Alternative DNA Markers to Detect Guam-Specific CRB-G (Clade I) Oryctes rhinoceros (Coleoptera: Scarabaeidae) Indicate That the Beetle Did Not Disperse from Guam to the Solomon Islands or Palau
Abstract
:1. Introduction
2. Material and Methods
2.1. Samples
2.2. Whole-Genome Sequencing (WGS)
2.3. Mitogenome Assembly and Annotation
2.4. Mitogenome Identity Assessment
2.5. Alternative CRB Marker Development to Identify the Original CRB Population That Invaded Guam
2.6. Mitogenome Analysis
3. Results
3.1. Mitochondrial Genome Analysis
3.2. Alternative Primers to Identify the Original Invasive CRB Population Present in Guam
3.3. Phylogeny
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crozier, R.H. From population genetics to phylogeny: Uses and limits of mitochondrial DNA. Syst. Bot. 1990, 3, 111–124. [Google Scholar] [CrossRef]
- Leducq, J.B.; Henault, M.; Charron, G.; Nielly-Thibault, L.; Terrat, Y.; Fiumera, H.L.; Shapiro, B.J.; Landry, C.R. Mitochondrial Recombination and Introgression during Speciation by Hybridization. Mol. Biol. Evol. 2017, 34, 1947–1959. [Google Scholar] [CrossRef] [PubMed]
- Saville, B.J.; Kohli, Y.; Anderson, J.B. mtDNA recombination in a natural population. Proc. Natl. Acad. Sci. USA 1998, 95, 1331–1335. [Google Scholar] [CrossRef] [PubMed]
- Hebert, P.D.; Cywinska, A.; Ball, S.L.; deWaard, J.R. Biological identifications through DNA barcodes. Proc. Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef]
- Hebert, P.D.; Penton, E.H.; Burns, J.M.; Janzen, D.H.; Hallwachs, W. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci. USA 2004, 101, 14812–14817. [Google Scholar] [CrossRef]
- Rugman-Jones, P.F.; Hoddle, C.D.; Hoddle, M.S.; Stouthamer, R. The lesser of two weevils: Molecular-genetics of pest palm weevil populations confirm Rhynchophorus vulneratus (Panzer 1798) as a valid species distinct from R. ferrugineus (Olivier 1790), and reveal the global extent of both. PLoS ONE 2013, 8, e78379. [Google Scholar] [CrossRef]
- Tay, W.T.; Beckett, S.J.; De Barro, P.J. Phosphine resistance in Australian Cryptolestes species (Coleoptera: Laemophloeidae): Perspectives from mitochondrial DNA cytochrome oxidase I analysis. Pest Manag. Sci. 2016, 72, 1250–1259. [Google Scholar] [CrossRef]
- Behere, G.T.; Tay, W.T.; Russell, D.A.; Heckel, D.G.; Appleton, B.R.; Kranthi, K.R.; Batterham, P. Mitochondrial DNA analysis of field populations of Helicoverpa armigera (Lepidoptera: Noctuidae) and of its relationship to H. zea. BMC Evol. Biol. 2007, 7, 117. [Google Scholar] [CrossRef]
- De Barro, P.J.; Liu, S.S.; Boykin, L.M.; Dinsdale, A.B. Bemisia tabaci: A statement of species status. Annu. Rev. Entomol. 2011, 56, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Hurst, G.D.; Jiggins, F.M. Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: The effects of inherited symbionts. Proc. Biol. Sci. 2005, 272, 1525–1534. [Google Scholar] [CrossRef]
- Tay, W.T.; Elfekih, S.; Court, L.N.; Gordon, K.H.J.; Delatte, H.; De Barro, P.J. The Trouble with MEAM2: Implications of Pseudogenes on Species Delimitation in the Globally Invasive Bemisia tabaci (Hemiptera: Aleyrodidae) Cryptic Species Complex. Genome Biol. Evol. 2017, 9, 2732–2738. [Google Scholar] [CrossRef]
- Chen, L.; Huang, J.R.; Dai, J.; Guo, Y.F.; Sun, J.T.; Hong, X.Y. Intraspecific mitochondrial genome comparison identified CYTB as a high-resolution population marker in a new pest Athetis lepigone. Genom. 2019, 111, 744–752. [Google Scholar] [CrossRef]
- Roe, A.D.; Sperling, F.A. Patterns of evolution of mitochondrial cytochrome c oxidase I and II DNA and implications for DNA barcoding. Mol. Phylogenet. Evol. 2007, 44, 325–345. [Google Scholar] [CrossRef] [PubMed]
- Tay, W.T.; Rane, R.V.; Padovan, A.; Walsh, T.K.; Elfekih, S.; Downes, S.; Nam, K.; d’Alencon, E.; Zhang, J.; Wu, Y.; et al. Global population genomic signature of Spodoptera frugiperda (fall armyworm) supports complex introduction events across the Old World. Commun. Biol. 2022, 5, 297. [Google Scholar] [CrossRef] [PubMed]
- Vyskocilova, S.; Tay, W.T.; van Brunschot, S.; Seal, S.; Colvin, J. An integrative approach to discovering cryptic species within the Bemisia tabaci whitefly species complex. Sci. Rep. 2018, 8, 10886. [Google Scholar] [CrossRef]
- Goergen, G.; Kumar, P.L.; Sankung, S.B.; Togola, A.; Tamo, M. First Report of Outbreaks of the Fall Armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a New Alien Invasive Pest in West and Central Africa. PLoS ONE 2016, 11, e0165632. [Google Scholar] [CrossRef]
- Rane, R.; Walsh, T.K.; Lenancker, P.; Gock, A.; Dao, T.H.; Nguyen, V.L.; Khin, T.N.; Amalin, D.; Chittarath, K.; Faheem, M.; et al. Complex multiple introductions drive fall armyworm invasions into Asia and Australia. Sci. Rep. 2023, 13, 660. [Google Scholar] [CrossRef]
- Tay, W.T.; Meagher, R.L., Jr.; Czepak, C.; Groot, A.T. Spodoptera frugiperda: Ecology, Evolution, and Management Options of an Invasive Species. Annu. Rev. Entomol. 2023, 68, 299–317. [Google Scholar] [CrossRef] [PubMed]
- Cock, M.J.W.; Beseh, P.K.; Buddie, A.G.; Cafa, G.; Crozier, J. Molecular methods to detect Spodoptera frugiperda in Ghana, and implications for monitoring the spread of invasive species in developing countries. Sci. Rep. 2017, 7, 4103. [Google Scholar] [CrossRef]
- Nagoshi, R.N.; Dhanani, I.; Asokan, R.; Mahadevaswamy, H.M.; Kalleshwaraswamy, C.M.; Sharanabasappa; Meagher, R.L. Genetic characterization of fall armyworm infesting South Africa and India indicate recent introduction from a common source population. PLoS ONE 2019, 14, e0217755. [Google Scholar] [CrossRef]
- Nagoshi, R.N.; Goergen, G.; Tounou, K.A.; Agboka, K.; Koffi, D.; Meagher, R.L. Analysis of strain distribution, migratory potential, and invasion history of fall armyworm populations in northern Sub-Saharan Africa. Sci. Rep. 2018, 8, 3710. [Google Scholar] [CrossRef]
- Leite, N.A.; Alves-Pereira, A.; Correa, A.S.; Zucchi, M.I.; Omoto, C. Demographics and genetic variability of the new world bollworm (Helicoverpa zea) and the old world bollworm (Helicoverpa armigera) in Brazil. PLoS ONE 2014, 9, e113286. [Google Scholar] [CrossRef] [PubMed]
- Arnemann, J.A.; Roxburgh, S.; Walsh, T.; Guedes, J.; Gordon, K.; Smagghe, G.; Tay, W.T. Multiple incursion pathways for Helicoverpa armigera in Brazil show its genetic diversity spreading in a connected world. Sci. Rep. 2019, 9, 19380. [Google Scholar] [CrossRef]
- Walsh, T.K.; Perera, O.; Anderson, C.; Gordon, K.; Czepak, C.; McGaughran, A.; Zwick, A.; Hackett, D.; Tay, W.T. Mitochondrial DNA genomes of five major Helicoverpa pest species from the Old and New Worlds (Lepidoptera: Noctuidae). Ecol. Evol. 2019, 9, 2933–2944. [Google Scholar] [CrossRef]
- Anderson, C.J.; Tay, W.T.; McGaughran, A.; Gordon, K.; Walsh, T.K. Population structure and gene flow in the global pest, Helicoverpa armigera. Mol. Ecol. 2016, 25, 5296–5311. [Google Scholar] [CrossRef]
- Elfekih, S.; Tay, W.T.; Polaszek, A.; Gordon, K.H.J.; Kunz, D.; Macfadyen, S.; Walsh, T.K.; Vyskocilova, S.; Colvin, J.; De Barro, P.J. On species delimitation, hybridization and population structure of cassava whitefly in Africa. Sci. Rep. 2021, 11, 7923. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, F.; Tay, W.T.; Robin, C.; Shi, Y.; Guan, F.; Yang, Y.; Wu, Y. Population genomics provides insights into lineage divergence and local adaptation within the cotton bollworm. Mol. Ecol. Resour. 2022, 22, 1875–1891. [Google Scholar] [CrossRef] [PubMed]
- Valencia-Montoya, W.A.; Elfekih, S.; North, H.L.; Meier, J.I.; Warren, I.A.; Tay, W.T.; Gordon, K.H.J.; Specht, A.; Paula-Moraes, S.V.; Rane, R.; et al. Adaptive Introgression across Semipermeable Species Boundaries between Local Helicoverpa zea and Invasive Helicoverpa armigera Moths. Mol. Biol. Evol. 2020, 37, 2568–2583. [Google Scholar] [CrossRef] [PubMed]
- Iannucci, A.; Benazzo, A.; Natali, C.; Arida, E.A.; Zein, M.S.A.; Jessop, T.S.; Bertorelle, G.; Ciofi, C. Population structure, genomic diversity and demographic history of Komodo dragons inferred from whole-genome sequencing. Mol. Ecol. 2021, 30, 6309–6324. [Google Scholar] [CrossRef]
- Pearce, S.L.; Clarke, D.F.; East, P.D.; Elfekih, S.; Gordon, K.H.J.; Jermiin, L.S.; McGaughran, A.; Oakeshott, J.G.; Papanicolaou, A.; Perera, O.P.; et al. Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive Helicoverpa pest species. BMC Biol. 2017, 15, 63. [Google Scholar] [CrossRef]
- Benelli, G.; Lucchi, A.; Anfora, G.; Bagnoli, B.; Botton, M.; Campos-Herrera, R.; Carlos, C.; Daugherty, M.P.; Gemeno, C.; Harari, A.R.; et al. European grapevine moth, Lobesia botrana. Part I: Biology and ecology. Entomol. Gen. 2023, 43, 261–280. [Google Scholar] [CrossRef]
- Li, X.W.; Fu, K.Y.; Guo, W.C.; Wang, T.Z.; Lu, Y.B. The complete mitochondrial genome of Tuta absoluta (Lepidoptera: Gelechiidae) and genetic variation in two newly invaded populations in China. J. Asia-Pac. Entomol. 2022, 25, 101988. [Google Scholar] [CrossRef]
- Otim, M.H.; Tay, W.T.; Walsh, T.K.; Kanyesigye, D.; Adumo, S.; Abongosi, J.; Ochen, S.; Sserumaga, J.; Alibu, S.; Abalo, G.; et al. Detection of sister-species in invasive populations of the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) from Uganda. PLoS ONE 2018, 13, e0194571. [Google Scholar] [CrossRef]
- Etebari, K.; Hereward, J.; Sailo, A.; Ahoafi, E.M.; Tautua, R.; Tsatsia, H.; Jackson, G.V.; Furlong, M.J. Examination of population genetics of the Coconut Rhinoceros Beetle (Oryctes rhinoceros) and the incidence of its biocontrol agent (Oryctes rhinoceros nudivirus) in the South Pacific Islands. Curr. Res. Insect Sci. 2021, 1, 100015. [Google Scholar] [CrossRef]
- Marshall, S.D.G.; Moore, A.; Vaqalo, M.; Noble, A.; Jackson, T.A. A new haplotype of the coconut rhinoceros beetle, Oryctes rhinoceros, has escaped biological control by Oryctes rhinoceros nudivirus and is invading Pacific Islands. J. Invertebr. Pathol. 2017, 149, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Reil, J.B.; Doorenweerd, C.; San Jose, M.; Sim, S.B.; Geib, S.M.; Rubinoff, D. Transpacific coalescent pathways of coconut rhinoceros beetle biotypes: Resistance to biological control catalyses resurgence of an old pest. Mol. Ecol. 2018, 27, 4459–4474. [Google Scholar] [CrossRef]
- Tanaka, S.; Harrison, R.L.; Arai, H.; Katayama, Y.; Mizutani, T.; Inoue, M.N.; Miles, J.; Marshall, S.D.G.; Kitalong, C.; Nakai, M. Confirmation of Oryctes rhinoceros nudivirus infections in G-haplotype coconut rhinoceros beetles (Oryctes rhinoceros) from Palauan PCR-positive populations. Sci. Rep. 2021, 11, 18820. [Google Scholar] [CrossRef]
- Elfekih, S.; Etter, P.; Tay, W.T.; Fumagalli, M.; Gordon, K.; Johnson, E.; De Barro, P. Genome-wide analyses of the Bemisia tabaci species complex reveal contrasting patterns of admixture and complex demographic histories. PLoS ONE 2018, 13, e0190555. [Google Scholar] [CrossRef]
- Bedford, G.O. Biology, Ecology, and Control of Palm Rhinoceros Beetles. Annu. Rev. Entomol. 1980, 25, 309–339. [Google Scholar] [CrossRef]
- Indriyanti, D.R.; Utami, Z.T.; Setiati, N.; Soesilowati, E.; Slamet, M. Identification of insect pests that attack the coconut plants in Jepara regency. J. Phys. Conf. Ser. 2019, 1321, 032030. [Google Scholar] [CrossRef]
- Paudel, S.; Mansfield, S.; Villamizar, L.F.; Jackson, T.A.; Marshall, S.D.G. Can Biological Control Overcome the Threat From Newly Invasive Coconut Rhinoceros Beetle Populations (Coleoptera: Scarabaeidae)? A Review. Ann. Entomol. Soc. Am. 2021, 114, 538–539. [Google Scholar] [CrossRef] [PubMed]
- Caasi, J.A.S.; Guerrero, A.L.; Yoon, K.; Aquino, L.J.C.; Moore, A.; Oh, H.; Rychtar, J.; Taylor, D. A mathematical model of invasion and control of coconut rhinoceros beetle Oryctes rhinoceros (L.) in Guam. J. Theor. Biol. 2023, 570, 111525. [Google Scholar] [CrossRef] [PubMed]
- Datt, N.; Gosai, R.C.; Ravuiwasa, K.; Timote, V. Key transboundary plant pests of Coconut [Cocos nucifera] in the Pacific Island countries—A biosecurity perspective. Plant Pathol. Quar. 2020, 10, 152–171. [Google Scholar] [CrossRef]
- Ayivi, S.P.G.; Tong, Y.; Storey, K.B.; Yu, D.N.; Zhang, J.Y. The Mitochondrial Genomes of 18 New Pleurosticti (Coleoptera: Scarabaeidae) Exhibit a Novel trnQ-NCR-trnI-trnM Gene Rearrangement and Clarify Phylogenetic Relationships of Subfamilies within Scarabaeidae. Insects 2021, 12, 1025. [Google Scholar] [CrossRef]
- Filipovic, I.; Hereward, J.P.; Rasic, G.; Devine, G.J.; Furlong, M.J.; Etebari, K. The complete mitochondrial genome sequence of Oryctes rhinoceros (Coleoptera: Scarabaeidae) based on long-read nanopore sequencing. PeerJ 2021, 9, e10552. [Google Scholar] [CrossRef]
- Cheng, C.T.; Jeng, M.L.; Tsai, J.F.; Li, C.L.; Wu, L.W. Two mitochondrial genomes of Taiwanese rhinoceros beetles, Oryctes rhinoceros and Eophileurus chinensis (Coleoptera: Scarabaeidae). Mitochondrial DNA B Resour. 2021, 6, 2260–2262. [Google Scholar] [CrossRef]
- Anggraini, E.; Vadamalai, G.; Kong, L.L.; Mat, M.; Lau, W.H. Variants in the mitochondrial genome sequence of Oryctes rhinoceros (Coleoptera: Scarabaeidae) infected with Oryctes rhinoceros nudivirus in oil palm and coconut plantations. Sci. Rep. 2023, 13, 16850. [Google Scholar] [CrossRef]
- Bernt, M.; Donath, A.; Juhling, F.; Externbrink, F.; Florentz, C.; Fritzsch, G.; Putz, J.; Middendorf, M.; Stadler, P.F. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 2013, 69, 313–319. [Google Scholar] [CrossRef]
- Tay, W.T.; Popa-Baez, A.; Dulla, G.; Blas, A.; Sundalangi, J.; Meldy, H.; Bennette Millado, J.; Melzer, M.; Rane, R.; Hogarty, T.; et al. Mitochondrial COI, ATP6, and COIII Complete Sequence Database for Coconut Rhinoceros Beetles (Oryctes rhinoceros) from Native and Introduced Ranges; CSIRO: Canberra, Australia, 2024; Volume 1. [Google Scholar] [CrossRef]
- Tay, W.T.; Popa-Baez, A.; Dulla, G.; Blas, A.; Sundalangi, J.; Meldy, H.; Bennette Millado, J.; Melzer, M.; Rane, R.; Hogarty, T.; et al. Draft Mitochondrial Genome Protein Coding Genes of the Coconut Rhinoceros Beetles (Oryctes rhinoceros) from Native and Introduced Ranges; CSIRO: Canberra, Australia, 2024; Volume 1. [Google Scholar] [CrossRef]
- Katoh, K.; Misawa, K.; Kuma, K.; Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Trifinopoulos, J.; Nguyen, L.T.; von Haeseler, A.; Minh, B.Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016, 44, W232–W235. [Google Scholar] [CrossRef] [PubMed]
- Hoang, D.T.; Chernomor, O.; von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Huson, D.H.; Richter, D.C.; Rausch, C.; Dezulian, T.; Franz, M.; Rupp, R. Dendroscope: An interactive viewer for large phylogenetic trees. BMC Bioinform. 2007, 8, 460. [Google Scholar] [CrossRef]
- Kaminski, M.M.; Abudayyeh, O.O.; Gootenberg, J.S.; Zhang, F.; Collins, J.J. CRISPR-based diagnostics. Nat. Biomed. Eng. 2021, 5, 643–656. [Google Scholar] [CrossRef]
- Gill, P.; Hadian Amree, A. AS-LAMP: A New and Alternative Method for Genotyping. Avicenna J. Med. Biotechnol. 2020, 12, 2–8. [Google Scholar] [PubMed]
- Hoffmann, B.D.; Tay, W.T.; Blas, A.L. Biosecurity interceptions of Coconut Rhinoceros Beetle Oryctes rhinoceros. Manag. Biol. Invasions 2024, 15, 437–443. [Google Scholar] [CrossRef]
- Annon. Rhino beetle takes root. Marshall Isl. J. 2023. Available online: https://marshallislandsjournal.com/rhino-beetle-takes-root/ (accessed on 17 March 2024).
- HDOA (Hawaii Department of Agriculture). Coconut Rhinoceros Beetle Information. Available online: https://hdoa.hawaii.gov/pi/main/crb/ (accessed on 10 April 2024).
- Anderson, C.J.; Oakeshott, J.G.; Tay, W.T.; Gordon, K.H.J.; Zwick, A.; Walsh, T.K. Hybridization and gene flow in the mega-pest lineage of moth, Helicoverpa. Proc. Natl. Acad. Sci. USA 2018, 115, 5034–5039. [Google Scholar] [CrossRef]
Sample Code | Country | Specimen Collection Date | Haplotype Designation Based on Partial mtCOI ([35]) | mtCOI_ G1779A | Designation Based on Partial ATP6 and COIII (This Study) | ATP6_ T4430C | COIII_ C5390T |
---|---|---|---|---|---|---|---|
04-Or5 | Guam | 2014 | CRB-G (clade I) | G | Guam | T | C |
NZ-20-738 | Guam | 2020 | CRB-G (clade I) | G | Guam | T | C |
Guam-01_GDoA | Guam | 2022 | CRB-G (clade I) | G | Guam | T | C |
Guam-02_GDoA | Guam | 2022 | CRB-G (clade I) | G | Guam | T | C |
Guam-09_GDoA | Guam | 2022 | CRB-G (clade I) | G | Guam | T | C |
Guam-13_GDoA | Guam | 2022 | CRB-G (clade I) | G | Guam | T | C |
Guam-17_GDoA | Guam | 2022 | CRB-G (clade I) | G | Guam | T | C |
MT457815 | Solomon Is. | 2019 | CRB-G (clade I) | G | not Guam | C | T |
MW632131 | Taiwan | 2002 | CRB-G (clade I) | G | not Guam | C | T |
MY-A-02 | Malaysia | 2022 | CRB-S (clade IV) | A | not Guam | C | T |
MY-A-04 | Malaysia | 2022 | CRB-S (clade IV) | A | not Guam | C | T |
MY-A-10 | Malaysia | 2022 | CRB-S (clade III) | A | not Guam | C | T |
ON764800 | Malaysia | 2021 | CRB-S (clade III) | A | not Guam | C | T |
OP694176 | Malaysia | 2021 | CRB-S (clade III) | A | not Guam | C | T |
OP694175 | Malaysia | 2021 | CRB-S (clade IV) | A | not Guam | C | T |
ON764799 | Malaysia | 2020 | CRB-S (clade II) | A | not Guam | C | T |
ON764801 | Malaysia | 2021 | CRB-S (clade II) | A | not Guam | C | T |
PALAU-01 | Palau | 2022 | CRB-S (clade IV) | A | not Guam | C | T |
PALAU-02 | Palau | 2022 | CRB-S (clade IV) | A | not Guam | C | T |
PALAU-03 | Palau | 2022 | CRB-G (clade I) | G | not Guam | C | T |
PALAU-04 | Palau | 2022 | CRB-G (clade I) | G | not Guam | C | T |
Phil-01 | Philippines | 2022 | CRB-G (clade I) | G | not Guam | C | T |
Phil-02 | Philippines | 2022 | CRB-G (clade I) | G | not Guam | C | T |
Phil-05 | Philippines | 2022 | CRB-G (clade I) | G | not Guam | C | T |
Phil-10 | Philippines | 2022 | CRB-G (clade I) | G | not Guam | C | T |
IND-H01 | Indonesia | 2021 | CRB-S (clade III) | A | not Guam | C | T |
IND-H02 | Indonesia | 2021 | CRB-S (clade IV) | A | not Guam | C | T |
IND-H10 | Indonesia | 2021 | CRB-S (clade III) | A | not Guam | C | T |
IND-J14 | Indonesia | 2022 | CRB-S (clade IV) | A | not Guam | C | T |
IND-J15 | Indonesia | 2022 | CRB-S (clade IV) | A | not Guam | C | T |
IND-J20 | Indonesia | 2022 | CRB-S (clade IV) | A | not Guam | C | T |
OK484312 | unspecified | unspecified | Not applicable | T | Not applicable | T | T |
Nucleotide Position | Primer Name: Primer Sequence (5′-3′) | Restriction Enzyme | CRB-G (Clade I) [35] | Other CRB |
---|---|---|---|---|
nt4192-4216 | CRB-ATP6-F: ATGAATTCAAACTTTTAATTGGACC | BpmI (CTCCAG) | T | C |
nt4685-4663 | CRB-ATP6-R: GGAGTAAAGAGTTCTAAGGATAG | 271 + 223 bp | 494 bp | |
nt5017-5039 | CRB-COIII-F: CTTAGCTCCTACAATCGAATTAG | Uncut | C | T |
nt5485-5462 | CRB-COIII-R: TCTACCTCATCAGTAAATGGAAAT | 469 bp | 469 bp |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tay, W.T.; Marshall, S.D.G.; Popa-Baez, A.D.; Dulla, G.F.J.; Blas, A.L.; Sambiran, J.W.; Hosang, M.; Millado, J.B.H.; Melzer, M.; Rane, R.V.; et al. Alternative DNA Markers to Detect Guam-Specific CRB-G (Clade I) Oryctes rhinoceros (Coleoptera: Scarabaeidae) Indicate That the Beetle Did Not Disperse from Guam to the Solomon Islands or Palau. Diversity 2024, 16, 634. https://doi.org/10.3390/d16100634
Tay WT, Marshall SDG, Popa-Baez AD, Dulla GFJ, Blas AL, Sambiran JW, Hosang M, Millado JBH, Melzer M, Rane RV, et al. Alternative DNA Markers to Detect Guam-Specific CRB-G (Clade I) Oryctes rhinoceros (Coleoptera: Scarabaeidae) Indicate That the Beetle Did Not Disperse from Guam to the Solomon Islands or Palau. Diversity. 2024; 16(10):634. https://doi.org/10.3390/d16100634
Chicago/Turabian StyleTay, Wee Tek, Sean D. G. Marshall, Angel David Popa-Baez, Glenn F. J. Dulla, Andrea L. Blas, Juniaty W. Sambiran, Meldy Hosang, Justine Bennette H. Millado, Michael Melzer, Rahul V. Rane, and et al. 2024. "Alternative DNA Markers to Detect Guam-Specific CRB-G (Clade I) Oryctes rhinoceros (Coleoptera: Scarabaeidae) Indicate That the Beetle Did Not Disperse from Guam to the Solomon Islands or Palau" Diversity 16, no. 10: 634. https://doi.org/10.3390/d16100634
APA StyleTay, W. T., Marshall, S. D. G., Popa-Baez, A. D., Dulla, G. F. J., Blas, A. L., Sambiran, J. W., Hosang, M., Millado, J. B. H., Melzer, M., Rane, R. V., Hogarty, T., Cho, D. Y. -C., Alouw, J. C., Faheem, M., & Hoffmann, B. D. (2024). Alternative DNA Markers to Detect Guam-Specific CRB-G (Clade I) Oryctes rhinoceros (Coleoptera: Scarabaeidae) Indicate That the Beetle Did Not Disperse from Guam to the Solomon Islands or Palau. Diversity, 16(10), 634. https://doi.org/10.3390/d16100634