Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = coconut rhinoceros beetle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3662 KiB  
Article
Programmable LED Array for Evaluating Artificial Light Sources to Improve Insect Trapping
by Mohsen Paryavi, Keith Weiser, Michael Melzer, Damon Crook, Chandrika Ramadugu and Daniel M. Jenkins
Insects 2025, 16(2), 170; https://doi.org/10.3390/insects16020170 - 6 Feb 2025
Cited by 2 | Viewed by 1728
Abstract
We developed a programmable LED array to evaluate different wavelength illumination (UV, blue, green, yellow, amber, and red) and modulation schemes to improve catch rates in insect traps. The device can communicate through Bluetooth® with a simple Android app to update the [...] Read more.
We developed a programmable LED array to evaluate different wavelength illumination (UV, blue, green, yellow, amber, and red) and modulation schemes to improve catch rates in insect traps. The device can communicate through Bluetooth® with a simple Android app to update the operational settings to facilitate field experiments, including which LEDs to operate, when to operate (always, night only, or predefined intervals after sunset and/or before sunrise), and to change the LED intensities/modulation during operation. We used the devices to evaluate different wavelengths to improve catches in traps for coconut rhinoceros beetle (CRB; Oryctes rhinoceros Linnaeus) in the field, as well as to evaluate lighting preferences of Asian citrus psyllid (ACP; Diaphorina citri Kuwayama). In both cases, insects were most strongly attracted to constant UV illumination. However, CRB avoided traps with any “visible” wavelength LEDs placed in panels of traps, while ACP was moderately attracted to blue, yellow, and amber. For CRB, UV illumination of cups at the bottom of panel traps reduced catch rates compared to UV illumination higher in the panels of traps, consistent with observations of dorsal orientation towards light observed by other researchers in nocturnal beetles and moths. Finally, we provide some hardware design recommendations to improve the energy efficiency of similar devices for more widespread deployment in insect traps and for controlling the LEDs to evaluate the effects of intensity and modulation with minimal pulsing, which our observations suggest may result in insects avoiding traps. Full article
(This article belongs to the Collection Biocontrol and Behavioral Approaches to Manage Invasive Insects)
Show Figures

Figure 1

12 pages, 985 KiB  
Article
Alternative DNA Markers to Detect Guam-Specific CRB-G (Clade I) Oryctes rhinoceros (Coleoptera: Scarabaeidae) Indicate That the Beetle Did Not Disperse from Guam to the Solomon Islands or Palau
by Wee Tek Tay, Sean D. G. Marshall, Angel David Popa-Baez, Glenn F. J. Dulla, Andrea L. Blas, Juniaty W. Sambiran, Meldy Hosang, Justine Bennette H. Millado, Michael Melzer, Rahul V. Rane, Tim Hogarty, Demi Yi-Chun Cho, Jelfina C. Alouw, Muhammad Faheem and Benjamin D. Hoffmann
Diversity 2024, 16(10), 634; https://doi.org/10.3390/d16100634 - 10 Oct 2024
Cited by 1 | Viewed by 1891
Abstract
A partial mitochondrial DNA Cytochrome Oxidase subunit I (mtCOI) gene haplotype variant of the coconut rhinoceros beetle (CRB) Oryctes rhinoceros, classed as ‘CRB-G (clade I)’, has been the focus of much research since 2007, with reports of invasions into new [...] Read more.
A partial mitochondrial DNA Cytochrome Oxidase subunit I (mtCOI) gene haplotype variant of the coconut rhinoceros beetle (CRB) Oryctes rhinoceros, classed as ‘CRB-G (clade I)’, has been the focus of much research since 2007, with reports of invasions into new Pacific Island locations (e.g., Guam, Hawaii, Solomons Islands). For numerous invasive species, inference of invasion biology via whole genome is superior to assessments via the partial mtCOI gene. Here, we explore CRB draft mitochondrial genomes (mitogenomes) from historical and recent collections, with assessment focused on individuals associated within the CRB-G (clade I) classification. We found that all Guam CRB individuals possessed the same mitogenome across all 13 protein-coding genes and differed from individuals collected elsewhere, including ‘non-Guam’ individuals designated as CRB-G (clade I) by partial mtCOI assessment. Two alternative ATP6 and COIII partial gene primer sets were developed to enable distinction between CRB individuals from Guam that classed within the CRB-G (clade I) haplotype grouping and CRB-G (Clade I) individuals collected elsewhere. Phylogenetic analyses based on concatenated ATP6–COIII genes showed that only Guam CRB-G (clade I) individuals clustered together, and therefore Guam was not the source of the CRB that invaded the other locations in the Pacific assessed in this study. The use of the mtCOI and/or mtCOIII genes for initial molecular diagnosis of CRB remained crucial, and assessment of more native CRB populations will further advance our ability to identify the provenance of CRB invasions being reported within the Pacific and elsewhere. Full article
Show Figures

Figure 1

15 pages, 2834 KiB  
Review
Coconut Rhinoceros Beetle in Samoa: Review of a Century-Old Invasion and Prospects for Control in a Changing Future
by Sulav Paudel, Sean D. G. Marshall, Nicola K. Richards, George Hazelman, Pueata Tanielu and Trevor A. Jackson
Insects 2022, 13(5), 487; https://doi.org/10.3390/insects13050487 - 23 May 2022
Cited by 12 | Viewed by 8062
Abstract
It is now more than 100 years since the coconut rhinoceros beetle (CRB: Oryctes rhinoceros L.) was first detected in the Pacific Island state of Samoa. The exotic pest from Asia became the principal pest of coconut palms in Samoa and, from this [...] Read more.
It is now more than 100 years since the coconut rhinoceros beetle (CRB: Oryctes rhinoceros L.) was first detected in the Pacific Island state of Samoa. The exotic pest from Asia became the principal pest of coconut palms in Samoa and, from this first point of invasion, spread to several surrounding countries in the South-West Pacific Ocean. An intensive control operation was initiated, but the beetle could not be eliminated. Various pest management strategies were attempted but had limited success until the introduction of a biological control agent (BCA), Oryctes rhinoceros nudivirus (OrNV), during the late 1960s and early 1970s. The biocontrol release was very successful and became the prime example of “classical biological control” of an insect pest by a virus. Changing economic and social conditions in Samoa and other islands of the Pacific require a re-evaluation of the threat of CRB to coconut production to suggest how the IPM system may be modified to meet future needs. Therefore, it is timely to review the history of CRB in Samoa and summarize experiences in development of an integrated pest management (IPM) system limiting the impact of the pest. We also present results from a recent study conducted in 2020 on the island of Upolu to define the current status of the CRB population and its BCA, OrNV. The lessons from Samoa, with its long history of containment and management of CRB, are applicable to more recent invasion sites. Recommendations are provided to modify the IPM programme to enhance the sustainable control of CRB and support the ongoing coconut replantation program promoted by the Samoan government. Full article
Show Figures

Figure 1

16 pages, 5370 KiB  
Article
A Pest or Otherwise? Encounter of Oryctes rhinoceros (Coleoptera: Scarabaeidae) with Persistent Organic Pollutants
by Meng-Wei Shen, Hung-Chuan Chen and Shyi-Tien Chen
Insects 2021, 12(9), 818; https://doi.org/10.3390/insects12090818 - 12 Sep 2021
Cited by 4 | Viewed by 3214
Abstract
The potential use of invertebrates as bioreactors to treat environmental pollutants is promising and of great interest. Three types of the persistent organic pollutants (POPs), namely pentachlorophenol (PCP), PAHs (naphthalene and phenanthrene) and dieldrin (DLN), were spiked in soil and treated by using [...] Read more.
The potential use of invertebrates as bioreactors to treat environmental pollutants is promising and of great interest. Three types of the persistent organic pollutants (POPs), namely pentachlorophenol (PCP), PAHs (naphthalene and phenanthrene) and dieldrin (DLN), were spiked in soil and treated by using Oryctes rhinoceros larvae, a known pest of coconut trees in southeast Asia, and also the indicators of POP toxicity and the fate and degradability of the ingested POPs were assessed. The larvae were tested at various levels of the POPs and went through an acclimation process. Without acclimation, the tolerance limits of the larvae toward PCP, PAHs and DLN were 200, 100 and 0.1 mg/kg-soil, respectively, yet with acclimation, the tolerance levels increased to 800, 400 and 0.5 mg/kg-soil, respectively. Biodegradation rates of all the tested POPs were >90% by week 2, with <5% and nearly 0% remaining in the feces and body of the larvae, respectively. The results suggest that the use of the beetle larvae in soil POP decontamination is doable. Full article
(This article belongs to the Section Social Insects and Apiculture)
Show Figures

Figure 1

13 pages, 1321 KiB  
Article
Culturing-Enriched Metabarcoding Analysis of the Oryctes rhinoceros Gut Microbiome
by Matan Shelomi and Ming-Ju Chen
Insects 2020, 11(11), 782; https://doi.org/10.3390/insects11110782 - 11 Nov 2020
Cited by 13 | Viewed by 4311
Abstract
Wood-feeding insects should have a source of enzymes like cellulases to digest their food. These enzymes can be produced by the insect, or by microbes living in the wood and/or inside the insect gut. The coconut rhinoceros beetle, Oryctes rhinoceros, is a [...] Read more.
Wood-feeding insects should have a source of enzymes like cellulases to digest their food. These enzymes can be produced by the insect, or by microbes living in the wood and/or inside the insect gut. The coconut rhinoceros beetle, Oryctes rhinoceros, is a pest whose digestive microbes are of considerable interest. This study describes the compartments of the O. rhinoceros gut and compares their microbiomes using culturing-enriched metabarcoding. Beetle larvae were collected from a coconut grove in southern Taiwan. Gut contents from the midgut and hindgut were plated on nutrient agar and selective carboxymethylcellulose agar plates. DNA was extracted from gut and fat body samples and 16S rDNA metabarcoding performed to identify unculturable bacteria. Cellulase activity tests were performed on gut fluids and microbe isolates. The midgut and hindgut both showed cellulolytic activity. Bacillus cereus, Citrobacter koseri, and the cellulolytic fungus Candida xylanilytica were cultured from both gut sections in most larvae. Metabarcoding did not find Bacillus cereus, and found that either Citrobacter koseri or Paracoccus sp. were the dominant gut microbes in any given larva. No significant differences were found between midgut and hindgut microbiomes. Bacillus cereus and Citrobacter koseri are common animal gut microbes frequently found in Oryctes rhinoceros studies while Candida xylanilytica and the uncultured Paracoccus sp. had not been identified in this insect before. Some or all of these may well have digestive functions for the beetle, and are most likely acquired from the diet, meaning they may be transient commensalists rather than obligate mutualists. Broader collection efforts and tests with antibiotics will resolve ambiguities in the beetle–microbe interactions. Full article
(This article belongs to the Special Issue Insect–Microorganism Interactions)
Show Figures

Figure 1

7 pages, 502 KiB  
Article
Oviposition Preferences and Behavior of Wild-Caught and Laboratory-Reared Coconut Rhinoceros Beetle, Oryctes rhinoceros (Coleoptera: Scarabaeidae), in Relation to Substrate Particle Size
by Megan Manley, Michael J. Melzer and Helen Spafford
Insects 2018, 9(4), 141; https://doi.org/10.3390/insects9040141 - 15 Oct 2018
Cited by 8 | Viewed by 4634
Abstract
The coconut rhinoceros beetle (CRB), Oryctes rhinoceros (L.) (Coleoptera: Scarabaeidae), has become one of the most important coconut and oil palm pests. This species was detected attacking coconut palms on Oʻahu, Hawaiʻi in December 2013, and an eradication program was initiated. One of [...] Read more.
The coconut rhinoceros beetle (CRB), Oryctes rhinoceros (L.) (Coleoptera: Scarabaeidae), has become one of the most important coconut and oil palm pests. This species was detected attacking coconut palms on Oʻahu, Hawaiʻi in December 2013, and an eradication program was initiated. One of the major challenges for eradication has been the identification of new breeding sites. Information on the factors influencing oviposition is needed to aid in finding sites likely to host the immature stages of this insect. In this study, a series of choice tests were conducted to assess the oviposition preferences of both laboratory-reared and wild-caught CRB. Mated females, of both lab-reared and wild-caught beetles, were offered for oviposition a choice between sand and two mulch substrates, one with small and one with large particle sizes. Both types of CRB laid eggs preferentially in substrate of small particle size rather than large and none laid eggs in sand. Lab-reared and wild-caught CRB differed in their oviposition behavior and size. These results can be used to aid in the identification of breeding sites for management programs and eradication efforts. Full article
Show Figures

Figure 1

10 pages, 999 KiB  
Article
Coconut Leaf Age and Coconut Rhinoceros Beetle Herbivory Influence Leaflet Nutrients, Metals, and Lignin
by Thomas E. Marler
Horticulturae 2018, 4(2), 9; https://doi.org/10.3390/horticulturae4020009 - 8 Jun 2018
Cited by 3 | Viewed by 7127
Abstract
The coconut rhinoceros beetle (CRB, Oryctes rhinoceros L.) is a serious pest of coconut (Cocos nucifera L.) in many tropical regions, however the influences of CRB herbivory on the coconut leaf chemistry are unknown. This limits our ability to predict the afterlife [...] Read more.
The coconut rhinoceros beetle (CRB, Oryctes rhinoceros L.) is a serious pest of coconut (Cocos nucifera L.) in many tropical regions, however the influences of CRB herbivory on the coconut leaf chemistry are unknown. This limits our ability to predict the afterlife decomposition dynamics of the damaged coconut leaf litter. Mature green and senesced leaflet tissues were collected from coconut trees on the island of Guam, where coconut is native and CRB is invasive. Mineral, metal, and lignin concentrations were quantified to determine the nutrient limitations and the litter quality traits. Nitrogen was increased and the elements that are not resorbed during leaf senescence were decreased by the CRB damage. The important litter stoichiometric traits carbon/nitrogen and lignin/nitrogen were decreased by the CRB damage. The results indicate that CRB herbivory may limit green leaf nutrition in Guam’s soils and increase the senesced leaf litter decomposition speed and nutrient turnover rates. Full article
(This article belongs to the Special Issue Food Safety Pertinent to Fresh Produce)
Show Figures

Figure 1

Back to TopTop