Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = coiled-coil-helix-coiled-coil-helix domain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 752 KB  
Article
Effects of Selective Enzymatic Hydrolysis on Structural Properties and Gel Properties of Soybean Protein Isolate
by Zhijun Fan, Yue San, Saike Tang, Anhui Ren, Yuejiao Xing, Li Zheng and Zhongjiang Wang
Foods 2025, 14(22), 3892; https://doi.org/10.3390/foods14223892 - 14 Nov 2025
Viewed by 618
Abstract
Soybean protein isolate (SPI) gel has been demonstrated to exhibit suboptimal stability and a coarse texture. Selective enzymatic hydrolysis modification has been demonstrated to effectively enhance the functional properties and structural stability of the protein. The objective of this study was to modify [...] Read more.
Soybean protein isolate (SPI) gel has been demonstrated to exhibit suboptimal stability and a coarse texture. Selective enzymatic hydrolysis modification has been demonstrated to effectively enhance the functional properties and structural stability of the protein. The objective of this study was to modify SPI using alkaline protease and papain. The impact of selective enzymatic hydrolysis on SPI was examined through the analysis of hydrolysis degree (DH), particle size, and protein purity. A systematic exploration was conducted in order to investigate the structural and quality characteristics of SPI gel. Indicators such as secondary structure changes, texture characteristics, water-holding capacity (WHC), rheology, and microstructure were analyzed. The findings indicate that when the DH of the SPI solution is 1%, its particle size is reduced relative to that when DH is 0.5%. The SDS-PAGE results indicated that alkaline protease could hydrolyze most of the 7S and 11S components in SPI into shorter peptides, while papain retained more of the 7S and 11S components and generated peptides with larger molecular weights. Fourier-transform infrared (FT-IR) spectral analysis indicated that following the process of enzymatic modification, the contents of α-helix and β-sheet in the secondary structure of SPI increased, while the contents of β-turns and random coils decreased. In the context of gel performance, it has been demonstrated that papain-modified SPI, attributable to its elevated content of macromolecular peptides, manifests superior WHC, hardness, springiness, cohesiveness, chewiness, storage modulus (G), and microstructure in comparison to alkaline protease-modified gel. Concurrently, the gel performance of papain modified SPI is significantly superior to that of unmodified SPI gel. This research provides a significant theoretical foundation and practical reference for promoting the efficient application of SPI in the domain of food processing. Full article
Show Figures

Graphical abstract

15 pages, 6089 KB  
Article
Molecular Fingerprint of Cold Adaptation in Antarctic Icefish PepT1 (Chionodraco hamatus): A Comparative Molecular Dynamics Study
by Guillermo Carrasco-Faus, Valeria Márquez-Miranda and Ignacio Diaz-Franulic
Biomolecules 2025, 15(8), 1058; https://doi.org/10.3390/biom15081058 - 22 Jul 2025
Cited by 1 | Viewed by 622
Abstract
Cold environments challenge the structural and functional integrity of membrane proteins, requiring specialized adaptations to maintain activity under low thermal energy. Here, we investigate the molecular basis of cold tolerance in the peptide transporter PepT1 from the Antarctic icefish (Chionodraco hamatus, [...] Read more.
Cold environments challenge the structural and functional integrity of membrane proteins, requiring specialized adaptations to maintain activity under low thermal energy. Here, we investigate the molecular basis of cold tolerance in the peptide transporter PepT1 from the Antarctic icefish (Chionodraco hamatus, ChPepT1) using molecular dynamics simulations, binding free energy calculations (MM/GBSA), and dynamic network analysis. We compare ChPepT1 to its human ortholog (hPepT1), a non-cold-adapted variant, to reveal key features enabling psychrophilic function. Our simulations show that ChPepT1 displays enhanced global flexibility, particularly in domains adjacent to the substrate-binding site and the C-terminal domain (CTD). While hPepT1 loses substrate binding affinity as temperature increases, ChPepT1 maintains stable peptide interactions across a broad thermal range. This thermodynamic buffering results from temperature-sensitive rearrangement of hydrogen bond networks and more dynamic lipid interactions. Importantly, we identify a temperature-responsive segment (TRS, residues 660–670) within the proximal CTD that undergoes an α-helix to coil transition, modulating long-range coupling with transmembrane helices. Dynamic cross-correlation analyses further suggest that ChPepT1, unlike hPepT1, reorganizes its interdomain communication in response to temperature shifts. Our findings suggest that cold tolerance in ChPepT1 arises from a combination of structural flexibility, resilient substrate binding, and temperature-sensitive interdomain dynamics. These results provide new mechanistic insight into thermal adaptation in membrane transporters and offer a framework for engineering proteins with enhanced functionality in extreme environments. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

14 pages, 5400 KB  
Article
Therapeutic Potential of CHCHD2 in Ischemia–Reperfusion Injury: Mechanistic Insights into Nrf2-Dependent Antioxidant Defense in HK2 Cells
by Yajie Hao and Xiaoshuang Zhou
Int. J. Mol. Sci. 2025, 26(13), 6089; https://doi.org/10.3390/ijms26136089 - 25 Jun 2025
Viewed by 874
Abstract
Acute kidney injury (AKI) resulting from ischemia/reperfusion (I/R) poses a significant clinical challenge due to its high mortality and complex pathophysiology. Here, the protective actions of Coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) in carbonyl cyanide m-chlorophenyl hydrazone (CCCP)-induced adenosine triphosphate depletion and recovery (ATP-D/R) [...] Read more.
Acute kidney injury (AKI) resulting from ischemia/reperfusion (I/R) poses a significant clinical challenge due to its high mortality and complex pathophysiology. Here, the protective actions of Coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) in carbonyl cyanide m-chlorophenyl hydrazone (CCCP)-induced adenosine triphosphate depletion and recovery (ATP-D/R) injury in human kidney-2 (HK2) cells are examined. During ATP-D/R, expression levels of CHCHD2 were significantly reduced. The overexpression of CHCHD2 substantially reduced the levels of ROS, lipid peroxidation, apoptosis, kidney injury molecule-1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL), whereas the knockdown of CHCHD2 exacerbated cellular injury. Mechanistic studies further demonstrated that overexpression of CHCHD2 restored Nrf2 expression under ATP-D/R conditions, facilitated its nuclear translocation, and upregulated the downstream antioxidant enzyme HO-1. In contrast, the knockdown of Nrf2 reduced the cytoprotective actions of CHCHD2. These findings indicate that CHCHD2 reduces cellular damage by enhancing antioxidant defenses and reducing apoptosis through activating the Nrf2 axis, underscoring its potential as a therapeutic target for AKI. Full article
(This article belongs to the Special Issue Focus on Antioxidants and Human Diseases)
Show Figures

Figure 1

16 pages, 8287 KB  
Article
cDNA Cloning, Bioinformatics, and Expression Analysis of ApsANS in Acer pseudosieboldianum
by Mingrui Li, Zhuo Weng, Zihan Gong, Xiaoyu Li, Jiayi Ye, Yufu Gao and Liping Rong
Int. J. Mol. Sci. 2025, 26(5), 1865; https://doi.org/10.3390/ijms26051865 - 21 Feb 2025
Viewed by 992
Abstract
Anthocyanin synthetase (ANS), a key enzyme in the final step of the anthocyanin synthesis pathway, catalyzes the conversion of leucoanthocyanidins to anthocyanins. In this study, an ANS structural protein (TRINITY_DN18024_c0_g1) was found to be associated with anthocyanin accumulation in Acer pseudosieboldianum leaves, named [...] Read more.
Anthocyanin synthetase (ANS), a key enzyme in the final step of the anthocyanin synthesis pathway, catalyzes the conversion of leucoanthocyanidins to anthocyanins. In this study, an ANS structural protein (TRINITY_DN18024_c0_g1) was found to be associated with anthocyanin accumulation in Acer pseudosieboldianum leaves, named ApsANS. Real-time quantitative fluorescence PCR analysis revealed that the expression of ApsANS was significantly higher in red-leaved (variant) than green-leaved (wild-type) strains, which was consistent with the transcriptome data. The UPLC results showed that the cyanidin metabolites may be the key substance influencing the final color formation of Acer pseudosieboldianum. The ApsANS gene was cloned and analyzed through bioinformatics analysis. ApsANS has a total length of 1371 bp, and it encodes 360 amino acids. Analysis of the structural domain of the ApsANS protein revealed that ApsANS contains a PcbC functional domain. Protein secondary structure predictions indicate that α-helix, irregularly coiled, and extended chains are the major building blocks. Subcellular localization predicted that ApsANS might be localized in the nucleus. The phylogenetic tree revealed that ApsANS is relatively closely related to ApANS in Acer palmatum. The prediction of miRNA showed that the ApsANS gene is regulated by miR6200. This study provides a theoretical reference for further analyzing the regulatory mechanism of leaf color formation in Acer pseudosieboldianum. Full article
Show Figures

Figure 1

13 pages, 2902 KB  
Article
Sodium-Dependent Conformational Change in Flagellar Stator Protein MotS from Bacillus subtilis
by Norihiro Takekawa, Ayaka Yamaguchi, Koki Nishiuchi, Maria Uehori, Miki Kinoshita, Tohru Minamino and Katsumi Imada
Biomolecules 2025, 15(2), 302; https://doi.org/10.3390/biom15020302 - 18 Feb 2025
Viewed by 1104
Abstract
The bacterial flagellar motor consists of a rotor and stator units and is driven by ion flow through the stator. The activation of the ion flow is coupled with the anchoring of the stator units to the peptidoglycan layer by the stator B-subunit [...] Read more.
The bacterial flagellar motor consists of a rotor and stator units and is driven by ion flow through the stator. The activation of the ion flow is coupled with the anchoring of the stator units to the peptidoglycan layer by the stator B-subunit around the rotor. Gram-negative bacteria, such as Salmonella and Vibrio, change the conformation of the N-terminal helix of the periplasmic domain of the B-subunit to anchor the stator units. However, a recent high-speed atomic force microscopic study has suggested that the periplasmic domain of MotS, the stator B-subunit of the sodium (Na+)-driven stator of Bacillus subtilis, a gram-positive bacterium, unfolds at low external Na+ concentrations and folds at high Na+ concentrations to anchor the stator units. Here, we report the crystal structures of MotS68–242, a periplasmic fragment of MotS, from B. subtilis at high and low Na+ concentrations. We also performed far-UV CD spectroscopic analysis of the wild-type MotS68–242 and MotS78–242 proteins and mutant variants of MotS68–242 under high and low Na+ concentrations and found that the N-terminal disordered region of MotS68–242 shows a Na+-dependent coil–helix transition. We propose a mechanism of the Na+-dependent structural transition of Bs-MotS to anchor the stator units. Full article
Show Figures

Figure 1

16 pages, 11100 KB  
Article
Evolutionary Characterization of tubulin Gene Family in the Desert Biomass Willow (Salix psammophila) and Expression of the β-tubulin Gene SpsTUB10 during Different Stresses
by Yujiao He, Lijiao Fan, Ruiping Wang, Shengli Han, Guirong Sun, Fengqiang Yu, Qi Yang, Haifeng Yang and Guosheng Zhang
Forests 2024, 15(4), 696; https://doi.org/10.3390/f15040696 - 13 Apr 2024
Cited by 1 | Viewed by 1804
Abstract
Microtubules, polymerized from α-tubulin (TUA) and β-tubulin (TUB) monomers, play a pivotal role in shaping plant morphogenesis according to developmental and environmental cues. Salix psammophila C. Wang & C. Y. Yang is an important shrub plant in sand-fixing afforestation in arid regions, with [...] Read more.
Microtubules, polymerized from α-tubulin (TUA) and β-tubulin (TUB) monomers, play a pivotal role in shaping plant morphogenesis according to developmental and environmental cues. Salix psammophila C. Wang & C. Y. Yang is an important shrub plant in sand-fixing afforestation in arid regions, with three significantly distinct plant types shaped under various environments, namely, upright, intermediate, and scattered types. However, how tubulin genes respond to the developmental and environmental signs in S. psammophila has been far less studied. Here, based on RNA-seq, Sanger sequencing, and real-time PCR (RT-PCR) data, we analyzed the phylogeny of tubulins and their expression profiles in S. psammophila among the three plant types. Furthermore, we analyzed the genetic structure and expression pattern of SpsTUB10 in S. psammophila under various abiotic stress treatments. In total, we identified 26 SpsTubulin genes in S. psammophila. The homologous alignment and phylogenetic analysis revealed that these SpsTubulin genes can be classified into two groups, corresponding to the TUA and TUB genes. The expression profiles of these SpsTubulin genes in various organs showed that most SpsTubulin genes were mainly expressed in the root. SpsTUB10 is a member of the TUB IIa group, consisting of two intros and three exons. The SpsTUB10 protein contains a typical GTPase domain and a C-terminal domain, with α-helix and random coil dominant in the secondary and tertiary structures. The RT-PCR results of SpsTUB10 showed an extremely significant difference in expression levels among the root and stem-developing organs between the upright and scattered types, and the transcript level of SpsTUB10 had a significantly negative correlation with the crown-height ratio. Under different treatments, we found that cold, osmotic stress, and short daylight could significantly increase SpsTUB10 expression levels compared to those in the controls, thereby supporting the positive role of SpsTUB10 in stress-induced responses. These results will provide evidence for the SpsTubulin genes’ response to the developmental and environmental cues in S. psammophila. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

19 pages, 2741 KB  
Article
Conformational Space of the Translocation Domain of Botulinum Toxin: Atomistic Modeling and Mesoscopic Description of the Coiled-Coil Helix Bundle
by Alexandre Delort, Grazia Cottone, Thérèse E. Malliavin and Martin Michael Müller
Int. J. Mol. Sci. 2024, 25(5), 2481; https://doi.org/10.3390/ijms25052481 - 20 Feb 2024
Cited by 3 | Viewed by 1719
Abstract
The toxicity of botulinum multi-domain neurotoxins (BoNTs) arises from a sequence of molecular events, in which the translocation of the catalytic domain through the membrane of a neurotransmitter vesicle plays a key role. A recent structural study of the translocation domain of BoNTs [...] Read more.
The toxicity of botulinum multi-domain neurotoxins (BoNTs) arises from a sequence of molecular events, in which the translocation of the catalytic domain through the membrane of a neurotransmitter vesicle plays a key role. A recent structural study of the translocation domain of BoNTs suggests that the interaction with the membrane is driven by the transition of an α helical switch towards a β hairpin. Atomistic simulations in conjunction with the mesoscopic Twister model are used to investigate the consequences of this proposition for the toxin–membrane interaction. The conformational mobilities of the domain, as well as the effect of the membrane, implicitly examined by comparing water and water–ethanol solvents, lead to the conclusion that the transition of the switch modifies the internal dynamics and the effect of membrane hydrophobicity on the whole protein. The central two α helices, helix 1 and helix 2, forming two coiled-coil motifs, are analyzed using the Twister model, in which the initial deformation of the membrane by the protein is caused by the presence of local torques arising from asymmetric positions of hydrophobic residues. Different torque distributions are observed depending on the switch conformations and permit an origin for the mechanism opening the membrane to be proposed. Full article
Show Figures

Graphical abstract

18 pages, 3602 KB  
Article
Disruption of Mitophagy Flux through the PARL-PINK1 Pathway by CHCHD10 Mutations or CHCHD10 Depletion
by Tian Liu, Liam Wetzel, Zexi Zhu, Pavan Kumaraguru, Viraj Gorthi, Yan Yan, Mohammed Zaheen Bukhari, Aizara Ermekbaeva, Hanna Jeon, Teresa R. Kee, Jung-A Alexa Woo and David E. Kang
Cells 2023, 12(24), 2781; https://doi.org/10.3390/cells12242781 - 7 Dec 2023
Cited by 9 | Viewed by 3023
Abstract
Coiled-coil-helix-coiled-coil-helix domain-containing 10 (CHCHD10) is a nuclear-encoded mitochondrial protein which is primarily mutated in the spectrum of familial and sporadic amyotrophic lateral sclerosis (ALS)–frontotemporal dementia (FTD). Endogenous CHCHD10 levels decline in the brains of ALS–FTD patients, and the CHCHD10S59L mutation in Drosophila [...] Read more.
Coiled-coil-helix-coiled-coil-helix domain-containing 10 (CHCHD10) is a nuclear-encoded mitochondrial protein which is primarily mutated in the spectrum of familial and sporadic amyotrophic lateral sclerosis (ALS)–frontotemporal dementia (FTD). Endogenous CHCHD10 levels decline in the brains of ALS–FTD patients, and the CHCHD10S59L mutation in Drosophila induces dominant toxicity together with PTEN-induced kinase 1 (PINK1), a protein critical for the induction of mitophagy. However, whether and how CHCHD10 variants regulate mitophagy flux in the mammalian brain is unknown. Here, we demonstrate through in vivo and in vitro models, as well as human FTD brain tissue, that ALS/FTD-linked CHCHD10 mutations (R15L and S59L) impair mitophagy flux and mitochondrial Parkin recruitment, whereas wild-type CHCHD10 (CHCHD10WT) normally enhances these measures. Specifically, we show that CHCHD10R15L and CHCHD10S59L mutations reduce PINK1 levels by increasing PARL activity, whereas CHCHD10WT produces the opposite results through its stronger interaction with PARL, suppressing its activity. Importantly, we also demonstrate that FTD brains with TAR DNA-binding protein-43 (TDP-43) pathology demonstrate disruption of the PARL–PINK1 pathway and that experimentally impairing mitophagy promotes TDP-43 aggregation. Thus, we provide herein new insights into the regulation of mitophagy and TDP-43 aggregation in the mammalian brain through the CHCHD10–PARL–PINK1 pathway. Full article
(This article belongs to the Special Issue Mitochondria and Other Organelles in Neurodegenerative Diseases)
Show Figures

Graphical abstract

14 pages, 5135 KB  
Article
Ag4CL3 Related to Lignin Synthesis in Apium graveolens L.
by Xiu-Lai Zhong, Shun-Hua Zhu, Qian Zhao, Qing Luo, Kun Wang, Zhi-Feng Chen and Guo-Fei Tan
Agronomy 2023, 13(8), 2025; https://doi.org/10.3390/agronomy13082025 - 30 Jul 2023
Cited by 2 | Viewed by 2080
Abstract
4-Coumarate: coenzyme A ligase (4CL; EC 6.2.1.12) is an important enzyme in the phenylpropanoid metabolic pathway that controls the biosynthesis of lignin and flavonoids. In this study, to identify the function of the Ag4CL3 gene of celery, the Ag4CL3 gene was cloned from [...] Read more.
4-Coumarate: coenzyme A ligase (4CL; EC 6.2.1.12) is an important enzyme in the phenylpropanoid metabolic pathway that controls the biosynthesis of lignin and flavonoids. In this study, to identify the function of the Ag4CL3 gene of celery, the Ag4CL3 gene was cloned from celery cv. “Nanxuan Liuhe Ziqin”. Sequence analysis results showed that the Ag4CL3 gene contained an open reading frame (ORF) with a length of 1688 bp, and 555 amino acids were encoded. The Ag4CL3 protein was highly conserved among different plant species. Phylogenetic analysis demonstrated that the 4CL proteins from celery and carrot belonged to the same clade. The Ag4CL3 protein was mainly composed of 31.89% α-helixes, 18.02% extended strands, 6.67% β-turns, and 43.42% random coils, and the signal peptide was unfound. A total of 62 phosphorylation sites and a class-I superfamily of adenylate-forming domains were found. As the growth time increased, the plant height and stem thickness also increased, and the petiole lignin content increased and became lignified gradually. The relative expression levels of the Ag4CL3 gene in “Nanxuan Liuhe Ziqin” petioles were higher than those in other tissues, with the highest level occurring 70 d after sowing. The lignin contents in the transgenic Arabidopsis thaliana lines hosting the Ag4CL3 gene were higher than those in the WT. In this study, the overexpression of Ag4CL3 led to the significant upregulation of lignin biosynthesis gene expression in transgenic A. thaliana plants, except for AtPAL, AtCCR, and AtLAC. This study speculates that Ag4CL3 genes are related to lignin synthesis in A. graveolens. Full article
Show Figures

Figure 1

13 pages, 8204 KB  
Communication
Motion-Induced Noise Detection of Electrode-Pair Towed Antennas Using Helix Coil Sensors
by Xu Xie, Hao Zuo, Shize Wei and Qin Wu
Electronics 2023, 12(7), 1677; https://doi.org/10.3390/electronics12071677 - 2 Apr 2023
Cited by 3 | Viewed by 2027
Abstract
Electrode-pair towed antennas are widely utilized for marine electromagnetic detection, underwater communication, and other purposes. However, the motion-induced noise created by antenna vibrations due to environmental turbulence affects extremely low frequency and super low frequency (ELF/SLF) communications. In this article, we presented a [...] Read more.
Electrode-pair towed antennas are widely utilized for marine electromagnetic detection, underwater communication, and other purposes. However, the motion-induced noise created by antenna vibrations due to environmental turbulence affects extremely low frequency and super low frequency (ELF/SLF) communications. In this article, we presented a method for detecting the motion-induced noise of electrode-pair towed antennas using helix coil sensors. The equivalent resistance, inductance, capacitance, and conductance (RLCG) transmission model and parameters were derived based on the mirror method of the twisted structure with a shielding layer inside. A water-flow cycling experimental platform was constructed to evaluate two types of antenna sections. Electrode-pair, accelerators, and helix coils sensors signals were sampled and analyzed in time and frequency domain. The comparison results demonstrated that the helix coil sensors achieved a high correlation with the electrode-pair towed antenna in various vibration speeds ranging from 0.7 to 0.9. Full article
(This article belongs to the Special Issue Advanced Digital Signal Processing for Future Digital Communications)
Show Figures

Figure 1

23 pages, 11300 KB  
Article
Ca2+-Dependent and -Independent Calmodulin Binding to the Cytoplasmic Loop of Gap Junction Connexins
by Oanh Tran, Silke Kerruth, Catherine Coates, Hansween Kaur, Camillo Peracchia, Tom Carter and Katalin Török
Int. J. Mol. Sci. 2023, 24(4), 4153; https://doi.org/10.3390/ijms24044153 - 19 Feb 2023
Cited by 5 | Viewed by 2893
Abstract
Ca2+/calmodulin (Ca2+/CaM) interaction with connexins (Cx) is well-established; however, the mechanistic basis of regulation of gap junction function by Ca2+/CaM is not fully understood. Ca2+/CaM is predicted to bind to a domain in the C-terminal [...] Read more.
Ca2+/calmodulin (Ca2+/CaM) interaction with connexins (Cx) is well-established; however, the mechanistic basis of regulation of gap junction function by Ca2+/CaM is not fully understood. Ca2+/CaM is predicted to bind to a domain in the C-terminal portion of the intracellular loop (CL2) in the vast majority of Cx isoforms and for a number of Cx-s this prediction has proved correct. In this study, we investigate and characterise both Ca2+/CaM and apo-CaM binding to selected representatives of each of the α, β and γ connexin family to develop a better mechanistic understanding of CaM effects on gap junction function. The affinity and kinetics Ca2+/CaM and apo-CaM interactions of CL2 peptides of β-Cx32, γ-Cx35, α-Cx43, α-Cx45 and α-Cx57 were investigated. All five Cx CL2 peptides were found to have high affinity for Ca2+/CaM with dissociation constants (Kd(+Ca)) from 20 to 150 nM. The limiting rate of binding and the rates of dissociation covered a broad range. In addition, we obtained evidence for high affinity Ca2+-independent interaction of all five peptides with CaM, consistent with CaM remaining anchored to gap junctions in resting cells. However, for the α-Cx45 and α-Cx57 CL2 peptides, Ca2+-dependent association at resting [Ca2+] of 50–100 nM is indicated in these complexes as one of the CaM Ca2+ binding sites displays high affinity with Kd of 70 and 30 nM for Ca2+, respectively. Furthermore, complex conformational changes were observed in peptide-apo-CaM complexes with the structure of CaM compacted or stretched by the peptide in a concentration dependent manner suggesting that the CL2 domain may undergo helix-to-coil transition and/or forms bundles, which may be relevant in the hexameric gap junction. We demonstrate inhibition of gap junction permeability by Ca2+/CaM in a dose dependent manner, further cementing Ca2+/CaM as a regulator of gap junction function. The motion of a stretched CaM–CL2 complex compacting upon Ca2+ binding may bring about the Ca2+/CaM block of the gap junction pore by a push and pull action on the CL2 C-terminal hydrophobic residues of transmembrane domain 3 (TM3) in and out of the membrane. Full article
(This article belongs to the Special Issue Gap Junction Channels and Hemichannels in Health and Disease)
Show Figures

Figure 1

22 pages, 3442 KB  
Article
Interaction of Positively Charged Oligopeptides with Blood Plasma Proteins
by Aleksandra Kotynia, Aleksandra Marciniak, Wojciech Kamysz, Damian Neubauer and Edward Krzyżak
Int. J. Mol. Sci. 2023, 24(3), 2836; https://doi.org/10.3390/ijms24032836 - 2 Feb 2023
Cited by 10 | Viewed by 3398
Abstract
In this project, we combine two areas of research, experimental characterization and molecular docking studies of the interaction of positively charged oligopeptides with crucial blood plasma proteins. The investigated peptides are rich in NH2 groups of amino acid side chains from Dap, [...] Read more.
In this project, we combine two areas of research, experimental characterization and molecular docking studies of the interaction of positively charged oligopeptides with crucial blood plasma proteins. The investigated peptides are rich in NH2 groups of amino acid side chains from Dap, Orn, Lys, and Arg residues, which are relevant in protein interaction. The peptides are 9- and 11-mer with the following sequences: (Lys-Dab-Dab-Gly-Orn-Pro-His-Lys-Arg-Lys-Dbt), (Lys-Dab-Ala-Gly-Orn-Pro-His-Lys-Arg), and (Lys-Dab-Dab-Gly-Orn-Pro-Phe(2-F)-Lys-Arg). The net charge of the compound strongly depends on the pH environment and it is an important aspect of protein binding. The studied oligopeptides exhibit therapeutic properties: anti-inflammatory activity and the capacity to diminish reactive oxygen species (ROS). Therefore, the mechanism of potential binding with blood plasma components is the next challenge. The binding interaction has been investigated under pseudo-physiological conditions with the main blood plasma proteins: albumin (BSA), α1-acid glycoprotein (AAG), and γ-globulin fraction (GGF). The biomolecular quenching constant (kq) and binding constant (Kb) were obtained by fluorescence spectroscopy at various temperatures. Simultaneously, the changes in the secondary structure of proteins were monitored by circular dichroism (CD) and infrared spectroscopy (IR) by quantity analysis. Moreover, molecular docking studies were conducted to estimate the binding affinity, the binding domain, and the chemical nature of these interactions. The results show that the investigated oligopeptides could be mainly transported by albumin, and the binding domain I is the most favored cavity. The BSA and GGF are able to form stable complexes with the studied compounds as opposed to AAG. The binding reactions are spontaneous processes. The highest binding constants were determined for Lys-Dab-Dab-Gly-Orn-Pro-His-Lys-Arg-Lys-Dbt peptide, in which the values of the binding constants Kb to BSA and GGF were 10.1 × 104 dm3mol−1 and 3.39 × 103 dm3mol−1, respectively. The positively charged surface of peptides participated in salt bridge interaction with proteins; however, hydrogen bonds were also formed. The secondary structure of BSA and GGF after contact with peptides was changed. A reduction in the α-helix structure was observed with an increase in the β-sheet and β-turn and random coil structures. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

14 pages, 3511 KB  
Article
Insights into Non-Proteolytic Inhibitory Mechanisms of Polymorphic Early-Stage Amyloid β Oligomers by Insulin Degrading Enzyme
by Karina Abramov-Harpaz and Yifat Miller
Biomolecules 2022, 12(12), 1886; https://doi.org/10.3390/biom12121886 - 16 Dec 2022
Cited by 4 | Viewed by 2373
Abstract
Insulin degrading enzyme (IDE) has been detected in the cerebrospinal fluid media and plays a role in encapsulating and degrading the amyloid β (Aβ) monomer, thus regulating the levels of Aβ monomers. The current work illustrates a first study by which IDE encapsulates [...] Read more.
Insulin degrading enzyme (IDE) has been detected in the cerebrospinal fluid media and plays a role in encapsulating and degrading the amyloid β (Aβ) monomer, thus regulating the levels of Aβ monomers. The current work illustrates a first study by which IDE encapsulates polymorphic early-stage Aβ oligomers. The main goal of this study was to investigate the molecular mechanisms of IDE activity on the encapsulated early-stage Aβ dimers: fibril-like and random coil/α-helix dimers. Our work led to several findings. First, when the fibril-like Aβ dimer interacts with IDE-C domain, IDE does not impede the contact between the monomers, but plays a role as a ‘dead-end’ chaperone protein. Second, when the fibril-like Aβ dimer interacts with the IDE-N domain, IDE successfully impedes the contacts between monomers. Third, the inhibitory activity of IDE on random coil/α-helix dimers depends on the stability of the dimer. IDE could impede the contacts between monomers in relatively unstable random coil/α-helix dimers, but gets hard to impede in stable dimers. However, IDE encapsulates stable dimers and could serve as a ‘dead-end’ chaperone. Our results examine the molecular interactions between IDE and the dimers, and between the monomers within the dimers. Hence, this study provides insights into the inhibition mechanisms of the primary nucleation of Aβ aggregation and the basic knowledge for rational design to inhibit Aβ aggregation. Full article
Show Figures

Figure 1

12 pages, 5533 KB  
Article
Insights from the Structure of an Active Form of Bacillus thuringiensis Cry5B
by Jiaxin Li, Lin Wang, Masayo Kotaka, Marianne M. Lee and Michael K. Chan
Toxins 2022, 14(12), 823; https://doi.org/10.3390/toxins14120823 - 23 Nov 2022
Cited by 6 | Viewed by 3136
Abstract
The crystal protein Cry5B, a pore-forming protein produced by the soil bacterium Bacillus thuringiensis, has been demonstrated to have excellent anthelmintic activity. While a previous structure of the three-domain core region of Cry5B(112–698) had been reported, this structure lacked a key N-terminal [...] Read more.
The crystal protein Cry5B, a pore-forming protein produced by the soil bacterium Bacillus thuringiensis, has been demonstrated to have excellent anthelmintic activity. While a previous structure of the three-domain core region of Cry5B(112–698) had been reported, this structure lacked a key N-terminal extension critical to function. Here we report the structure of Cry5B(27–698) containing this N-terminal extension. This new structure adopts a distinct quaternary structure compared to the previous Cry5B(112–698) structure, and also exhibits a change in the conformation of residues 112–140 involved in linking the N-terminal extension to the three-domain core by forming a random coil and an extended α-helix. A role for the N-terminal extension is suggested based on a computational model of the tetramer with the conformation of residues 112–140 in its alternate α-helix conformation. Finally, based on the Cry5B(27–698) structure, site-directed mutagenesis studies were performed on Tyr495, which revealed that having an aromatic group or bulky group at this residue 495 is important for Cry5B toxicity. Full article
(This article belongs to the Special Issue Bacillus thuringiensis: A Broader View of Its Biocidal Activity)
Show Figures

Figure 1

25 pages, 4657 KB  
Article
The Flexible, Extended Coil of the PDZ-Binding Motif of the Three Deadly Human Coronavirus E Proteins Plays a Role in Pathogenicity
by Dewald Schoeman, Ruben Cloete and Burtram C. Fielding
Viruses 2022, 14(8), 1707; https://doi.org/10.3390/v14081707 - 2 Aug 2022
Cited by 8 | Viewed by 4734
Abstract
The less virulent human (h) coronaviruses (CoVs) 229E, NL63, OC43, and HKU1 cause mild, self-limiting respiratory tract infections, while the more virulent SARS-CoV-1, MERS-CoV, and SARS-CoV-2 have caused severe outbreaks. The CoV envelope (E) protein, an important contributor to the pathogenesis of severe [...] Read more.
The less virulent human (h) coronaviruses (CoVs) 229E, NL63, OC43, and HKU1 cause mild, self-limiting respiratory tract infections, while the more virulent SARS-CoV-1, MERS-CoV, and SARS-CoV-2 have caused severe outbreaks. The CoV envelope (E) protein, an important contributor to the pathogenesis of severe hCoV infections, may provide insight into this disparate severity of the disease. We, therefore, generated full-length E protein models for SARS-CoV-1 and -2, MERS-CoV, HCoV-229E, and HCoV-NL63 and docked C-terminal peptides of each model to the PDZ domain of the human PALS1 protein. The PDZ-binding motif (PBM) of the SARS-CoV-1 and -2 and MERS-CoV models adopted a more flexible, extended coil, while the HCoV-229E and HCoV-NL63 models adopted a less flexible alpha helix. All the E peptides docked to PALS1 occupied the same binding site and the more virulent hCoV E peptides generally interacted more stably with PALS1 than the less virulent ones. We hypothesize that the increased flexibility of the PBM in the more virulent hCoVs facilitates more stable binding to various host proteins, thereby contributing to more severe disease. This is the first paper to model full-length 3D structures for both the more virulent and less virulent hCoV E proteins, providing novel insights for possible drug and/or vaccine development. Full article
(This article belongs to the Special Issue Bioinformatics Research on SARS-CoV-2)
Show Figures

Figure 1

Back to TopTop