Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (973)

Search Parameters:
Keywords = cognitive information systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 798 KiB  
Article
Aligning with SDGs in Construction: The Foreman as a Key Lever for Reducing Worker Risk-Taking
by Jing Feng, Kongling Liu and Qinge Wang
Sustainability 2025, 17(15), 7000; https://doi.org/10.3390/su17157000 (registering DOI) - 1 Aug 2025
Abstract
Improving occupational health and safety (OHS) in the construction industry can contribute to the advancement of the Sustainable Development Goals (SDGs), particularly Goals 3 (Good Health and Well-being) and 8 (Decent Work and Economic Growth). Yet, workers’ risk-taking behaviors (RTBs) remain a persistent [...] Read more.
Improving occupational health and safety (OHS) in the construction industry can contribute to the advancement of the Sustainable Development Goals (SDGs), particularly Goals 3 (Good Health and Well-being) and 8 (Decent Work and Economic Growth). Yet, workers’ risk-taking behaviors (RTBs) remain a persistent challenge. Drawing on Social Cognitive Theory and Social Information Processing Theory, this study develops and tests a social influence model to examine how foremen’s safety attitudes (SAs) shape workers’ RTBs. Drawing on survey data from 301 construction workers in China, structural equation modeling reveals that foremen’s SAs significantly and negatively predict workers’ RTBs. However, the three dimensions of SAs—cognitive, affective, and behavioral—exert their influence through different pathways. Risk perception (RP) plays a key mediating role, particularly for the cognitive and behavioral dimensions. Furthermore, interpersonal trust (IPT) functions as a significant moderator in some of these relationships. By identifying the micro-social pathways that link foremen’s attitudes to workers’ safety behaviors, this study offers a testable theoretical framework for implementing the Sustainable Development Goals (particularly Goals 3 and 8) at the frontline workplace level. The findings provide empirical support for organizations to move beyond rule-based management and instead build more resilient OHS governance systems by systematically cultivating the multidimensional attitudes of frontline leaders. Full article
Show Figures

Figure 1

8 pages, 347 KiB  
Article
Localizing Synergies of Hidden Factors in Complex Systems: Resting Brain Networks and HeLa GeneExpression Profile as Case Studies
by Marlis Ontivero-Ortega, Gorana Mijatovic, Luca Faes, Fernando E. Rosas, Daniele Marinazzo and Sebastiano Stramaglia
Entropy 2025, 27(8), 820; https://doi.org/10.3390/e27080820 (registering DOI) - 1 Aug 2025
Abstract
Factor analysis is a well-known statistical method to describe the variability of observed variables in terms of a smaller number of unobserved latent variables called factors. Even though latent factors are conceptually independent of each other, their influence on the observed variables is [...] Read more.
Factor analysis is a well-known statistical method to describe the variability of observed variables in terms of a smaller number of unobserved latent variables called factors. Even though latent factors are conceptually independent of each other, their influence on the observed variables is often joint and synergistic. We propose to quantify the synergy of the joint influence of factors on the observed variables using O-information, a recently introduced metric to assess high-order dependencies in complex systems; in the proposed framework, latent factors and observed variables are jointly analyzed in terms of their joint informational character. Two case studies are reported: analyzing resting fMRI data, we find that DMN and FP networks show the highest synergy, consistent with their crucial role in higher cognitive functions; concerning HeLa cells, we find that the most synergistic gene is STK-12 (AURKB), suggesting that this gene is involved in controlling the HeLa cell cycle. We believe that our approach, representing a bridge between factor analysis and the field of high-order interactions, will find wide application across several domains. Full article
(This article belongs to the Special Issue Entropy in Biomedical Engineering, 3rd Edition)
Show Figures

Figure 1

27 pages, 471 KiB  
Article
Multi-Granulation Covering Rough Intuitionistic Fuzzy Sets Based on Maximal Description
by Xiao-Meng Si and Zhan-Ao Xue
Symmetry 2025, 17(8), 1217; https://doi.org/10.3390/sym17081217 (registering DOI) - 1 Aug 2025
Abstract
Rough sets and fuzzy sets are two complementary approaches for modeling uncertainty and imprecision. Their integration enables a more comprehensive representation of complex, uncertain systems. However, existing rough fuzzy sets models lack the expressive power to fully capture the interactions among structural uncertainty, [...] Read more.
Rough sets and fuzzy sets are two complementary approaches for modeling uncertainty and imprecision. Their integration enables a more comprehensive representation of complex, uncertain systems. However, existing rough fuzzy sets models lack the expressive power to fully capture the interactions among structural uncertainty, cognitive hesitation, and multi-level granular information. To address these limitations, we achieve the following: (1) We propose intuitionistic fuzzy covering rough membership and non-membership degrees based on maximal description and construct a new single-granulation model that more effectively captures both the structural relationships among elements and the semantics of fuzzy information. (2) We further extend the model to a multi-granulation framework by defining optimistic and pessimistic approximation operators and analyzing their properties. Additionally, we propose a neutral multi-granulation covering rough intuitionistic fuzzy sets based on aggregated membership and non-membership degrees. Compared with single-granulation models, the multi-granulation models integrate multiple levels of information, allowing for more fine-grained and robust representations of uncertainty. Finally, a case study on real estate investment was conducted to validate the effectiveness of the proposed models. The results show that our models can more precisely represent uncertainty and granularity in complex data, providing a flexible tool for knowledge representation in decision-making scenarios. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

36 pages, 2671 KiB  
Article
DIKWP-Driven Artificial Consciousness for IoT-Enabled Smart Healthcare Systems
by Yucong Duan and Zhendong Guo
Appl. Sci. 2025, 15(15), 8508; https://doi.org/10.3390/app15158508 (registering DOI) - 31 Jul 2025
Abstract
This study presents a DIKWP-driven artificial consciousness framework for IoT-enabled smart healthcare, integrating a Data–Information–Knowledge–Wisdom–Purpose (DIKWP) cognitive architecture with a software-defined IoT infrastructure. The proposed system deploys DIKWP agents at edge and cloud nodes to transform raw sensor data into high-level knowledge and [...] Read more.
This study presents a DIKWP-driven artificial consciousness framework for IoT-enabled smart healthcare, integrating a Data–Information–Knowledge–Wisdom–Purpose (DIKWP) cognitive architecture with a software-defined IoT infrastructure. The proposed system deploys DIKWP agents at edge and cloud nodes to transform raw sensor data into high-level knowledge and purpose-driven actions. This is achieved through a structured DIKWP pipeline—from data acquisition and information processing to knowledge extraction, wisdom inference, and purpose-driven decision-making—that enables semantic reasoning, adaptive goal-driven responses, and privacy-preserving decision-making in healthcare environments. The architecture integrates wearable sensors, edge computing nodes, and cloud services to enable dynamic task orchestration and secure data fusion. For evaluation, a smart healthcare scenario for early anomaly detection (e.g., arrhythmia and fever) was implemented using wearable devices with coordinated edge–cloud analytics. Simulated experiments on synthetic vital sign datasets achieved approximately 98% anomaly detection accuracy and up to 90% reduction in communication overhead compared to cloud-centric solutions. Results also demonstrate enhanced explainability via traceable decisions across DIKWP layers and robust performance under intermittent connectivity. These findings indicate that the DIKWP-driven approach can significantly advance IoT-based healthcare by providing secure, explainable, and adaptive services aligned with clinical objectives and patient-centric care. Full article
(This article belongs to the Special Issue IoT in Smart Cities and Homes, 2nd Edition)
Show Figures

Figure 1

27 pages, 1869 KiB  
Review
Understanding the Molecular Basis of Miller–Dieker Syndrome
by Gowthami Mahendran and Jessica A. Brown
Int. J. Mol. Sci. 2025, 26(15), 7375; https://doi.org/10.3390/ijms26157375 - 30 Jul 2025
Abstract
Miller–Dieker Syndrome (MDS) is a rare neurodevelopmental disorder caused by a heterozygous deletion of approximately 26 genes within the MDS locus of human chromosome 17. MDS, which affects 1 in 100,000 babies, can lead to a range of phenotypes, including lissencephaly, severe neurological [...] Read more.
Miller–Dieker Syndrome (MDS) is a rare neurodevelopmental disorder caused by a heterozygous deletion of approximately 26 genes within the MDS locus of human chromosome 17. MDS, which affects 1 in 100,000 babies, can lead to a range of phenotypes, including lissencephaly, severe neurological defects, distinctive facial abnormalities, cognitive impairments, seizures, growth retardation, and congenital heart and liver abnormalities. One hallmark feature of MDS is an unusually smooth brain surface due to abnormal neuronal migration during early brain development. Several genes located within the MDS locus have been implicated in the pathogenesis of MDS, including PAFAH1B1, YWHAE, CRK, and METTL16. These genes play a role in the molecular and cellular pathways that are vital for neuronal migration, the proper development of the cerebral cortex, and protein translation in MDS. Improved model systems, such as MDS patient-derived organoids and multi-omics analyses indicate that WNT/β-catenin signaling, calcium signaling, S-adenosyl methionine (SAM) homeostasis, mammalian target of rapamycin (mTOR) signaling, Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling, and others are dysfunctional in MDS. This review of MDS integrates details at the clinical level alongside newly emerging details at the molecular and cellular levels, which may inform the development of novel therapeutic strategies for MDS. Full article
(This article belongs to the Special Issue Rare Diseases and Neuroscience)
Show Figures

Figure 1

33 pages, 3081 KiB  
Article
Memory Constraints in Uncertainty Misestimation: A Computational Model of Working Memory and Environmental Change Detection
by Li Xin Lim, Rei Akaishi and Sébastien Hélie
Mathematics 2025, 13(15), 2431; https://doi.org/10.3390/math13152431 - 28 Jul 2025
Viewed by 165
Abstract
Reinforcement learning models often rely on uncertainty estimation to guide decision-making in dynamic environments. However, the role of memory limitations in representing statistical regularities in the environment is less understood. This study investigated how limited memory capacity influence uncertainty estimation, potentially leading to [...] Read more.
Reinforcement learning models often rely on uncertainty estimation to guide decision-making in dynamic environments. However, the role of memory limitations in representing statistical regularities in the environment is less understood. This study investigated how limited memory capacity influence uncertainty estimation, potentially leading to misestimations of outcomes and environmental statistics. We developed a computational model incorporating active working memory processes and lateral inhibition to demonstrate how relevant information is selected, stored, and used to estimate uncertainty. The model allows for the detection of contextual changes by estimating expected uncertainty and perceived volatility. Two experiments were conducted to investigate limitations in information availability and uncertainty estimation. The first experiment explored the effect of cognitive load on memory reliance for uncertainty estimation. The results show that cognitive load diminished reliance on memory, lowered expected uncertainty, and increased perceptions of environmental volatility. The second experiment assessed how outcome exposure conditions affect the ability to detect environmental changes, revealing differences in the mechanisms used for environmental change detection. The findings emphasize the importance of memory constraints in uncertainty estimation, highlighting how misestimation of uncertainties is influenced by individual experiences and the capacity of working memory (WM) to store relevant information. These insights contribute to understanding the role of WM in decision-making under uncertainty and provide a framework for exploring the dynamics of reinforcement learning in memory-limited systems. Full article
(This article belongs to the Special Issue Mathematical and Computational Models of Cognition, 2nd Edition)
Show Figures

Figure 1

41 pages, 2850 KiB  
Article
DIKWP Semantic Judicial Reasoning: A Framework for Semantic Justice in AI and Law
by Yingtian Mei and Yucong Duan
Information 2025, 16(8), 640; https://doi.org/10.3390/info16080640 - 27 Jul 2025
Viewed by 177
Abstract
Semantic modeling of legal reasoning is an important research direction in the field of artificial intelligence and law (AI and law), aiming to enhance judicial transparency, fairness, and the consistency of legal applications through structured semantic representations. This paper proposes a semantic judicial [...] Read more.
Semantic modeling of legal reasoning is an important research direction in the field of artificial intelligence and law (AI and law), aiming to enhance judicial transparency, fairness, and the consistency of legal applications through structured semantic representations. This paper proposes a semantic judicial reasoning framework based on the “Data–Information–Knowledge–Wisdom–Purpose” (DIKWP) model, which transforms the conceptual expressions of traditional legal judgment into DIKWP graphs enriched with semantics. The framework integrates the objective content of legal norms with stakeholders’ subjective cognition through a DIKWP×DIKWP bidirectional mapping mechanism, achieving “semantic justice”. Specifically, we define a DIKWP-based legal knowledge representation method and design a mapping algorithm from traditional legal concepts to the DIKWP semantic structure. To validate the effectiveness of the framework, we use a real administrative law case as an example and construct DIKWP (normative content) and DIKWP (subjective cognition) graphs to model legal rules, evidence, and various perspectives. The results indicate that the intention-driven semantic transformation mechanism can harmonize legal reasoning with stakeholders’ cognitive backgrounds, thereby enhancing the interpretability and fairness of judicial interpretation. Case analysis further demonstrates that reasoning within the DIKWP semantic space can reveal underlying assumptions, bridge cognitive gaps, and promote judicial fairness by aligning legal intentions. This study provides new theoretical and methodological support for the explainable reasoning of intelligent judicial systems. Full article
(This article belongs to the Special Issue Natural Language Argumentation: Semantics, Pragmatics and Inference)
Show Figures

Figure 1

24 pages, 598 KiB  
Review
Adolescent Survivors of Childhood Cancer: Biopsychosocial Challenges and the Transition from Survival to Quality of Life
by Piotr Pawłowski, Karolina Joanna Ziętara, Natalia Zaj, Emilia Samardakiewicz-Kirol and Marzena Samardakiewicz
Children 2025, 12(8), 980; https://doi.org/10.3390/children12080980 - 25 Jul 2025
Viewed by 193
Abstract
Background/Objectives: The increasing population of childhood cancer survivors presents new challenges for healthcare systems worldwide. While advances in oncological treatments have dramatically improved survival rates, survivors face a broad spectrum of late effects that extend beyond the biological to encompass profound psychological and [...] Read more.
Background/Objectives: The increasing population of childhood cancer survivors presents new challenges for healthcare systems worldwide. While advances in oncological treatments have dramatically improved survival rates, survivors face a broad spectrum of late effects that extend beyond the biological to encompass profound psychological and social dimensions. Methods: This quasi-systematic review synthesizes data from recent studies on adolescent survivors, revealing significant disruptions in cognitive function, mental health, social integration, education, romantic relationships, and vocational outcomes. Results: This review highlights the inadequacy of a solely biomedical model and advocates for a biopsychosocial approach to long-term follow-up care. An emphasis is placed on the necessity of personalized, interdisciplinary, and developmentally informed interventions, especially in countries like Poland, where structured survivorship care models remain underdeveloped. Conclusions: The findings underscore the importance of integrating medical, psychological, and social services to ensure adolescent cancer survivors achieve not only physical recovery but also meaningful life participation and emotional well-being. Full article
(This article belongs to the Section Pediatric Hematology & Oncology)
Show Figures

Graphical abstract

20 pages, 5023 KiB  
Article
Evaluating Spatial Support for Care Professionals: Combining Cognitive Mapping and Space Syntax Analysis Through the Lens of System Adaptability
by Plom van Rooij, Annelies van der Ham, Windi Winasti, Hubert Berden and Frits van Merode
Hospitals 2025, 2(3), 19; https://doi.org/10.3390/hospitals2030019 - 24 Jul 2025
Viewed by 193
Abstract
Hospital layouts play a critical role in supporting efficient care processes, which are continually evolving. While care processes adapt over time, the spatial needs of care professionals are expected to remain relatively stable. This study proposes an evaluation framework combining cognitive mapping and [...] Read more.
Hospital layouts play a critical role in supporting efficient care processes, which are continually evolving. While care processes adapt over time, the spatial needs of care professionals are expected to remain relatively stable. This study proposes an evaluation framework combining cognitive mapping and space syntax analysis (SSA) to assess how hospital layouts align with these spatial needs. The framework is applied to a real-world emergency department (ED) with two distinct layout configurations. Cognitive mapping captures spatial needs from the perspective of care professionals, while SSA evaluates how the layout supports or constrains these needs. Drawing on the open building approach, we interpret layout adaptability through a layered system of primary (rigid), secondary (adaptable), and tertiary (care process) levels. Our results show that the choices in primary and secondary system designs can limit the functionality of the tertiary system. This approach supports informed decision-making by addressing multiple spatial needs simultaneously, offering insights into the coherence between spatial configuration and care delivery, and enabling quantitative comparison across different layout designs. Full article
Show Figures

Figure 1

18 pages, 2062 KiB  
Article
Measuring Blink-Related Brainwaves Using Low-Density Electroencephalography with Textile Electrodes for Real-World Applications
by Emily Acampora, Sujoy Ghosh Hajra and Careesa Chang Liu
Sensors 2025, 25(14), 4486; https://doi.org/10.3390/s25144486 - 18 Jul 2025
Viewed by 328
Abstract
Background: Electroencephalography (EEG) systems based on textile electrodes are increasingly being developed to address the need for more wearable sensor systems for brain function monitoring. Blink-related oscillations (BROs) are a new measure of brain function that corresponds to brainwave responses occurring after [...] Read more.
Background: Electroencephalography (EEG) systems based on textile electrodes are increasingly being developed to address the need for more wearable sensor systems for brain function monitoring. Blink-related oscillations (BROs) are a new measure of brain function that corresponds to brainwave responses occurring after spontaneous blinking, and indexes neural processes as the brain evaluates new visual information appearing after eye re-opening. Prior studies have reported BRO utility as both a clinical and non-clinical biomarker of cognition, but no study has demonstrated BRO measurement using textile-based EEG devices that facilitate user comfort for real-world applications. Methods: We investigated BRO measurement using a four-channel EEG system with textile electrodes by extracting BRO responses using existing, publicly available EEG data (n = 9). We compared BRO effects derived from textile-based electrodes with those from standard dry Ag/Ag-Cl electrodes collected at the same locations (i.e., Fp1, Fp2, F7, F8) and using the same EEG amplifier. Results: Results showed that BRO effects measured using textile electrodes exhibited similar features in both time and frequency domains compared to dry Ag/Ag-Cl electrodes. Data from both technologies also showed similar performance in artifact removal and signal capture. Conclusions: These findings provide the first demonstration of successful BRO signal capture using four-channel EEG with textile electrodes, providing compelling evidence toward the development of a comfortable and user-friendly EEG technology that uses the simple activity of blinking for objective brain function assessment in a variety of settings. Full article
Show Figures

Figure 1

21 pages, 1969 KiB  
Article
Mapping the Complex Systems That Connects the Urban Environment to Cognitive Decline in Older Adults: A Group Model Building Study
by Ione Avila-Palencia, Leandro Garcia, Claire Cleland, Bernadette McGuinness, Joanna Mchugh Power, Amy Jayne McKnight, Conor Meehan and Ruth F. Hunter
Systems 2025, 13(7), 606; https://doi.org/10.3390/systems13070606 - 18 Jul 2025
Viewed by 160
Abstract
This study aimed to develop a Causal Loop Diagram (CLD) to visualise how urban environment factors impact dementia and cognitive decline, and potential causal mechanisms. In Group Model Building workshops with 12 researchers, a CLD was created to identify factors contributing to cognitive [...] Read more.
This study aimed to develop a Causal Loop Diagram (CLD) to visualise how urban environment factors impact dementia and cognitive decline, and potential causal mechanisms. In Group Model Building workshops with 12 researchers, a CLD was created to identify factors contributing to cognitive decline, and the dynamic interrelationships between these factors. The factors were classified in nine main themes: urban design, social environment, travel behaviours, urban design by-products, lifestyle, mental health conditions, disease/physiology, brain physiology, and cognitive decline outcomes. Five selected feedback loops illustrated some dynamics in the system. The workshops helped develop a shared language and understanding of different perspectives from an interdisciplinary team. The CLD creation was part of a comprehensive modelling approach based on experts’ knowledge which informed other research outputs such as an evidence gap map and an umbrella review, helped the identification of environmental variables for future studies and analyses, and helped to identify future possible systems-based interventions to prevent cognitive decline. The study highlights the utility of CLDs and Group Model Building workshops in interdisciplinary research projects investigating complex systems. Full article
Show Figures

Figure 1

35 pages, 2924 KiB  
Article
A Monitoring System for Measuring the Cognitive Cycle via a Continuous Reaction Time Task
by Teodor Ukov, Georgi Tsochev and Radoslav Yoshinov
Systems 2025, 13(7), 597; https://doi.org/10.3390/systems13070597 - 17 Jul 2025
Viewed by 333
Abstract
The cognitive cycle has been studied via cognitive architectures and by analyzing cognitive experiments. An emerging theoretical approach suggests that several automatic cognitive processes retrieve information, making it available to an internal agent, which in turn decides which information to access. Derived from [...] Read more.
The cognitive cycle has been studied via cognitive architectures and by analyzing cognitive experiments. An emerging theoretical approach suggests that several automatic cognitive processes retrieve information, making it available to an internal agent, which in turn decides which information to access. Derived from this view, four phases of the cognitive cycle can be formulated and reproduced within a cognitive monitoring system. This exploratory work presents a new theory, Attention as Internal Action, and proposes a hypothesis about the relationship between an iteration of the cognitive cycle and a conscious motor action. The design of a continuous reaction time task is presented as a tool for quick cognitive evaluation. Via continuously provided user responses, the computational system behind the task adapts triggering stimuli based on the suggested hypothesis. Its software implementation was employed to assess whether a previously conducted simulation of the cognitive cycle’s time range aligned with empirical data. A control group was assigned to perform a separate simple reaction time task in a sequence of five days. The analysis showed that the experimental cognitive monitoring system produced results more closely aligned with the established understanding of the timing of the cognitive cycle than the control task did. Full article
Show Figures

Figure 1

13 pages, 485 KiB  
Article
Cognitive Systems and Artificial Consciousness: What It Is Like to Be a Bat Is Not the Point
by Javier Arévalo-Royo, Juan-Ignacio Latorre-Biel and Francisco-Javier Flor-Montalvo
Metrics 2025, 2(3), 11; https://doi.org/10.3390/metrics2030011 - 17 Jul 2025
Viewed by 287
Abstract
A longstanding ambiguity surrounds the operationalization of consciousness in artificial systems, complicated by the philosophical and cultural weight of subjective experience. This work examines whether cognitive architectures may be designed to support a functionally explicit form of artificial consciousness, focusing not on the [...] Read more.
A longstanding ambiguity surrounds the operationalization of consciousness in artificial systems, complicated by the philosophical and cultural weight of subjective experience. This work examines whether cognitive architectures may be designed to support a functionally explicit form of artificial consciousness, focusing not on the replication of phenomenology, but rather on measurable, technically realizable introspective mechanisms. Drawing on a critical review of foundational and contemporary literature, this study articulates a conceptual and methodological shift: from investigating the experiential perspective of agents (“what it is like to be a bat”) to analyzing the informational, self-regulatory, and adaptive structures that enable purposive behavior. The approach combines theoretical analysis with a comparative review of major cognitive architectures, evaluating their capacity to implement access consciousness and internal monitoring. Findings indicate that several state-of-the-art systems already display core features associated with functional consciousness—such as self-explanation, context-sensitive adaptation, and performance evaluation—without invoking subjective states. These results support the thesis that cognitive engineering may progress more effectively by focusing on operational definitions of consciousness that are amenable to implementation and empirical validation. In conclusion, this perspective enables the development of artificial agents capable of autonomous reasoning and self-assessment, grounded in technical clarity rather than speculative constructs. Full article
Show Figures

Figure 1

25 pages, 624 KiB  
Article
Development of a Specialized Telemedicine Protocol for Cognitive Disorders: The TeleCogNition Project in Greece
by Efthalia Angelopoulou, Ioannis Stamelos, Evangelia Smaragdaki, Kalliopi Vourou, Evangelia Stanitsa, Dionysia Kontaxopoulou, Christos Koros, John Papatriantafyllou, Vasiliki Zilidou, Evangelia Romanopoulou, Efstratia-Maria Georgopoulou, Paraskevi Sakka, Haralampos Karanikas, Leonidas Stefanis, Panagiotis Bamidis and Sokratis Papageorgiou
Geriatrics 2025, 10(4), 94; https://doi.org/10.3390/geriatrics10040094 - 16 Jul 2025
Viewed by 1007
Abstract
Background/Objectives: Access to specialized care for patients with cognitive impairment in remote areas is often limited. Despite the increasing adoption of telemedicine, standardized guidelines have not yet been specified. This study aimed to develop a comprehensive protocol for the specialized neurological, neuropsychological, and [...] Read more.
Background/Objectives: Access to specialized care for patients with cognitive impairment in remote areas is often limited. Despite the increasing adoption of telemedicine, standardized guidelines have not yet been specified. This study aimed to develop a comprehensive protocol for the specialized neurological, neuropsychological, and neuropsychiatric assessment of patients with cognitive disorders in remote areas through telemedicine. Methods: We analyzed data from (i) a comprehensive literature review of the existing recommendations, reliability studies, and telemedicine models for cognitive disorders, (ii) insights from a three-year experience of a specialized telemedicine outpatient clinic for cognitive movement disorders in Greece, and (iii) suggestions coming from dementia specialists experienced in telemedicine (neurologists, neuropsychologists, psychiatrists) who took part in three focus groups. A critical synthesis of the findings was performed in the end. Results: The final protocol included: technical and organizational requirements (e.g., a high-resolution screen and a camera with zoom, room dimensions adequate for gait assessment, a noise-canceling microphone); medical history; neurological, neuropsychiatric, and neuropsychological assessment adapted to videoconferencing; ethical–legal aspects (e.g., data security, privacy, informed consent); clinician–patient interaction (e.g., empathy, eye contact); diagnostic work-up; linkage to other services (e.g., tele-psychoeducation, caregiver support); and instructions for treatment and follow-up. Conclusions: This protocol is expected to serve as an example of good clinical practice and a source for official telemedicine guidelines for cognitive disorders. Ultimate outcomes include the potential enhanced access to specialized care, minimized financial and logistical costs, and the provision of a standardized, effective model for the remote diagnosis, treatment, and follow-up. This model could be applied not only in Greece, but also in other countries with similar healthcare systems and populations living in remote, difficult-to-access areas. Full article
Show Figures

Graphical abstract

29 pages, 381 KiB  
Article
Family Self-Care in the Context of Intellectual Disabilities: Insights from a Qualitative Study in Portugal
by Teresa Dionísio Mestre, Manuel José Lopes, Ana Pedro Costa and Ermelinda Valente Caldeira
Healthcare 2025, 13(14), 1705; https://doi.org/10.3390/healthcare13141705 - 15 Jul 2025
Viewed by 236
Abstract
Background/Objectives: Family self-care (FSC) is increasingly recognized as a vital aspect of caregiving in pediatric chronic conditions. However, its development in families of children with intellectual disabilities (IDs) remains underexplored. This study aimed to examine how families construct and sustain FSC, and [...] Read more.
Background/Objectives: Family self-care (FSC) is increasingly recognized as a vital aspect of caregiving in pediatric chronic conditions. However, its development in families of children with intellectual disabilities (IDs) remains underexplored. This study aimed to examine how families construct and sustain FSC, and to identify factors that shape its development across four domains: physical, cognitive, psychosocial, and behavioral. Methods: A qualitative study was conducted using an abductive approach, combining inductive thematic analysis with a deductively applied theoretical framework. Semi-structured interviews were carried out with nine families of children with ID in southern Portugal. The children ranged in age from 4 to 15 years, and the parents were aged between 29 and 53 years. The data was analyzed using Bardin’s content analysis, supported by NVivo software, and organized according to the FSC framework. This study followed COREQ guidelines. Results: The families described a range of self-care strategies, including environmental adaptations, experiential learning, emotional regulation, and long-term planning. These practices were shaped by contextual factors such as access to healthcare, relationships with professionals, emotional support networks, and socioeconomic conditions. Four emergent conclusions illustrate how structural and relational dynamics influence FSC in daily caregiving. Conclusions: FSC is a dynamic, multidimensional process shaped by lived experience, family interactions, and systemic support. The findings support inclusive, family-centered care models and inform clinical practice, training, and policy in pediatric IDs. Full article
(This article belongs to the Special Issue Perspectives on Family Health Care Nursing)
Back to TopTop