported cell isolation process is simple, economical and quick, allowing establishment of a viable long-term cell culture. The availability of a vertebral endplate cell model will permit the study of cell properties, biochemical aspects, the potential of therapeutic candidates for the treatment of disc degeneration, and toxicology studies in a well-controlled environment. Full article
(This article belongs to the Special Issue Analytical Approaches in 3D in vitro Systems)
Show Figures

Figure 1

30 pages, 4664 KiB  
Review
Mechanical Cues: Bidirectional Reciprocity in the Extracellular Matrix Drives Mechano-Signalling in Articular Cartilage
by Sophie Jane Gilbert, Cleo Selina Bonnet and Emma Jane Blain
Int. J. Mol. Sci. 2021, 22(24), 13595; https://doi.org/10.3390/ijms222413595 - 18 Dec 2021
Cited by 60 | Viewed by 8183
Abstract
The composition and organisation of the extracellular matrix (ECM), particularly the pericellular matrix (PCM), in articular cartilage is critical to its biomechanical functionality; the presence of proteoglycans such as aggrecan, entrapped within a type II collagen fibrillar network, confers mechanical resilience underweight-bearing. Furthermore, [...] Read more.
The composition and organisation of the extracellular matrix (ECM), particularly the pericellular matrix (PCM), in articular cartilage is critical to its biomechanical functionality; the presence of proteoglycans such as aggrecan, entrapped within a type II collagen fibrillar network, confers mechanical resilience underweight-bearing. Furthermore, components of the PCM including type VI collagen, perlecan, small leucine-rich proteoglycans—decorin and biglycan—and fibronectin facilitate the transduction of both biomechanical and biochemical signals to the residing chondrocytes, thereby regulating the process of mechanotransduction in cartilage. In this review, we summarise the literature reporting on the bidirectional reciprocity of the ECM in chondrocyte mechano-signalling and articular cartilage homeostasis. Specifically, we discuss studies that have characterised the response of articular cartilage to mechanical perturbations in the local tissue environment and how the magnitude or type of loading applied elicits cellular behaviours to effect change. In vivo, including transgenic approaches, and in vitro studies have illustrated how physiological loading maintains a homeostatic balance of anabolic and catabolic activities, involving the direct engagement of many PCM molecules in orchestrating this slow but consistent turnover of the cartilage matrix. Furthermore, we document studies characterising how abnormal, non-physiological loading including excessive loading or joint trauma negatively impacts matrix molecule biosynthesis and/or organisation, affecting PCM mechanical properties and reducing the tissue’s ability to withstand load. We present compelling evidence showing that reciprocal engagement of the cells with this altered ECM environment can thus impact tissue homeostasis and, if sustained, can result in cartilage degradation and onset of osteoarthritis pathology. Enhanced dysregulation of PCM/ECM turnover is partially driven by mechanically mediated proteolytic degradation of cartilage ECM components. This generates bioactive breakdown fragments such as fibronectin, biglycan and lumican fragments, which can subsequently activate or inhibit additional signalling pathways including those involved in inflammation. Finally, we discuss how bidirectionality within the ECM is critically important in enabling the chondrocytes to synthesise and release PCM/ECM molecules, growth factors, pro-inflammatory cytokines and proteolytic enzymes, under a specified load, to influence PCM/ECM composition and mechanical properties in cartilage health and disease. Full article
Show Figures

Figure 1

21 pages, 5447 KiB  
Article
Hyaluronic Acid-Binding, Anionic, Nanoparticles Inhibit ECM Degradation and Restore Compressive Stiffness in Aggrecan-Depleted Articular Cartilage Explants
by Marcus Deloney, Parssa Garoosi, Vanessa F. C. Dartora, Blaine A. Christiansen and Alyssa Panitch
Pharmaceutics 2021, 13(9), 1503; https://doi.org/10.3390/pharmaceutics13091503 - 18 Sep 2021
Cited by 7 | Viewed by 3555
Abstract
Joint trauma results in the production of inflammatory cytokines that stimulate the secretion of catabolic enzymes, which degrade articular cartilage. Molecular fragments of the degraded articular cartilage further stimulate inflammatory cytokine production, with this process eventually resulting in post-traumatic osteoarthritis (PTOA). The loss [...] Read more.
Joint trauma results in the production of inflammatory cytokines that stimulate the secretion of catabolic enzymes, which degrade articular cartilage. Molecular fragments of the degraded articular cartilage further stimulate inflammatory cytokine production, with this process eventually resulting in post-traumatic osteoarthritis (PTOA). The loss of matrix component aggrecan occurs early in the progression of PTOA and results in the loss of compressive stiffness in articular cartilage. Aggrecan is highly sulfated, associates with hyaluronic acid (HA), and supports the compressive stiffness in cartilage. Presented here, we conjugated the HA-binding peptide GAHWQFNALTVRGSG (GAH) to anionic nanoparticles (hNPs). Nanoparticles conjugated with roughly 19 GAH peptides, termed 19 GAH-hNP, bound to HA in solution and increased the dynamic viscosity by 94.1% compared to an HA solution treated with unconjugated hNPs. Moreover, treating aggrecan-depleted (AD) cartilage explants with 0.10 mg of 19 GAH-hNP restored the cartilage compressive stiffness to healthy levels six days after a single nanoparticle treatment. Treatment of AD cartilage with 0.10 mg of 19 GAH-hNP inhibited the degradation of articular cartilage. Treated AD cartilage had 409% more collagen type II and 598% more GAG content than untreated-AD explants. The 19 GAH-hNP therapeutic slowed ECM degradation in AD cartilage explants, restored the compressive stiffness of damaged cartilage, and showed promise as a localized treatment for PTOA. Full article
(This article belongs to the Special Issue Polymer Therapeutics: From Synthesis to Biomedical Applications)
Show Figures

Figure 1

60 pages, 63296 KiB  
Review
Articular Chondrocyte Phenotype Regulation through the Cytoskeleton and the Signaling Processes That Originate from or Converge on the Cytoskeleton: Towards a Novel Understanding of the Intersection between Actin Dynamics and Chondrogenic Function
by Jasmin C. Lauer, Mischa Selig, Melanie L. Hart, Bodo Kurz and Bernd Rolauffs
Int. J. Mol. Sci. 2021, 22(6), 3279; https://doi.org/10.3390/ijms22063279 - 23 Mar 2021
Cited by 69 | Viewed by 7823
Abstract
Numerous studies have assembled a complex picture, in which extracellular stimuli and intracellular signaling pathways modulate the chondrocyte phenotype. Because many diseases are mechanobiology-related, this review asked to what extent phenotype regulators control chondrocyte function through the cytoskeleton and cytoskeleton-regulating signaling processes. Such [...] Read more.
Numerous studies have assembled a complex picture, in which extracellular stimuli and intracellular signaling pathways modulate the chondrocyte phenotype. Because many diseases are mechanobiology-related, this review asked to what extent phenotype regulators control chondrocyte function through the cytoskeleton and cytoskeleton-regulating signaling processes. Such information would generate leverage for advanced articular cartilage repair. Serial passaging, pro-inflammatory cytokine signaling (TNF-α, IL-1α, IL-1β, IL-6, and IL-8), growth factors (TGF-α), and osteoarthritis not only induce dedifferentiation but also converge on RhoA/ROCK/Rac1/mDia1/mDia2/Cdc42 to promote actin polymerization/crosslinking for stress fiber (SF) formation. SF formation takes center stage in phenotype control, as both SF formation and SOX9 phosphorylation for COL2 expression are ROCK activity-dependent. Explaining how it is molecularly possible that dedifferentiation induces low COL2 expression but high SF formation, this review theorized that, in chondrocyte SOX9, phosphorylation by ROCK might effectively be sidelined in favor of other SF-promoting ROCK substrates, based on a differential ROCK affinity. In turn, actin depolymerization for redifferentiation would “free-up” ROCK to increase COL2 expression. Moreover, the actin cytoskeleton regulates COL1 expression, modulates COL2/aggrecan fragment generation, and mediates a fibrogenic/catabolic expression profile, highlighting that actin dynamics-regulating processes decisively control the chondrocyte phenotype. This suggests modulating the balance between actin polymerization/depolymerization for therapeutically controlling the chondrocyte phenotype. Full article
(This article belongs to the Special Issue The Future of Cartilage Repair in Complex Biological Situations)
Show Figures

Figure 1

Back to TopTop