Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = coaxial co-extrusion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4305 KiB  
Article
Pellet-Based Extrusion Additive Manufacturing of Lightweight Parts Using Inflatable Hollow Extrudates
by Md Ahsanul Habib, Rawan Elsersawy and Mohammad Abu Hasan Khondoker
J. Manuf. Mater. Process. 2025, 9(2), 37; https://doi.org/10.3390/jmmp9020037 - 29 Jan 2025
Viewed by 1411
Abstract
Additive manufacturing (AM) has become a key element of Industry 4.0, particularly the extrusion AM (EAM) of thermoplastic materials, which is recognized as the most widely used technology. Fused Filament Fabrication (FFF), however, depends on expensive commercially available filaments, making pellet extruder-based EAM [...] Read more.
Additive manufacturing (AM) has become a key element of Industry 4.0, particularly the extrusion AM (EAM) of thermoplastic materials, which is recognized as the most widely used technology. Fused Filament Fabrication (FFF), however, depends on expensive commercially available filaments, making pellet extruder-based EAM techniques more desirable. Large-format EAM systems could benefit from printing lightweight objects with reduced material use and lower power consumption by utilizing hollow rather than solid extrudates. In this study, a custom extruder head was designed and an EAM system capable of extruding inflatable hollow extrudates from a variety of materials was developed. By integrating a co-axial nozzle-needle system, a thermoplastic shell was extruded while creating a hollow core using pressurized nitrogen gas. This method allows for the production of objects with gradient part density and varied mechanical properties by controlling the inflation of the hollow extrudates. The effects of process parameters— such as extrusion temperature, extrusion speed, and gas pressure were investigated—using poly-lactic acid (PLA) and styrene-ethylene-butylene-styrene (SEBS) pellets. The preliminary tests identified the optimal range of these parameters for consistent hollow extrudates. We then varied the parameters to determine their impact on the dimensions of the extrudates, supported by analyses of microscopic images taken with an optical microscope. Our findings reveal that pressure is the most influential factor affecting extrudate dimensions. In contrast, variations in temperature and extrusion speed had a relatively minor impact, whereas changes in pressure led to significant alterations in the extrudate’s size and shape. Full article
Show Figures

Figure 1

7 pages, 658 KiB  
Proceeding Paper
Additive Manufacturing of Inflatable Thermoplastic Extrudates Using a Pellet Extruder
by Md Ahsanul Habib and Mohammad Abu Hasan Khondoker
Eng. Proc. 2024, 76(1), 59; https://doi.org/10.3390/engproc2024076059 - 30 Oct 2024
Viewed by 761
Abstract
Additive manufacturing (AM) has emerged as one of the core components of the fourth industrial revolution, Industry 4.0. Among others, the extrusion AM (EAM) of thermoplastic materials has been named as the most widely adopted technology. Fused filament fabrication (FFF) relies on the [...] Read more.
Additive manufacturing (AM) has emerged as one of the core components of the fourth industrial revolution, Industry 4.0. Among others, the extrusion AM (EAM) of thermoplastic materials has been named as the most widely adopted technology. Fused filament fabrication (FFF) relies on the commercial availability of expensive filaments; hence, pellet extruder-based EAM techniques are desired. Large-format EAM systems would benefit from the ability to print lightweight objects with less materials and lower power consumption, which is possible with the use of hollow extrudates rather than solid extrudates to print objects. In this work, we designed a custom extruder head and developed an EAM system that allows the extrusion of inflatable hollow extrudates of a relatively wide material choice. By incorporating a co-axial nozzle–needle system, a thermoplastic shell was extruded while the hollow core was generated by using pressurized nitrogen gas. The ability to print using hollow extrudates with controllable inflation allows us to print objects with gradient part density with different degrees of mechanical properties. In this article, the effect of different process parameters, namely, extrusion temperature, extrusion speed, and gas pressure, were studied using poly-lactic acid (PLA) pellets. Initially, a set of preliminary tests was conducted to identify the maximum and minimum ranges of these parameters that result in consistent hollow extrudates. Finally, the parameters were varied to understand how they affect the core diameter and shell thickness of the hollow extrudates. These findings were supported by analyses of microscopic images taken under an optical microscope. Full article
Show Figures

Figure 1

21 pages, 14432 KiB  
Article
Facile Formation of Multifunctional Biomimetic Hydrogel Fibers for Sensing Applications
by Mengwei Jia, Mingle Guan, Ryan Yao, Yuan Qing, Xiaoya Hou and Jie Zhang
Gels 2024, 10(9), 590; https://doi.org/10.3390/gels10090590 - 13 Sep 2024
Cited by 1 | Viewed by 1664
Abstract
To face the challenges in preparing hydrogel fibers with complex structures and functions, this study utilized a microfluidic coaxial co-extrusion technique to successfully form functional hydrogel fibers through rapid ionic crosslinking. Functional hydrogel fibers with complex structures, including linear fibers, core–shell structure fibers, [...] Read more.
To face the challenges in preparing hydrogel fibers with complex structures and functions, this study utilized a microfluidic coaxial co-extrusion technique to successfully form functional hydrogel fibers through rapid ionic crosslinking. Functional hydrogel fibers with complex structures, including linear fibers, core–shell structure fibers, embedded helical channels, hollow tubes, and necklaces, were generated by adjusting the composition of internal and external phases. The characteristic parameters of the hydrogel fibers (inner and outer diameter, helix generation position, pitch, etc.) were achieved by adjusting the flow rate of the internal and external phases. As biocompatible materials, hydrogel fibers were endowed with electrical conductivity, temperature sensitivity, mechanical enhancement, and freeze resistance, allowing for their use as temperature sensors for human respiratory monitoring and other biomimetic application developments. The hydrogel fibers had a conductivity of up to 22.71 S/m, a response time to respiration of 37 ms, a recovery time of 1.956 s, and could improve the strength of respiration; the tensile strength at break up to 8.081 MPa, elongation at break up to 159%, and temperature coefficient of resistance (TCR) up to −13.080% °C−1 were better than the existing related research. Full article
Show Figures

Graphical abstract

18 pages, 8493 KiB  
Article
Hybrid Resorbable 3D-Printed Mesh/Electrospun Nanofibrous Drug/Biomolecule-Eluting Mats for Alveolar Ridge Preservation
by Shuen-Yeo Chen, Fu-Ying Lee, Ren-Chin Wu, Chien-En Chao, Chia-Jung Lu and Shih-Jung Liu
Polymers 2023, 15(16), 3445; https://doi.org/10.3390/polym15163445 - 18 Aug 2023
Cited by 3 | Viewed by 1674
Abstract
In this research study, we developed hybrid resorbable three-dimensional (3D)-printed mesh/electrospun nanofibrous biomolecule-eluting mats for alveolar ridge preservation. The fabrication process involved the use of 3D printing and coaxial electrospinning technologies. Specifically, we utilized a lab-developed solution-extrusion 3D printer to fabricate polycaprolactone (PCL) [...] Read more.
In this research study, we developed hybrid resorbable three-dimensional (3D)-printed mesh/electrospun nanofibrous biomolecule-eluting mats for alveolar ridge preservation. The fabrication process involved the use of 3D printing and coaxial electrospinning technologies. Specifically, we utilized a lab-developed solution-extrusion 3D printer to fabricate polycaprolactone (PCL) meshes. Then, bi-layered poly(lactic-co-glycolic acid) (PLGA) nanofibrous membranes, which embedded ibuprofen and epidermal growth factor (EGF), were prepared utilizing electrospinning and coaxial electrospinning techniques, respectively. To ensure the quality of the produced mesh and spun nanofibers, we carried out a characterization process. Furthermore, we estimated the in vitro and in vivo release characteristics of ibuprofen and EGF, respectively, using high-performance liquid chromatography and enzyme-linked immunosorbent assays. In addition, we assessed the effectiveness of hybrid nanofibrous mats for preserving the alveolar ridge by adopting an animal model and conducting a histology examination. The study findings demonstrate that the nanofibrous mats provided a continuous discharge of ibuprofen and EGF for more than four weeks. Moreover, the animal test carried out in vivo showed that animals implanted with this combination of mesh and drug-eluting mats displayed considerably greater mobility than those without mats. The histological analysis revealed no unfavorable impacts from the drug-eluting mats. Our study demonstrated the successful fabrication of resorbable drug-eluting nanofibrous mats for alveolar ridge preservation by utilizing both 3D printing and coaxial electrospinning technologies. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

16 pages, 4653 KiB  
Review
Alginate Core-Shell Capsules Production through Coextrusion Methods: Principles and Technologies
by Chanez Bennacef, Sylvie Desobry-Banon, Laurent Probst and Stéphane Desobry
Mar. Drugs 2023, 21(4), 235; https://doi.org/10.3390/md21040235 - 11 Apr 2023
Cited by 10 | Viewed by 4772
Abstract
This paper provides an overview of coextrusion methods for encapsulation. Encapsulation involves the coating or entrapment of a core material such as food ingredients, enzymes, cells, or bioactives. Encapsulation can help compounds add to other matrices, stabilize compounds during storage, or enable controlled [...] Read more.
This paper provides an overview of coextrusion methods for encapsulation. Encapsulation involves the coating or entrapment of a core material such as food ingredients, enzymes, cells, or bioactives. Encapsulation can help compounds add to other matrices, stabilize compounds during storage, or enable controlled delivery. This review explores the principal l coextrusion methods available that can be used to produce core-shell capsules through the use of coaxial nozzles. Four methods for encapsulation by coextrusion are examined in detail, including dripping, jet cutting, centrifugal, and electrohydrodynamic systems. The targeted capsule size determines the appropriate parameters for each method. Coextrusion technology is a promising encapsulation technique able to generate core-shell capsules in a controlled manner, which can be applied to cosmetic, food, pharmaceutical, agriculture, and textile industries. Coextrusion is an excellent way to preserve active molecules and present a significant economic interest. Full article
(This article belongs to the Special Issue Alginate-Based Biomaterials and Drug Delivery 2nd Edition)
Show Figures

Figure 1

16 pages, 4620 KiB  
Article
Shape Fidelity Evaluation of Alginate-Based Hydrogels through Extrusion-Based Bioprinting
by Mikail Temirel, Sajjad Rahmani Dabbagh and Savas Tasoglu
J. Funct. Biomater. 2022, 13(4), 225; https://doi.org/10.3390/jfb13040225 - 7 Nov 2022
Cited by 21 | Viewed by 4650
Abstract
Extrusion-based 3D bioprinting is a promising technique for fabricating multi-layered, complex biostructures, as it enables multi-material dispersion of bioinks with a straightforward procedure (particularly for users with limited additive manufacturing skills). Nonetheless, this method faces challenges in retaining the shape fidelity of the [...] Read more.
Extrusion-based 3D bioprinting is a promising technique for fabricating multi-layered, complex biostructures, as it enables multi-material dispersion of bioinks with a straightforward procedure (particularly for users with limited additive manufacturing skills). Nonetheless, this method faces challenges in retaining the shape fidelity of the 3D-bioprinted structure, i.e., the collapse of filament (bioink) due to gravity and/or spreading of the bioink owing to the low viscosity, ultimately complicating the fabrication of multi-layered designs that can maintain the desired pore structure. While low viscosity is required to ensure a continuous flow of material (without clogging), a bioink should be viscous enough to retain its shape post-printing, highlighting the importance of bioink properties optimization. Here, two quantitative analyses are performed to evaluate shape fidelity. First, the filament collapse deformation is evaluated by printing different concentrations of alginate and its crosslinker (calcium chloride) by a co-axial nozzle over a platform to observe the overhanging deformation over time at two different ambient temperatures. In addition, a mathematical model is developed to estimate Young’s modulus and filament collapse over time. Second, the printability of alginate is improved by optimizing gelatin concentrations and analyzing the pore size area. In addition, the biocompatibility of proposed bioinks is evaluated with a cell viability test. The proposed bioink (3% w/v gelatin in 4% alginate) yielded a 98% normalized pore number (high shape fidelity) while maintaining >90% cell viability five days after being bioprinted. Integration of quantitative analysis/simulations and 3D printing facilitate the determination of the optimum composition and concentration of different elements of a bioink to prevent filament collapse or bioink spreading (post-printing), ultimately resulting in high shape fidelity (i.e., retaining the shape) and printing quality. Full article
Show Figures

Figure 1

25 pages, 6295 KiB  
Article
3D Bioprinting of Prevascularized Full-Thickness Gelatin-Alginate Structures with Embedded Co-Cultures
by Bastian Böttcher, Astrid Pflieger, Jan Schumacher, Berit Jungnickel and Karl-Heinz Feller
Bioengineering 2022, 9(6), 242; https://doi.org/10.3390/bioengineering9060242 - 31 May 2022
Cited by 10 | Viewed by 4271
Abstract
The use of bioprinting allows the creation of complex three-dimensional cell laden grafts with spatial placements of different cell lines. However, a major challenge is insufficient nutrient transfer, especially with the increased size of the graft causing necrosis and reduced proliferation. A possibility [...] Read more.
The use of bioprinting allows the creation of complex three-dimensional cell laden grafts with spatial placements of different cell lines. However, a major challenge is insufficient nutrient transfer, especially with the increased size of the graft causing necrosis and reduced proliferation. A possibility to improve nutrient support is the integration of tubular structures for reducing diffusion paths. In this study the influence of prevascularization in full-thickness grafts on cell growth with a variation of cultivation style and cellular composition was investigated. To perform this, the rheological properties of the used gelatin-alginate hydrogel as well as possibilities to improve growth conditions in the hydrogel were assessed. Prevascularized grafts were manufactured using a pneumatic extrusion-based bioprinter with a coaxial extrusion tool. The prevascularized grafts were statically and dynamically cultured with a monoculture of HepG2 cells. Additionally, a co-culture of HepG2 cells, fibroblasts and HUVEC-TERT2 was created while HUVEC-TERT2s were concentrically placed around the hollow channels. A static culture of prevascularized grafts showed short-term improvements in cell proliferation compared to avascular grafts, while a perfusion-based culture showed improvements in mid-term cultivation times. The cultivation of the co-culture indicated the formation of vascular structures from the hollow channels toward avascular areas. According to these results, the integration of prevascular structures show beneficial effects for the in vitro cultivation of bioprinted grafts for which its impact can be increased in larger grafts. Full article
Show Figures

Graphical abstract

12 pages, 4528 KiB  
Communication
Biofabrication of Collagen Tissue-Engineered Blood Vessels with Direct Co-Axial Extrusion
by Èlia Bosch-Rué, Leire Díez-Tercero, Luis M. Delgado and Román A. Pérez
Int. J. Mol. Sci. 2022, 23(10), 5618; https://doi.org/10.3390/ijms23105618 - 17 May 2022
Cited by 13 | Viewed by 3782
Abstract
Cardiovascular diseases are considered one of the worldwide causes of death, with atherosclerosis being the most predominant. Nowadays, the gold standard treatment is blood vessel replacement by bypass surgery; however, autologous source is not always possible. Thereby, tissue-engineered blood vessels (TEBVs) are emerging [...] Read more.
Cardiovascular diseases are considered one of the worldwide causes of death, with atherosclerosis being the most predominant. Nowadays, the gold standard treatment is blood vessel replacement by bypass surgery; however, autologous source is not always possible. Thereby, tissue-engineered blood vessels (TEBVs) are emerging as a potential alternative source. In terms of composition, collagen has been selected in many occasions to develop TEBVs as it is one of the main extracellular matrix components of arteries. However, it requires specific support or additional processing to maintain the tubular structure and appropriate mechanical properties. Here, we present a method to develop support-free collagen TEBVs with co-axial extrusion in a one-step procedure with high concentrated collagen. The highest concentration of collagen of 20 mg/mL presented a burst pressure of 619.55 ± 48.77 mmHg, being able to withstand perfusion of 10 dynes/cm2. Viability results showed a high percentage of viability (86.1 and 85.8% with 10 and 20 mg/mL, respectively) of human aortic smooth muscle cells (HASMCs) and human umbilical vein endothelial cells (HUVEC) after 24 h extrusion. Additionally, HUVEC and HASMCs were mainly localized in their respective layers, mimicking the native distribution. All in all, this approach allows the direct extrusion of collagen TEBVs in a one-step procedure with enough mechanical properties to be perfused. Full article
(This article belongs to the Special Issue Biofabrication for Tissue Engineering Applications)
Show Figures

Figure 1

18 pages, 5006 KiB  
Article
Characterization of the Interface between Aluminum and Iron in Co-Extruded Semi-Finished Products
by Susanne Elisabeth Thürer, Kai Peters, Torsten Heidenblut, Norman Heimes, Julius Peddinghaus, Florian Nürnberger, Bernd-Arno Behrens, Hans Jürgen Maier and Christian Klose
Materials 2022, 15(5), 1692; https://doi.org/10.3390/ma15051692 - 24 Feb 2022
Cited by 3 | Viewed by 2414
Abstract
Within the framework of the Collaborative Research Center 1153, we investigated novel process chains for the production of bulk components with different metals as joining partners. In the present study, the co-extrusion of coaxially reinforced hollow profiles was employed to manufacture semi-finished products [...] Read more.
Within the framework of the Collaborative Research Center 1153, we investigated novel process chains for the production of bulk components with different metals as joining partners. In the present study, the co-extrusion of coaxially reinforced hollow profiles was employed to manufacture semi-finished products for a subsequent die-forging process, which was then used for the manufacture of hybrid bearing bushings. The hybrid hollow profiles, made of the aluminum alloy EN AW-6082 paired with either the case-hardening steel 20MnCr5, the stainless steel X5CrNi18-10, or the rolling bearing steel 100Cr6, were produced by Lateral Angular Co-Extrusion. Push-out tests on hybrid hollow sections over the entire sample cross-section showed shear strengths of 44 MPa ± 8 MPa (100Cr6) up to 63 MPa ± 5 MPa (X5CrNi18-10). In particular, the influence of force and form closure on the joint zone could be determined using specimen segments tested in shear compression. Locally, shear strengths of up to 131 MPa (X5CrNi18-10) were demonstrated in the shear compression test. From these samples, lamellae for microstructural analysis were prepared with a Focused Ion Beam. Detailed analyses showed that for all material combinations, a material bond in the form of an ultra-thin intermetallic phase seam with a thickness of up to 50 nm could be established. Full article
Show Figures

Figure 1

14 pages, 3343 KiB  
Article
Floating Ricobendazole Delivery Systems: A 3D Printing Method by Co-Extrusion of Sodium Alginate and Calcium Chloride
by Giovanni Falcone, Juan P. Real, Santiago D. Palma, Rita P. Aquino, Pasquale Del Gaudio, Emilia Garofalo and Paola Russo
Int. J. Mol. Sci. 2022, 23(3), 1280; https://doi.org/10.3390/ijms23031280 - 24 Jan 2022
Cited by 22 | Viewed by 4697
Abstract
At present, the use of benzimidazole drugs in veterinary medicine is strongly limited by both pharmacokinetics and formulative issues. In this research, the possibility of applying an innovative semi-solid extrusion 3D printing process in a co-axial configuration was speculated, with the aim of [...] Read more.
At present, the use of benzimidazole drugs in veterinary medicine is strongly limited by both pharmacokinetics and formulative issues. In this research, the possibility of applying an innovative semi-solid extrusion 3D printing process in a co-axial configuration was speculated, with the aim of producing a new gastro-retentive dosage form loaded with ricobendazole. To obtain the drug delivery system (DDS), the ionotropic gelation of alginate in combination with a divalent cation during the extrusion was exploited. Two feeds were optimized in accordance with the printing requirements and the drug chemical properties: the crosslinking ink, i.e., a water ethanol mixture containing CaCl2 at two different ratios 0.05 M and 0.1 M, hydroxyethyl cellulose 2% w/v, Tween 85 0.1% v/v and Ricobendazole 5% w/v; and alginate ink, i.e., a sodium alginate solution at 6% w/v. The characterization of the dried DDS obtained from the extrusion of gels containing different amounts of calcium chloride showed a limited effect on the ink extrudability of the crosslinking agent, which on the contrary strongly influenced the final properties of the DDS, with a difference in the polymeric matrix toughness and resulting effects on floating time and drug release. Full article
(This article belongs to the Special Issue 3D Printing and Biomaterials for Biological and Medical Application)
Show Figures

Figure 1

16 pages, 3412 KiB  
Article
Fabrication of Drug-Eluting Polycaprolactone/poly(lactic-co-glycolic Acid) Prolapse Mats Using Solution-Extrusion 3D Printing and Coaxial Electrospinning Techniques
by Yi-Pin Chen, Tsia-Shu Lo, Yu-Ting Lin, Yu-Han Chien, Chia-Jung Lu and Shih-Jung Liu
Polymers 2021, 13(14), 2295; https://doi.org/10.3390/polym13142295 - 13 Jul 2021
Cited by 31 | Viewed by 3824
Abstract
We developed biodegradable drug-eluting prolapse mats using solution-extrusion 3D printing and coaxial electrospinning techniques. The mats were composed of polycaprolactone (PCL) mesh and lidocaine-, estradiol-, metronidazole-, and connective tissue growth factor (CTGF)-incorporated poly(lactic-co-glycolic acid) (PLGA) nanofibers that mimic the structure of [...] Read more.
We developed biodegradable drug-eluting prolapse mats using solution-extrusion 3D printing and coaxial electrospinning techniques. The mats were composed of polycaprolactone (PCL) mesh and lidocaine-, estradiol-, metronidazole-, and connective tissue growth factor (CTGF)-incorporated poly(lactic-co-glycolic acid) (PLGA) nanofibers that mimic the structure of the natural extracellular matrix of most connective tissues. The mechanical properties of degradable prolapse membrane were assessed and compared to commercial non-degradable polypropylene knitted meshes clinically used for pelvic organ prolapse (POP) repair. The release behaviors of the drug-loaded hybrid degradable membranes were also characterized. The experimental results suggest that 3D-printed PCL meshes exhibited comparable strengths to commercial POP meshes and survived through 10,000 cycles of fatigue test without breakage. Hybrid PCL meshes/PLGA nanofibrous membranes provided a sustainable release of metronidazole, lidocaine, and estradiol for 4, 25, and 30 days, respectively, in vitro. The membranes further liberated high levels of CTGF for more than 30 days. The animal tests show that the mechanical property of PCL mesh decreased with time, mainly due to degradation of the polymers post-implantation. No adverse effect of the mesh/nanofibers was noted in the histological images. By adopting solution-extrusion 3D printing and coaxial electrospinning, degradable drug-eluting membranes can be fabricated for POP applications. Full article
(This article belongs to the Special Issue Precise Polymer Processing Technology)
Show Figures

Graphical abstract

16 pages, 5241 KiB  
Article
Characterization and Modeling of Intermetallic Phase Formation during the Joining of Aluminum and Steel in Analogy to Co-Extrusion
by Bernd-Arno Behrens, Hans Jürgen Maier, Christian Klose, Hendrik Wester, Susanne Elisabeth Thürer, Norman Heimes and Johanna Uhe
Metals 2020, 10(12), 1582; https://doi.org/10.3390/met10121582 - 26 Nov 2020
Cited by 4 | Viewed by 2608
Abstract
The reinforcement of light metal components with steel allows to increase the strength of the part while keeping the weight comparatively low. Lateral angular co-extrusion (LACE) offers the possibility to produce hybrid coaxial profiles consisting of steel and aluminum. In the present study, [...] Read more.
The reinforcement of light metal components with steel allows to increase the strength of the part while keeping the weight comparatively low. Lateral angular co-extrusion (LACE) offers the possibility to produce hybrid coaxial profiles consisting of steel and aluminum. In the present study, the effect of the process parameters temperature, contact pressure and time on the metallurgical bonding process and the development of intermetallic phases was investigated. Therefore, an analogy experiment was developed to reproduce the process conditions during co-extrusion using a forming dilatometer. Based on scanning electron microscopy analysis of the specimens, the intermetallic phase seam thickness was measured to calculate the resulting diffusion coefficients. Nanoindentation and energy dispersive X-ray spectroscopy measurements were carried out to determine the element distribution and estimate properties within the joining zone. The proposed numerical model for the calculation of the resulting intermetallic phase seam width was implemented into a finite element (FE) software using a user-subroutine and validated by experimental results. Using the subroutine, a numerical prediction of the resulting intermetallic phase thicknesses is possible during the tool design, which can be exploited to avoid the weakening of the component strength due to formation of wide intermetallic phase seams. Full article
(This article belongs to the Special Issue Hybrid Bulk Metal Components)
Show Figures

Figure 1

15 pages, 5494 KiB  
Article
Lateral Angular Co-Extrusion: Geometrical and Mechanical Properties of Compound Profiles
by Susanne Elisabeth Thürer, Julius Peddinghaus, Norman Heimes, Ferdi Caner Bayram, Burak Bal, Johanna Uhe, Bernd-Arno Behrens, Hans Jürgen Maier and Christian Klose
Metals 2020, 10(9), 1162; https://doi.org/10.3390/met10091162 - 28 Aug 2020
Cited by 14 | Viewed by 3804
Abstract
A novel co-extrusion process for the production of coaxially reinforced hollow profiles has been developed. Using this process, hybrid hollow profiles made of the aluminum alloy EN AW-6082 and the case-hardening steel 20MnCr5 (AISI 5120) were produced, which can be forged into hybrid [...] Read more.
A novel co-extrusion process for the production of coaxially reinforced hollow profiles has been developed. Using this process, hybrid hollow profiles made of the aluminum alloy EN AW-6082 and the case-hardening steel 20MnCr5 (AISI 5120) were produced, which can be forged into hybrid bearing bushings by subsequent die forging. For the purpose of co-extrusion, a modular tooling concept was developed where steel tubes made of 20MnCr5 are fed laterally into the tool. This LACE (lateral angular co-extrusion) process allows for a variation of the volume fraction of the reinforcement by using steel tubes with different wall thicknesses, which enabled the production of compound profiles having reinforcement contents of either 14 vol.% or 34 vol.%. The shear strength of the bonding area of these samples was determined in push-out tests. Additionally, mechanical testing of segments of the hybrid profiles using shear compression tests was employed to provide information about the influence of different bonding mechanisms on the strength of the composite zone. Full article
(This article belongs to the Special Issue Hybrid Bulk Metal Components)
Show Figures

Figure 1

13 pages, 3598 KiB  
Article
Directly Printed Hollow Connectors for Microfluidic Interconnection with UV-Assisted Coaxial 3D Printing
by Qianwen Xu, Jeffery Chi Chuen Lo and Shi-Wei Ricky Lee
Appl. Sci. 2020, 10(10), 3384; https://doi.org/10.3390/app10103384 - 14 May 2020
Cited by 15 | Viewed by 4452
Abstract
Effective and reliable interconnections are crucial for microfluidics to connect with the macro world. Current microfluidic interfaces are still bulky, expensive, or with issues of clogging and material limitation. In this study, a novel ultraviolet (UV)-assisted coaxial three-dimensional (3D) printing approach was proposed [...] Read more.
Effective and reliable interconnections are crucial for microfluidics to connect with the macro world. Current microfluidic interfaces are still bulky, expensive, or with issues of clogging and material limitation. In this study, a novel ultraviolet (UV)-assisted coaxial three-dimensional (3D) printing approach was proposed to fabricate hollow microfluidic connectors with advantages of rapid prototyping, fixture-free, and materials compatible. An assembled coaxial nozzle was designed to enable co-flow extrusion, where the inner flow (water) served as the sacrificial layer and the outer flow (adhesive) was cured for shell formation. Furthermore, a converged UV-LED light source was attached to the coaxial nozzle for UV curing of adhesives. UV rheological characterizations were performed to study the UV curing kinematics, and the gelation time was employed to describe the state transition behaviors of UV curable adhesives used in the study. To explore requirements for successful hollow connectors direct printing, processing criteria such as co-flow regime and pre-cure time were investigated. The hollow connectors with an inner channel diameter of ~150 μ m and a height of 5 mm were successfully printed on polymethyl methacrylate (PMMA) and glass substrate. The integration feasibility of the proposed method was also demonstrated by the presented microfluidic device with printed hollow connectors. Full article
(This article belongs to the Special Issue Advances in 3D Printing for Miniaturized Instruments)
Show Figures

Figure 1

14 pages, 4977 KiB  
Article
A Numerical Study on Co-Extrusion to Produce Coaxial Aluminum-Steel Compounds with Longitudinal Weld Seams
by Bernd-Arno Behrens, Christian Klose, Alexander Chugreev, Norman Heimes, Susanne Elisabeth Thürer and Johanna Uhe
Metals 2018, 8(9), 717; https://doi.org/10.3390/met8090717 - 13 Sep 2018
Cited by 10 | Viewed by 5406
Abstract
The use of lightweight materials is one possibility to limit the weight of vehicles and to reduce CO2 emissions. However, the mechanical properties and weight-saving potential of mono-materials are limited. Material compounds can overcome this challenge by combining the advantages of different [...] Read more.
The use of lightweight materials is one possibility to limit the weight of vehicles and to reduce CO2 emissions. However, the mechanical properties and weight-saving potential of mono-materials are limited. Material compounds can overcome this challenge by combining the advantages of different materials in one component. Lateral angular co-extrusion (LACE) allows the production of coaxial semi-finished products consisting of aluminum and steel. In this study, a finite element model of the LACE process was built up and validated by experimental investigations. A high degree of agreement between the calculated and experimentally determined forces, temperatures, and the geometrical shape of the hybrid profiles was achieved. In order to determine suitable parameters for further extrusion experiments, the influence of different process parameters on material flow and extrusion force was investigated in a numerical parametric study. Both the temperature and extrusion ratio showed a significant influence on the occurring maximum extrusion force as well as the material flow inside the LACE tool. The maximum force of 2.5 MN of the employed extrusion press was not exceeded. An uneven material flow was observed in the welding chamber, leading to an asymmetric position of the steel rod in the aluminum matrix. Full article
Show Figures

Figure 1

Back to TopTop