Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (277)

Search Parameters:
Keywords = collaborative path planning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7554 KB  
Article
A*-TEB: An Improved A* Algorithm Based on the TEB Strategy for Multi-Robot Motion Planning
by Xu Li, Tuanjie Li, Yan Zhang, Yulin Zhang, Ziang Li, Lixiang Ban and Kecheng Sun
Sensors 2025, 25(19), 6117; https://doi.org/10.3390/s25196117 - 3 Oct 2025
Abstract
Multi-robot motion planning (MRMP) requires each robot to possess strong local planning capabilities while maintaining global consistency. However, existing research often fails to address both global and local planning simultaneously, resulting in conflicts in real-time path execution. The A* algorithm is widely used [...] Read more.
Multi-robot motion planning (MRMP) requires each robot to possess strong local planning capabilities while maintaining global consistency. However, existing research often fails to address both global and local planning simultaneously, resulting in conflicts in real-time path execution. The A* algorithm is widely used for global path planning due to its adaptability and search efficiency, while the Timed Elastic Band (TEB) algorithm excels in local trajectory optimization and real-time dynamic obstacle avoidance. This paper presents a novel motion planning framework integrating an improved A* algorithm with an enhanced TEB strategy to address both levels of planning collaboratively. The proposed improvements include the introduction of steering costs and dynamic weights into the A* algorithm to enhance path smoothness and efficiency, and a hierarchical obstacle treatment in TEB for improved local avoidance. Simulation and real-world experiments conducted with ROS confirmed the feasibility and effectiveness of the method. Compared to the traditional A* algorithm, the proposed framework reduces the average path length by 5.2%, shortens completion time by 11.5%, and decreases inflection points by 66.7%, demonstrating superior performance for multi-robot systems in dynamic environments. Full article
Show Figures

Figure 1

43 pages, 4987 KB  
Review
A Review of Robotic Aircraft Skin Inspection: From Data Acquisition to Defect Analysis
by Minnan Piao, Xuan Wang, Weiling Wang, Yonghui Xie and Biao Lu
Mathematics 2025, 13(19), 3161; https://doi.org/10.3390/math13193161 - 2 Oct 2025
Abstract
In accordance with the PRISMA 2020 guidelines, this systematic review analyzed 73 publications (1997–2025) to summarize advancements in robotic aircraft skin inspection, focusing on the integrated pipeline from data acquisition to defect analysis. The review included studies on Unmanned Aerial Vehicles (UAVs) and [...] Read more.
In accordance with the PRISMA 2020 guidelines, this systematic review analyzed 73 publications (1997–2025) to summarize advancements in robotic aircraft skin inspection, focusing on the integrated pipeline from data acquisition to defect analysis. The review included studies on Unmanned Aerial Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs) for external skin inspection, which present clear technical contributions, while excluding internal inspections and non-technical reports. Literature was retrieved from IEEE conferences, journals, and other academic databases, and key findings were summarized via the categorical analysis of motion planning, perception modules, and defect detection algorithms. Key limitations identified include the fragmentation of core technical modules, unresolved bottlenecks in dynamic environments, challenges in weak-texture and all-weather perception, and a lack of mature integrated systems with practical validation. The study concludes by advocating for future research in multi-robot heterogeneous collaborative systems, intelligent dynamic task scheduling, large model-based airworthiness assessment, and the expansion of inspection scenarios, all aimed at achieving fully autonomous and reliable operations. Full article
Show Figures

Figure 1

17 pages, 26449 KB  
Article
Federated Learning for Distributed Multi-Robotic Arm Trajectory Optimization
by Fazal Khan and Zhuo Meng
Robotics 2025, 14(10), 137; https://doi.org/10.3390/robotics14100137 - 29 Sep 2025
Abstract
The optimization of trajectories for multiple robotic arms in a shared workspace is critical for industrial automation but presents significant challenges, including data sharing, communication overhead, and adaptability in dynamic environments. Traditional centralized control methods require sharing raw sensor data, raising concerns and [...] Read more.
The optimization of trajectories for multiple robotic arms in a shared workspace is critical for industrial automation but presents significant challenges, including data sharing, communication overhead, and adaptability in dynamic environments. Traditional centralized control methods require sharing raw sensor data, raising concerns and creating computational bottlenecks. This paper proposes a novel Federated Learning (FL) framework for distributed multi-robotic arm trajectory optimization. Our method enables collaborative learning where robots train a shared model locally and only exchange gradient updates, preserving data privacy. The framework integrates an adaptive Rapidly exploring Random Tree (RRT) algorithm enhanced with a dynamic pruning strategy to reduce computational overhead and ensure collision-free paths. Real-time synchronization is achieved via EtherCAT, ensuring precise coordination. Experimental results demonstrate that our approach achieves a 17% reduction in average path length, a 22% decrease in collision rate, and a 31% improvement in planning speed compared to a centralized RRT baseline, while reducing inter-robot communication overhead by 45%. This work provides a scalable and efficient solution for collaborative manipulation in applications ranging from assembly lines to warehouse automation. Full article
(This article belongs to the Section Sensors and Control in Robotics)
Show Figures

Figure 1

43 pages, 16029 KB  
Article
Research on Trajectory Planning for a Limited Number of Logistics Drones (≤3) Based on Double-Layer Fusion GWOP
by Jian Deng, Honghai Zhang, Yuetan Zhang and Yaru Sun
Drones 2025, 9(10), 671; https://doi.org/10.3390/drones9100671 - 24 Sep 2025
Viewed by 22
Abstract
Trajectory planning for logistics UAVs in complex environments faces a key challenge: balancing global search breadth with fine constraint accuracy. Traditional algorithms struggle to simultaneously manage large-scale exploration and complex constraints, and lack sufficient modeling capabilities for multi-UAV systems, limiting cluster logistics efficiency. [...] Read more.
Trajectory planning for logistics UAVs in complex environments faces a key challenge: balancing global search breadth with fine constraint accuracy. Traditional algorithms struggle to simultaneously manage large-scale exploration and complex constraints, and lack sufficient modeling capabilities for multi-UAV systems, limiting cluster logistics efficiency. To address these issues, we propose a GWOP algorithm based on dual-layer fusion of GWO and GRPO and incorporate a graph attention network (GAT). First, CEC2017 benchmark functions evaluate GWOP convergence accuracy and balanced exploration in multi-peak, high-dimensional environments. A hierarchical collaborative architecture, “GWO global coarse-grained search + GRPO local fine-tuning”, is used to overcome the limitations of single-algorithm frameworks. The GAT model constructs a dynamic “environment–UAV–task” association network, enabling environmental feature quantification and multi-constraint adaptation. A multi-factor objective function and constraints are integrated with multi-task cascading decoupling optimization to form a closed-loop collaborative optimization framework. Experimental results show that in single UAV scenarios, GWOP reduces flight cost (FV) by over 15.85% on average. In multi-UAV collaborative scenarios, average path length (APL), optimal path length (OPL), and FV are reduced by 4.08%, 14.08%, and 24.73%, respectively. In conclusion, the proposed method outperforms traditional approaches in path length, obstacle avoidance, and trajectory smoothness, offering a more efficient planning solution for smart logistics. Full article
Show Figures

Figure 1

29 pages, 21882 KB  
Article
UAV Path Planning in Threat Environment: A*-APF Algorithm for Spatio-Temporal Grid Optimization
by Longhao Liu, Le Ru, Wenfei Wang, Hailong Xi, Rui Zhu, Shiliang Li and Zhenghao Zhang
Drones 2025, 9(9), 661; https://doi.org/10.3390/drones9090661 - 22 Sep 2025
Viewed by 247
Abstract
To address low threat avoidance efficiency and poor global path adaptability in UAV path planning under threatening environments, this paper proposes a hybrid A*-Artificial Potential Field (APF) path planning method based on spatio-temporal grid optimization. First, a new global fine-grained spatio-temporal grid system [...] Read more.
To address low threat avoidance efficiency and poor global path adaptability in UAV path planning under threatening environments, this paper proposes a hybrid A*-Artificial Potential Field (APF) path planning method based on spatio-temporal grid optimization. First, a new global fine-grained spatio-temporal grid system is developed by integrating advantages of GeoSOT binary encoding and BeiDou grid location code subdivision rules, enabling unified modeling of complex spatio-temporal environments. Ground threat and maze scenarios are constructed for verification. Second, traditional A* and APF algorithms are improved: the A* algorithm is enhanced with threat costs, dynamic neighborhood search, and local backtrack mechanisms to address low efficiency and incompatibility with threat avoidance; the APF algorithm is optimized with a dual gravitational field collaboration mechanism and distance-parameter-based repulsive field model to overcome local minima and unreachable goals. Finally, a sliding window-driven path association model achieves seamless collaboration between global and local planning. Experimental results show the proposed method outperforms traditional algorithms in comprehensive performance, with the improved A* algorithm excelling in path length, computation time, threat value, and search nodes, and the improved APF algorithm achieving complete safe obstacle avoidance in dynamic environments. The collaborative mechanism effectively handles complex scenarios. Full article
Show Figures

Figure 1

20 pages, 39725 KB  
Article
TFP-YOLO: Obstacle and Traffic Sign Detection for Assisting Visually Impaired Pedestrians
by Zhiwei Zheng, Jin Cheng and Fanghua Jin
Sensors 2025, 25(18), 5879; https://doi.org/10.3390/s25185879 - 19 Sep 2025
Viewed by 299
Abstract
With the increasing demand for intelligent mobility assistance among the visually impaired, machine guide dogs based on computer vision have emerged as an effective alternative to traditional guide dogs, owing to their flexible deployment and scalability. To enhance their visual perception capabilities in [...] Read more.
With the increasing demand for intelligent mobility assistance among the visually impaired, machine guide dogs based on computer vision have emerged as an effective alternative to traditional guide dogs, owing to their flexible deployment and scalability. To enhance their visual perception capabilities in complex urban environments, this paper proposes an improved YOLOv8-based detection algorithm, termed TFP-YOLO, designed to recognize traffic signs such as traffic lights and crosswalks, as well as small obstacle objects including pedestrians and bicycles, thereby improving the target detection performance of machine guide dogs in complex road scenarios. The proposed algorithm incorporates a Triplet Attention mechanism into the backbone network to strengthen the perception of key regions, and integrates a Triple Feature Encoding (TFE) module to achieve collaborative extraction of both local and global features. Additionally, a P2 detection head is introduced to improve the accuracy of small object detection, particularly for traffic lights. Furthermore, the WIoU loss function is adopted to enhance training stability and the model’s generalization capability. Experimental results demonstrate that the proposed algorithm achieves a detection accuracy of 93.9% and a precision of 90.2%, while reducing the number of parameters by 17.2%. These improvements significantly enhance the perception performance of machine guide dogs in identifying traffic information and obstacles, providing strong technical support for subsequent path planning and embedded deployment, and demonstrating considerable practical application value. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Graphical abstract

27 pages, 3625 KB  
Article
Digital Twin-Driven Sorting System for 3D Printing Farm
by Zeyan Wang, Fei Xie, Zhiyuan Wang, Yijian Liu, Qi Mao and Jun Chen
Appl. Sci. 2025, 15(18), 10222; https://doi.org/10.3390/app151810222 - 19 Sep 2025
Viewed by 291
Abstract
Modern agricultural intelligent manufacturing faces critical challenges including low automation levels, safety hazards in high-temperature processing, and insufficient production data integration. Digital twin technology and 3D printing offer promising solutions through real-time virtual–physical synchronization and customized equipment manufacturing, respectively. However, existing research exhibits [...] Read more.
Modern agricultural intelligent manufacturing faces critical challenges including low automation levels, safety hazards in high-temperature processing, and insufficient production data integration. Digital twin technology and 3D printing offer promising solutions through real-time virtual–physical synchronization and customized equipment manufacturing, respectively. However, existing research exhibits significant limitations: inadequate real-time synchronization mechanisms causing delayed response, poor environmental adaptability in unstructured agricultural settings, and limited human–machine collaboration capabilities. To address these deficiencies, this study develops a digital twin-driven intelligent sorting system for 3D-printed agricultural tools, integrating an Articulated Robot Arm, 16 industrial-grade 3D printers, and the Unity3D 2024.x platform to establish a complete “printing–sorting–warehousing” digitalized production loop. Unlike existing approaches, our system achieves millisecond-level bidirectional physical–virtual synchronization, implements an adaptive grasping algorithm combining force control and thermal sensing for safe high-temperature handling, employs improved RRT-Connect path planning with ellipsoidal constraint sampling, and features AR/VR/MR-based multimodal interaction. Validation testing in real agricultural production environments demonstrates a 98.7% grasping success rate, a 99% reduction in burn accidents, and a 191% sorting efficiency improvement compared to traditional methods, providing breakthrough solutions for sustainable agricultural development and smart farming ecosystem construction. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

18 pages, 3816 KB  
Article
A Planning Framework Based on Semantic Segmentation and Flipper Motions for Articulated Tracked Robot in Obstacle-Crossing Terrain
by Pu Zhang, Junhang Liu, Yongling Fu and Jian Sun
Biomimetics 2025, 10(9), 627; https://doi.org/10.3390/biomimetics10090627 - 17 Sep 2025
Viewed by 214
Abstract
Articulated tracked robots (ATRs) equipped with dual active flippers are widely used due to their ability to climb over complex obstacles like animals with legs. This paper presents a novel planning framework designed to empower ATRs with the capability of autonomously generating global [...] Read more.
Articulated tracked robots (ATRs) equipped with dual active flippers are widely used due to their ability to climb over complex obstacles like animals with legs. This paper presents a novel planning framework designed to empower ATRs with the capability of autonomously generating global paths that integrate obstacle-crossing maneuvers in complex terrains. This advancement effectively mitigates the issue of excessive dependence on remote human control, thereby enhancing the operational efficiency and adaptability of ATRs in challenging environments. The framework consists of three core components. First, a lightweight DeepLab V3+ architecture augmented with an edge-aware module is used for real-time semantic segmentation of elevation maps. Second, a simplified model of the robot-terrain contact is constructed to rapidly calculate the robot’s pose at map sampling points through contact point traversal. Finally, based on rapidly-exploring random trees, the cost of flipper motion smoothness is incorporated into the search process, achieving collaborative planning of passable paths and flipper maneuvers in obstacle-crossing scenarios. The framework was tested on our Crawler robot, which can quickly and accurately identify flat areas, obstacle-crossing areas, and impassable areas, avoiding redundant planning in non-obstacle areas. Compared to manually operated remote control, the planned path demonstrated shorter travel time, better stability, and lower flipper energy expenditure. This framework offers substantial practical value for autonomous navigation in demanding environments. Full article
(This article belongs to the Special Issue Artificial Intelligence for Autonomous Robots: 3rd Edition)
Show Figures

Graphical abstract

30 pages, 11150 KB  
Article
Research on Behavioral Characteristics of the Elderly in Suburban Villages and Strategies for Age-Friendly Adaptation of Building Spaces Based on New Time–Geography
by Ying Chen, Ruibin Zhou, Chenshuo Wang and Rui Li
Buildings 2025, 15(18), 3361; https://doi.org/10.3390/buildings15183361 - 17 Sep 2025
Viewed by 425
Abstract
With the acceleration of global population aging, rural areas face particularly severe challenges due to youth outmigration and uneven resource distribution. Taking Jiashan Village in Wuhan as a case study, this research combines the planning–activity model of new time–geography with Maslow’s hierarchy of [...] Read more.
With the acceleration of global population aging, rural areas face particularly severe challenges due to youth outmigration and uneven resource distribution. Taking Jiashan Village in Wuhan as a case study, this research combines the planning–activity model of new time–geography with Maslow’s hierarchy of needs to investigate the behavioral and emotional characteristics of the elderly and their spatial adaptation requirements. Using GPS tracking of 30 participants, questionnaires (152 valid responses; 73.4% response rate), facial expression recognition, and the stated preference (SP) method, the study classified elderly lifestyles into four types: leisure-oriented, agricultural-labor-oriented, caregiving-oriented, and self-employment-oriented. The results show significant heterogeneity in spatial needs, social intensity, and emotional responses. A quantitative analysis using the multinomial logit model indicates that farmland optimization had the greatest positive utility (+1.5873), followed by the addition of new plazas and leisure facilities, both significantly enhancing satisfaction. A correlation analysis further revealed that prolonged use of farmland, parks, and walking paths was negatively correlated with satisfaction, underscoring the urgency of targeted renovations. On this basis, the study proposes a three-tiered demand framework of “local service–social interaction–personal value”, offering both theoretical support and practical strategies for multi-level and collaborative retrofitting of suburban rural public spaces, aiming to mitigate “aging depression” and promote urban–rural integration. Full article
Show Figures

Figure 1

16 pages, 3980 KB  
Article
Multi-AGV Scheduling and Path Planning Based on an Improved Ant Colony Algorithm
by Yang Xu, Wei Liu and Hao Yuan
Vehicles 2025, 7(3), 102; https://doi.org/10.3390/vehicles7030102 - 17 Sep 2025
Viewed by 421
Abstract
In current intelligent manufacturing workshops, multi-automated guided vehicle (AGV) systems often face issues such as uneven task allocation, path conflicts, and idle travel, which significantly affect scheduling efficiency. To address these problems, this paper proposes an improved ant colony algorithm that collaboratively optimizes [...] Read more.
In current intelligent manufacturing workshops, multi-automated guided vehicle (AGV) systems often face issues such as uneven task allocation, path conflicts, and idle travel, which significantly affect scheduling efficiency. To address these problems, this paper proposes an improved ant colony algorithm that collaboratively optimizes task allocation and path planning by integrating path costs and AGV task execution capabilities. The algorithm utilizes shortest-path planning results to optimize task allocation priorities, achieving synchronized optimization of task scheduling and path planning. Based on this, a multi-objective scheduling model is constructed with the goal of minimizing task completion time, idle travel distance, and total travel distance. The results show that the method effectively shortens task completion time and significantly improves scheduling efficiency, verifying its feasibility for application in intelligent manufacturing workshops. Full article
Show Figures

Figure 1

30 pages, 3853 KB  
Review
Electrification and Smartification for Modern Tractors: A Review of Algorithms and Techniques
by Chaoxian Zhang, Jun Li, Chuxi Li, Peihan Lin, Linlin Shi and Boyi Xiao
Agriculture 2025, 15(18), 1943; https://doi.org/10.3390/agriculture15181943 - 14 Sep 2025
Viewed by 450
Abstract
Agricultural tractors account for a substantial portion of greenhouse gas emissions in the farming sector, necessitating the development of sustainable machinery solutions. This study systematically reviews the latest advancements in electrification and smartification technologies for modern tractors, with a particular focus on algorithmic [...] Read more.
Agricultural tractors account for a substantial portion of greenhouse gas emissions in the farming sector, necessitating the development of sustainable machinery solutions. This study systematically reviews the latest advancements in electrification and smartification technologies for modern tractors, with a particular focus on algorithmic control strategies and their applications. Architecturally, the study provides a comparative analysis of four key configurations, pure electric, series hybrid, parallel hybrid, and series-parallel hybrid, detailing their respective advantages and challenges in energy efficiency and operational performance. From an algorithmic perspective, three primary methodologies—rule-based control strategies, optimization algorithms, and reinforcement learning—are examined for their applicability in energy management and control systems. The research further explores the integration of intelligent systems in unmanned farming scenarios, addressing critical challenges such as adaptive path planning in unstructured environments and multi-machine collaborative operations. A case study on battery-electric tractors demonstrates practical advancements in battery technology and energy management systems. Lifecycle cost analysis confirms the long-term economic viability of electrification, while outlining a forward-looking technological roadmap for sustainable and intelligent agricultural machinery. Full article
(This article belongs to the Special Issue New Energy-Powered Agricultural Machinery and Equipment)
Show Figures

Figure 1

29 pages, 2716 KB  
Article
Path Planning for Multi-UAV in a Complex Environment Based on Reinforcement-Learning-Driven Continuous Ant Colony Optimization
by Yongjin Wang, Jing Liu, Yuefeng Qian and Wenjie Yi
Drones 2025, 9(9), 638; https://doi.org/10.3390/drones9090638 - 12 Sep 2025
Viewed by 478
Abstract
Unmanned Aerial Vehicles (UAVs) are increasingly deployed in environmental monitoring, logistics, and precision agriculture. Efficient and reliable path planning is particularly critical for UAV systems operating in 3D continuous environments with multiple obstacles. However, single-UAV systems are often inadequate for such environments due [...] Read more.
Unmanned Aerial Vehicles (UAVs) are increasingly deployed in environmental monitoring, logistics, and precision agriculture. Efficient and reliable path planning is particularly critical for UAV systems operating in 3D continuous environments with multiple obstacles. However, single-UAV systems are often inadequate for such environments due to limited payload capacity, restricted mission coverage, and the inability to execute multiple tasks simultaneously. To overcome these limitations, multi-UAV collaborative systems have emerged as a promising solution, yet coordinating multiple UAVs in high-dimensional 3D continuous spaces with complex obstacles remains a significant challenge for path planning. To address these challenges, this paper proposes a reinforcement-learning-driven multi-strategy continuous ant colony optimization algorithm, QMSR-ACOR, which incorporates a Q-learning-based mechanism to dynamically select from eight strategy combinations, generated by pairing four constructor selection strategies with two walk strategies. Additionally, an elite waypoint repair mechanism is introduced to improve path feasibility and search efficiency. Experimental results demonstrate that QMSR-ACOR outperforms seven baseline algorithms, reducing average path cost by 10–60% and maintaining a success rate of at least 33% even in the most complex environments, whereas most baseline algorithms fail completely with a success rate of 0%. These results highlight the algorithm’s robustness, adaptability, and efficiency, making it a promising solution for complex multi-UAV path planning tasks in obstacle-rich 3D environments. Full article
(This article belongs to the Section Artificial Intelligence in Drones (AID))
Show Figures

Figure 1

24 pages, 4399 KB  
Article
Research on the Infrastructure Resilience System and Sustainable Development of Coastal Cities in the Bohai Sea, China: A Multi-Model and Spatiotemporal Heterogeneity Analysis Based on CAS
by Dan Zhu, Xinhang Li and Hongchang Li
Sustainability 2025, 17(18), 8232; https://doi.org/10.3390/su17188232 - 12 Sep 2025
Viewed by 396
Abstract
In recent years, urban risk incidents have become more common. Enhancing infrastructure resilience is not only crucial for adapting to climate change and addressing natural disasters but also serves as a key cornerstone for sustaining urban sustainable development. The research objects for this [...] Read more.
In recent years, urban risk incidents have become more common. Enhancing infrastructure resilience is not only crucial for adapting to climate change and addressing natural disasters but also serves as a key cornerstone for sustaining urban sustainable development. The research objects for this study are 17 coastal cities in the Bohai Rim region of China. Based on the Complex Adaptive System (CAS) theory, from the multi-dimensional perspective of urban sustainable development, a resilience evaluation index system covering five subsystems, namely transportation, water supply and drainage, energy, environment, and communication, is constructed. Employing panel data from 2013 to 2022, this study develops the entropy weight–TOPSIS model to quantify resilience levels, and applies the obstacle degree model, geographical detector, and Geographically and Temporally Weighted Regression (GTWR) model to analyze influencing factors. The main research results are as follows: (1) The regional infrastructure resilience shows a slow upward trend, but the insufficient synergy among subsystems restricts urban sustainable development; (2) The primary barrier is the drainage and water supply system, and the environmental and communication systems’ notable spatial heterogeneity will result in uneven regional sustainable development; (3) The influence of driving factors such as economic level gradually weakens over time. Based on the above research results, the following paths for resilience improvement and urban sustainable development are proposed: Improve the regional coordination and long-term governance mechanism; Focus on key shortcomings and implement a resilience enhancement plan for water supply and drainage systems; Implement dynamic and precise policy adjustments to stimulate multiple drivers; Enhance smart empowerment and build a digital twin-based collaborative management platform. Full article
Show Figures

Figure 1

36 pages, 1547 KB  
Review
UAV–Ground Vehicle Collaborative Delivery in Emergency Response: A Review of Key Technologies and Future Trends
by Yizhe Wang, Jie Li, Xiaoguang Yang and Qing Peng
Appl. Sci. 2025, 15(17), 9803; https://doi.org/10.3390/app15179803 - 6 Sep 2025
Viewed by 1330
Abstract
UAV delivery and ground transfer scheduling in emergency scenarios represent critical technological systems for enhancing disaster response capabilities and safeguarding lives and property. This study systematically reviews recent advances across eight core research domains: UAV emergency delivery systems, ground–air integrated transportation coordination, emergency [...] Read more.
UAV delivery and ground transfer scheduling in emergency scenarios represent critical technological systems for enhancing disaster response capabilities and safeguarding lives and property. This study systematically reviews recent advances across eight core research domains: UAV emergency delivery systems, ground–air integrated transportation coordination, emergency logistics optimization, UAV path planning and scheduling algorithms, collaborative optimization between ground vehicles and UAVs, emergency response decision support systems, low-altitude economy and urban air traffic management, and intelligent transportation system integration. Research findings indicate that UAV delivery technologies in emergency contexts have evolved from single-aircraft applications to intelligent multi-modal collaborative systems, demonstrating significant advantages in medical supply distribution, disaster relief, and search-and-rescue operations. Current technological development exhibits four major trends: hybrid optimization algorithms, multi-UAV cooperation, artificial intelligence enhancement, and real-time adaptation capabilities. However, critical challenges persist, including regulatory framework integration, adverse weather adaptability, cybersecurity protection, human–machine interface design, cost–benefit assessment, and standardization deficiencies. Future research should prioritize distributed decision architectures, robustness optimization, cross-domain collaboration mechanisms, emerging technology integration, and practical application validation. This comprehensive review provides systematic theoretical foundations and practical guidance for emergency management agencies in formulating technology development strategies, enterprises in investment planning, and research institutions in determining research priorities. Full article
(This article belongs to the Special Issue Artificial Intelligence in Drone and UAV)
Show Figures

Figure 1

24 pages, 2532 KB  
Article
Improved Particle Swarm Optimization Based on Fuzzy Controller Fusion of Multiple Strategies for Multi-Robot Path Planning
by Jialing Hu, Yanqi Zheng, Siwei Wang and Changjun Zhou
Big Data Cogn. Comput. 2025, 9(9), 229; https://doi.org/10.3390/bdcc9090229 - 2 Sep 2025
Viewed by 548
Abstract
Robots play a crucial role in experimental smart cities and are ubiquitous in daily life, especially in complex environments where multiple robots are often needed to solve problems collaboratively. Researchers have found that the swarm intelligence optimization algorithm has a better performance in [...] Read more.
Robots play a crucial role in experimental smart cities and are ubiquitous in daily life, especially in complex environments where multiple robots are often needed to solve problems collaboratively. Researchers have found that the swarm intelligence optimization algorithm has a better performance in planning robot paths, but the traditional swarm intelligence algorithm cannot be targeted to solve the robot path planning problem in difficult problem. Therefore, this paper aims to introduce a fuzzy controller, mutation factor, exponential noise, and other strategies on the basis of particle swarm optimization to solve this problem. By judging the moving speed of different particles at different periods of the algorithm, the individual learning factor and social learning factor of the particles are obtained by fuzzy controller, and using the leader particle and random particle, designing a new dynamic balance of mutation factor, with the iterative process of the adaptation value of continuous non-updating counter and continuous updating counter to control the proportion of the elite individuals and random individuals. Finally, using exponential noise to update the matrix of the population every 50 iterations is a way to balance the local search ability and global exploration ability of the algorithm. In order to test the proposed algorithm, the main method of this paper is simulated on simple scenarios, complex scenarios, and random maps consisting of different numbers of static obstacles and dynamic obstacles, and the algorithm proposed in this paper is compared with eight other algorithms. The average path deviation error of the planned paths is smaller; the average distance of untraveled target is shorter; the number of steps of the robot movements is smaller, and the path is shorter, which is superior to the other eight algorithms. This superiority in solving multi-robot cooperative path planning has good practicality in many fields such as logistics and distribution, industrial automation operation, and so on. Full article
Show Figures

Figure 1

Back to TopTop