Coconut Leaf Age and Coconut Rhinoceros Beetle Herbivory Influence Leaflet Nutrients, Metals, and Lignin
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Leaf Age and CRB Damage Interactions
3.2. Metals in Green Leaves
3.3. Litter Quality
4. Discussion
Acknowledgments
Conflicts of Interest
References
- Chan, E.; Elevitch, C.R. Cocos nucifera (coconut). In Species Profiles for Pacific Island Agroforestry; Elevitch, C.R., Ed.; Univ. of Hawai’i Press: Hōlualoa, HI, USA, 2006; pp. 277–303. [Google Scholar]
- Ahuja, S.C.; Ahuja, S.; Ahuja, U. Coconut—History, Uses, and Folklore. Asian Agric. Hist. 2014, 18, 221–248. [Google Scholar]
- Bedford, G.O. Observations on the biology and ecology of Oryctes rhinoceros and Scapanes australis (Coleoptera: Scarabaeidae: Dynastinae): Pests of coconut palms in Melanesia. J. Austral Entomol. Soc. 1976, 15, 241–251. [Google Scholar] [CrossRef]
- Bedford, G.O. Biology, ecology and control of palm rhinoceros beetles. Annu. Rev. Entomol. 1980, 25, 309–339. [Google Scholar] [CrossRef]
- Chapman, S.K.; Hart, S.C.; Cobb, N.S.; Whitham, T.G.; Koch, G.W. Insect herbivory increases litter quality and decomposition: An extension of the acceleration hypothesis. Ecology 2003, 84, 2867–2876. [Google Scholar] [CrossRef]
- Schweitzer, J.A.; Bailey, J.K.; Hart, S.C.; Wimp, G.M.; Chapman, S.K.; Whitham, T.G. The interaction of plant genotype and herbivory decelerate leaf litter decomposition and alter nutrient dynamics. Oikos 2005, 110, 133–145. [Google Scholar] [CrossRef]
- Fang, X.-M.; Christenson, L.M.; Wang, F.-C.; Zeng, J.-P.; Chen, F.-S. Pine caterpillar outbreak and stand density impacts on nitrogen and phosphorus dynamics and their stoichiometry in Masson pine (Pinus massoniana) plantations in subtropical China. Can. J. For. Res. 2016, 46, 601–609. [Google Scholar] [CrossRef]
- Young, F.J. Soil Survey of Territory of Guam; United States Department of Agriculture Soil Conservation Service: Washington, DC, USA, 1988.
- Hou, X.; Jones, B.T. Inductively coupled plasma/optical emission spectrometry. In Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; John Wiley & Sons: Chichester, UK, 2000; pp. 9468–9485. [Google Scholar]
- Iyama, K.; Wallis, A.F.A. Determination of lignin in herbaceous plants by an improved acetyl bromide procedure. J. Sci. Food Agric. 1990, 51, 145–161. [Google Scholar] [CrossRef]
- Killingbeck, K.T. Nutrients in senesced leaves: Keys to the search for potential resorption and resorption proficiency. Ecology 1996, 77, 1716–1727. [Google Scholar] [CrossRef]
- Aerts, R. Nutrient resorption from senescing leaves of perennials: Are there general patterns? J. Ecol. 1996, 84, 597–608. [Google Scholar] [CrossRef]
- Berg, B.; Berg, M.P.; Bottner, P.; Box, E.; Breymeyer, A.; De Anta, R.; Couteaux, M.; Escudero, A.; Gallardo, A.; Krutz, W.; et al. Litter mass loss rates in pine forests of Europe and Eastern United States: Some relationships with climate and litter quality. Biogeochemistry 1993, 20, 127–159. [Google Scholar] [CrossRef]
- Parton, W.; Silver, W.L.; Burke, I.C.; Grassens, L.; Harmon, M.E.; Currie, W.S.; King, J.Y.; Adair, E.C.; Brandt, L.A.; Hart, S.C.; et al. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 2007, 315, 361–364. [Google Scholar] [CrossRef] [PubMed]
- Lavelle, P.; Decaëns, T.; Aubert, M.; Barot, S.; Blouin, M.; Bureau, F.; Marjerie, P.; Mora, P.; Rossi, J.P. Soil invertebrates and ecosystem services. Eur. J. Soil Biol. 2006, 42, S3–S15. [Google Scholar] [CrossRef]
- Cornwell, W.K.; Cornelissen, J.H.C.; Amatangelo, K.; Dorrepaal, E.; Eviner, V.T.; Godoy, O.; Hobbie, S.E.; Hoorens, B.; Kurokawa, H.; Pérez-Harquindeguy, N.; et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 2008, 11, 1065–1071. [Google Scholar] [CrossRef] [PubMed]
- Cornelissen, J.H.C.; Quested, H.M.; Gwynn-Jones, D.; Van Logtestijn, R.S.P.; De Beus, M.A.H.; Kondratchuk, A.; Callaghan, T.V.; Aerts, R. Leaf digestibility and litter decomposability are related in a wide range of subarctic plant species and types. Funct. Ecol. 2004, 18, 779–786. [Google Scholar] [CrossRef] [Green Version]
- Mattson, W.J.; Addy, N.D. Phytophagous insects as regulators of forest primary production. Science 1975, 190, 515–522. [Google Scholar] [CrossRef]
- Kobe, R.K.; Lepczyk, C.A.; Iyer, M. Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology 2005, 86, 2780–2792. [Google Scholar] [CrossRef]
- James, R.; Pritchard, I.M. Influence of the holly leaf miner, Phytomyza ilicis (Diptera, Agromyzidae), on leaf abscission. J. Nat. Hist. 1988, 22, 395–402. [Google Scholar] [CrossRef]
- Kahn, D.M.; Cornell, H.V. Leafminers, early leaf abscission, and parasitoids: A tritrophic interaction. Ecology 1989, 70, 1219–1226. [Google Scholar] [CrossRef]
- Karban, R.; Niiho, C.C. Induced resistance and susceptibility to herbivory: Plant memory and altered plant development. Ecology 1995, 76, 1220–1225. [Google Scholar] [CrossRef]
- Coley, P.D.; Barone, J.A. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst. 1996, 27, 305–335. [Google Scholar] [CrossRef]
- Karban, R.; Baldwin, I.T. Induced Responses to Herbivory; University Chicago Press: Chicago, IL, USA, 1997; ISBN 9780226424965. [Google Scholar]
- Agrawal, A.A.; Tuzun, S.; Bent, E. Induced Plant Defenses against Pathogens and Herbivores: Biochemistry, Ecology and Agriculture; American Phytopathological Society Press: Saint Paul, MN, USA, 1999. [Google Scholar]
- Chapman, S.K.; Schweitzer, J.A.; Whitham, T.G. Herbivory differentially alters plant litter dynamics of evergreen and deciduous trees. Oikos 2006, 114, 566–574. [Google Scholar] [CrossRef] [Green Version]
- Marler, T.E. Temporal variations in leaf miner, butterfly, and stem borer infestations of Cycas micronesica in relation to Aulacaspis yasumatsui incidence. HortScience 2013, 48, 1334–1338. [Google Scholar]
- Marler, T.E.; Dongol, N. Three invasive insects alter Cycas micronesica leaf chemistry and predict changes in biogeochemical cycling. Commun. Integr. Biol. 2016, 9, e1208324. [Google Scholar] [CrossRef] [PubMed]
- Hättenschwiler, S.; Tiunov, A.V.; Scheu, S. Biodiversity and litter decomposition in terrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 2005, 36, 191–218. [Google Scholar] [CrossRef]
- Koerselman, W.; Meuleman, A.F.M. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 1996, 33, 1441–1450. [Google Scholar] [CrossRef]
- Aerts, R.; Chapin, F.S. The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Adv. Ecol. Res. 2000, 30, 1–67. [Google Scholar]
- Olde Venterink, H.; Wassen, M.J.; Verkroost, A.W.M.; de Ruiter, P.C. Species richness-productivity patterns differ between N-, P-, and K-limited wetlands. Ecology 2003, 84, 2191–2199. [Google Scholar] [CrossRef]
- Tessier, J.T.; Raynal, D.J. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. J. Appl. Ecol. 2003, 40, 523–534. [Google Scholar] [CrossRef] [Green Version]
- Güsewell, S. N:P ratios in terrestrial plants: Variation and functional significance. New Phytol. 2004, 164, 243–266. [Google Scholar] [CrossRef]
- Marler, T.E.; Lawrence, J.H. Leaf and soil nutrient relations of Elaeocarpus joga Merr. in oceanic island calcareous soils. HortScience 2015, 50, 1644–1649. [Google Scholar]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.; Diemer, M.; et al. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reich, P.B.; Walters, M.B.; Ellsworth, D.S. Leaf lifespan in relation to leaf, plant and stand characteristics among diverse ecosystems. Ecol. Monogr. 1992, 62, 365–392. [Google Scholar] [CrossRef]
- Iqbal, N.; Masood, A.; Khan, N.A. Analyzing the significance of defoliation in growth, photosynthetic compensation and source-sink relations. Photosynthetica 2012, 50, 161–170. [Google Scholar] [CrossRef]
- Broschat, T.K. Nutrient distribution, dynamics, and sampling in coconut and Canary Island date palms. J. Am. Soc. Hortic. Sci. 1997, 122, 884–890. [Google Scholar]
Variable | Healthy | CRB-Damaged | Statistic | Significance |
---|---|---|---|---|
Nitrogen (mg·g−1) | 12.96 ± 0.76 | 15.20 ± 1.18 | F = 8.17 | 0.0081 |
Phosphorus (mg·g−1) | 1.06 ± 0.05 | 1.16 ± 0.05 | F = 3.58 | 0.0693 |
Potassium (mg·g−1) | 5.61 ± 0.87 | 6.74 ± 0.88 | F = 3.10 | 0.0895 |
Magnesium (mg·g−1) | 3.56 ± 0.22 | 3.54 ± 0.21 | F = 0.00 | 0.9622 |
Boron (µg·g−1) | 15.5 ± 1.5 | 22.1 ± 1.8 | F = 9.17 | 0.0054 |
Variable | Green Healthy | Green CRB-Damaged | Senesced Healthy | Senesced CRB-Damaged |
---|---|---|---|---|
Carbon (mg·g−1) | 469.1 ± 9.6a z | 478.2 ± 11.9a | 521.9 ± 7.9b | 489.9 ± 6.3ab |
Calcium (mg·g−1) | 3.68 ± 0.35a | 4.06 ± 0.44a | 9.82 ± 0.61c | 6.59 ± 0.47b |
Iron (µg·g−1) | 29.2 ± 15.5a | 58.9 ± 14.5a | 181.9 ± 16.3c | 113.4 ± 17.0b |
Manganese (µg·g−1) | 24.0 ± 5.1a | 35.1 ± 6.7a | 71.9 ± 7.1c | 48.4 ± 5.6b |
Zinc (µg·g−1) | 21.1 ± 1.4a | 24.7 ± 1.7a | 32.4 ± 3.8b | 21.1 ± 2.6a |
Copper (µg·g−1) | 10.2 ± 0.7bc | 9.5 ± 0.6b | 7.9 ± 0.7b | 4.5 ± 0.4a |
Variable | Healthy | CRB-Damaged | Statistic | Significance |
---|---|---|---|---|
Nickel (µg·g−1) | 1.17 ± 0.07 | 2.01 ± 0.17 | t = 4.96 | 0.0008 |
Chromium (µg·g−1) | 0.43 ± 0.02 | 0.51 ± 0.02 | t = 3.06 | 0.0135 |
Cobalt (µg·g−1) | 0.04 ± 0.00 | 0.06 ± 0.00 | t = 2.84 | 0.0195 |
Cadmium (µg·g−1) | 0.19 ± 0.01 | 0.20 ± 0.01 | t = 0.26 | 0.8013 |
Lead (µg·g−1) | 0.54 ± 0.03 | 1.15 ± 0.04 | t = 12.16 | <0.0001 |
Variable | Healthy | CRB-Damaged | Statistic | Significance |
---|---|---|---|---|
Carbon/Nitrogen | 53.6 ± 2.6 | 44.4 ± 4.8 | t = 5.97 | 0.0002 |
Carbon/Phosphorus | 551 ± 38.5 | 493 ± 14.1 | t = 1.45 | 0.1801 |
Carbon/Potassium | 240.1 ± 42.5 | 180.6 ± 56.5 | t = 1.54 | 0.1570 |
Lignin/Nitrogen | 26.4 ± 1.1 | 24.0 ± 1.3 | t = 2.40 | 0.0399 |
Lignin/Phosphorus | 271.4 ± 21.2 | 265.7 ± 12.1 | t = 0.27 | 0.7907 |
Lignin/Potassium | 117.8 ± 21.3 | 99.4 ± 11.6 | t = 0.98 | 0.3532 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marler, T.E. Coconut Leaf Age and Coconut Rhinoceros Beetle Herbivory Influence Leaflet Nutrients, Metals, and Lignin. Horticulturae 2018, 4, 9. https://doi.org/10.3390/horticulturae4020009
Marler TE. Coconut Leaf Age and Coconut Rhinoceros Beetle Herbivory Influence Leaflet Nutrients, Metals, and Lignin. Horticulturae. 2018; 4(2):9. https://doi.org/10.3390/horticulturae4020009
Chicago/Turabian StyleMarler, Thomas E. 2018. "Coconut Leaf Age and Coconut Rhinoceros Beetle Herbivory Influence Leaflet Nutrients, Metals, and Lignin" Horticulturae 4, no. 2: 9. https://doi.org/10.3390/horticulturae4020009
APA StyleMarler, T. E. (2018). Coconut Leaf Age and Coconut Rhinoceros Beetle Herbivory Influence Leaflet Nutrients, Metals, and Lignin. Horticulturae, 4(2), 9. https://doi.org/10.3390/horticulturae4020009