Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = coatings breakdown products

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1699 KiB  
Article
Optimization of the LIBS Technique in Air, He, and Ar at Atmospheric Pressure for Hydrogen Isotope Detection on Tungsten Coatings
by Salvatore Almaviva, Lidia Baiamonte and Marco Pistilli
J. Nucl. Eng. 2025, 6(3), 22; https://doi.org/10.3390/jne6030022 - 1 Jul 2025
Viewed by 334
Abstract
In current and future fusion devices, detecting hydrogen isotopes, particularly tritium and deuterium, implanted or redeposited on the surface of Plasma-Facing Components (PFCs) will be increasingly important to ensure safe machine operations. The Laser-Induced Breakdown Spectroscopy (LIBS) technique has proven capable of performing [...] Read more.
In current and future fusion devices, detecting hydrogen isotopes, particularly tritium and deuterium, implanted or redeposited on the surface of Plasma-Facing Components (PFCs) will be increasingly important to ensure safe machine operations. The Laser-Induced Breakdown Spectroscopy (LIBS) technique has proven capable of performing this task directly in situ, without handling or removing PFCs, thus limiting analysis times and increasing the machine’s duty cycle. To increase sensitivity and the ability to discriminate between isotopes, LIBS analysis can be performed under different background gases at atmospheric pressure, such as air, He, and Ar. In this work, we present the results obtained on tungsten coatings enriched with deuterium and/or hydrogen as a deuterium–tritium nuclear fuel simulant, measured with the LIBS technique in air, He, and Ar at atmospheric pressure, and discuss the pros and cons of their use. The results obtained demonstrate that both He and Ar can improve the LIBS signal resolution of the hydrogen isotopes compared to air. However, using Ar has the additional advantage that the same procedure can also be used to detect He implanted in PFCs as a product of fusion reactions without any interference. Finally, the LIBS signal in an Ar atmosphere increases in terms of the signal-to-noise ratio (SNR), enabling the use of less energetic laser pulses to improve performance in depth profiling analyses. Full article
(This article belongs to the Special Issue Fusion Materials with a Focus on Industrial Scale-Up)
Show Figures

Graphical abstract

8 pages, 1978 KiB  
Brief Report
Development of a Prototype of Industrial Installation for the Deposition of Self-Restoring Nitride Coatings on Reed Switch Contacts
by Igor A. Zeltser, Alexander Tolstoguzov and Dejun Fu
Coatings 2025, 15(5), 533; https://doi.org/10.3390/coatings15050533 - 29 Apr 2025
Viewed by 532
Abstract
A prototype of an industrial installation for the deposition of self-restoring nitride coatings on the surface of reed switch contacts using electro-spark erosion alloying was developed, manufactured, and tested under the laboratory conditions at LLC Nitron. It was shown that the coatings are [...] Read more.
A prototype of an industrial installation for the deposition of self-restoring nitride coatings on the surface of reed switch contacts using electro-spark erosion alloying was developed, manufactured, and tested under the laboratory conditions at LLC Nitron. It was shown that the coatings are formed inside a bulb of reed switches at the final stage of their production following the impact from the spark breakdown between the contacts, stimulated via alternating magnetic and electric fields. The nitrogen concentration in the surface layers of the nitride coatings, estimated by means of X-ray microanalysis, was ca. 19 at. % and their thickness, measured by time-of-flight secondary ion mass spectrometry via sputter depth profiling, ranged between 250 and 350 nm. The novelty of the presented work consists of the development of an innovative piece of equipment, the operating principle and design of which are protected by intellectual property rights (four Russian patents). The technological approach implemented in this installation differs from the industrial galvanic technology due to its high level of environmental safety and economic efficiency, since it does not require the use of gold, ruthenium, or other high-priced metals. Full article
(This article belongs to the Special Issue Smart Coatings: Adapting to the Future)
Show Figures

Figure 1

15 pages, 21984 KiB  
Article
Green Synthesis and Characterization of Silver Nanoparticles from Minthostachys acris Schmidt Lebuhn (Muña) and Its Evaluation as a Bactericidal Agent Against Escherichia coli and Staphylococus aureus
by Fabián Ccahuana Ayma, Ana María Osorio Anaya, Gabrielle Caroline Peiter, Silvia Jaerger and Ricardo Schneider
Micro 2024, 4(4), 706-720; https://doi.org/10.3390/micro4040043 - 20 Nov 2024
Cited by 1 | Viewed by 2026
Abstract
The search for new synthesis methodologies based on the principles of green chemistry has led to various studies for the production of silver nanoparticles (AgNPs) using extracts from different parts of plants. Based on this, the present study aims to carry out green [...] Read more.
The search for new synthesis methodologies based on the principles of green chemistry has led to various studies for the production of silver nanoparticles (AgNPs) using extracts from different parts of plants. Based on this, the present study aims to carry out green synthesis (biosynthesis), characterization, and antibacterial evaluation of reduced and stabilized silver nanoparticles (AgNPs) with aqueous extracts of Minthostachys acris in a simple, ecological, and environmentally safe manner. The extraction process of the organic components is performed using two methods: immersion and the agitation of the leaves of Minthostachys acris Schmidt Lebuhn (Muña) at 0.1% for different times (0.5, 1, 3, 6, and 10 min). Compounds such as hydroxycinnamic acid derivatives, quinic, caffeic, rosmarinic acids, and flavonols present in the Muña extract facilitate the formation of AgNPs; this compounds act as a coating and stabilizing agent. The bioactive components from natural resources facilitate the formation of AgNPs, partially or completely replacing the contaminating and toxic elements present in chemical reagents. The biosynthesis is carried out at room temperature for pH 7 and 8. The synthesized AgNPs are characterized by UV-visible spectroscopy to identify the surface plasmon resonance (SPR) band, which shows an absorption peak around 419 nm and 423 nm for pH 7 and p.H 8, respectively, and Fourier-transform infrared spectroscopy (FTIR) to identify the possible biomolecules responsible for bioreduction and stabilization, with a peak at 1634 cm−1. Dynamic light scattering (DLS) shows the hydrodynamic size of the colloidal nanoparticles between 11 and 200 nm, and scanning electron microscopy (SEM) reveals monodisperse AgNPs of different morphologies, mostly nanospheres, while Laser-Induced Breakdown Spectroscopy (LIBS) demonstrates the presence of Ag in the colloidal solution. The evaluation of the bactericidal activity of the AgNPs using the disk diffusion method against Escherichia coli (E. coli) and Staphylococus aureus (S.aureus) shows that the synthesized AgNPs have effective antibacterial activity against E. coli for the extracts obtained at 6 min for both the immersion and agitation methods, respectively. The significance of this work lies in the use of bioactive components from plants to obtain AgNPs in a simple, rapid, and economical way, with potential applications in biomedical fields. Full article
Show Figures

Figure 1

19 pages, 8915 KiB  
Article
A Comparative Study of Deep-Learning Autoencoders (DLAEs) for Vibration Anomaly Detection in Manufacturing Equipment
by Seonwoo Lee, Akeem Bayo Kareem and Jang-Wook Hur
Electronics 2024, 13(9), 1700; https://doi.org/10.3390/electronics13091700 - 27 Apr 2024
Cited by 6 | Viewed by 3006
Abstract
Speed reducers (SR) and electric motors are crucial in modern manufacturing, especially within adhesive coating equipment. The electric motor mainly transforms electrical power into mechanical force to propel most machinery. Conversely, speed reducers are vital elements that control the speed and torque of [...] Read more.
Speed reducers (SR) and electric motors are crucial in modern manufacturing, especially within adhesive coating equipment. The electric motor mainly transforms electrical power into mechanical force to propel most machinery. Conversely, speed reducers are vital elements that control the speed and torque of rotating machinery, ensuring optimal performance and efficiency. Interestingly, variations in chamber temperatures of adhesive coating machines and the use of specific adhesives can lead to defects in chains and jigs, causing possible breakdowns in the speed reducer and its surrounding components. This study introduces novel deep-learning autoencoder models to enhance production efficiency by presenting a comparative assessment for anomaly detection that would enable precise and predictive insights by modeling complex temporal relationships in the vibration data. The data acquisition framework facilitated adherence to data governance principles by maintaining data quality and consistency, data storage and processing operations, and aligning with data management standards. The study here would capture the attention of practitioners involved in data-centric processes, industrial engineering, and advanced manufacturing techniques. Full article
(This article belongs to the Special Issue Current Trends on Data Management)
Show Figures

Figure 1

23 pages, 21163 KiB  
Article
Effect of Surface Condition on the Results of Chemical Composition Measurements of Scrap Copper Alloys
by Łukasz Bernat, Tomasz Jurtsch, Grzegorz Moryson, Jan Moryson and Grzegorz Wiczyński
Recycling 2024, 9(1), 14; https://doi.org/10.3390/recycling9010014 - 4 Feb 2024
Cited by 2 | Viewed by 2432
Abstract
The processing of copper-bearing scrap makes it possible to reduce the costs and energy consumption of obtaining copper alloy products compared to producing them from primary raw materials. To achieve this, it is necessary to quickly and accurately determine the content of alloying [...] Read more.
The processing of copper-bearing scrap makes it possible to reduce the costs and energy consumption of obtaining copper alloy products compared to producing them from primary raw materials. To achieve this, it is necessary to quickly and accurately determine the content of alloying elements in individual scrap elements. However, the copper-bearing scrap obtained at secondary raw materials collection points consists of elements with various surface conditions (due to contamination, shape, paint coatings, roughness, etc.). The paper contains research results on the influence of surface roughness and paint coatings on the measurement result of the content of alloying elements in copper-bearing scrap. Three mobile spectrometers were used for measurements: spark-induced optical emission spectroscopy (OES), X-ray fluorescence spectrometry (XRF) and laser-induced breakdown spectroscopy (LIBS). The tests used elements with different surface roughness (from Ra = 0.03 μm to 6.7 μm) and covered with various types of varnish (alkyd, water-based, oil-phthalic, acrylic, oil-alkyd). It was found that the roughness of Ra < 2 μm does not significantly affect the results of the measurements with the OES and LIBS spectrometers, and a larger scatter of measurement results was observed for the XRF spectrometer compared to OES and LIBS. For Ra > 2 μm, a significant impact of roughness was found on the measurement results (this may result in the erroneous classification of the scrap as an incorrect material group). The influence of paint coatings on the measurement is much stronger compared to surface roughness. Even a single layer of paint can cause a change in the measurement result of the content of alloying elements by more than 10%. In the case of an OES spectrometer, paint coatings may prevent the measurement from being performed (which means that no measurement result can be acquired). Full article
Show Figures

Figure 1

26 pages, 9677 KiB  
Review
Application of Laser-Induced Breakdown Spectroscopy for Depth Profiling of Multilayer and Graded Materials
by Agnieszka Królicka, Anna Maj and Grzegorz Łój
Materials 2023, 16(20), 6641; https://doi.org/10.3390/ma16206641 - 11 Oct 2023
Cited by 9 | Viewed by 2990
Abstract
Laser-induced breakdown spectroscopy (LIBS) has emerged as a powerful analytical method for the elemental mapping and depth profiling of many materials. This review offers insight into the contemporary applications of LIBS for the depth profiling of materials whose elemental composition changes either abruptly [...] Read more.
Laser-induced breakdown spectroscopy (LIBS) has emerged as a powerful analytical method for the elemental mapping and depth profiling of many materials. This review offers insight into the contemporary applications of LIBS for the depth profiling of materials whose elemental composition changes either abruptly (multilayered materials) or continuously (functionally graded or corroded materials). The spectrum of materials is discussed, spanning from laboratory-synthesized model materials to real-world products including materials for fusion reactors, photovoltaic cells, ceramic and galvanic coatings, lithium batteries, historical and archaeological artifacts, and polymeric materials. The nuances of ablation conditions and the resulting crater morphologies, which are instrumental in depth-related studies, are discussed in detail. The challenges of calibration and quantitative profiling using LIBS are also addressed. Finally, the possible directions of the evolution of LIBS applications are commented on. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

25 pages, 15623 KiB  
Article
Thermal Evaluation of Silica-Based Insulated Magnet Wires from the Sol–Gel Process
by Giovana Pereira dos Santos Lima, Sonia Ait-Amar, Gabriel Velu, Philippe Frezel, Abdelhamid Boudiba, Soumaya Lafqir, Arnaud Nicolay, Pierre-yves Herze and Mireille Poelman
Gels 2023, 9(8), 619; https://doi.org/10.3390/gels9080619 - 31 Jul 2023
Cited by 2 | Viewed by 1799
Abstract
The conventional enameling process used in the fabrication of magnet wires requires harmful processes and products. The target of the industry in the actual context of electrification is to increase the electrical machines’ efficiency. Indeed, the electrical insulation systems (EIS) of an electrical [...] Read more.
The conventional enameling process used in the fabrication of magnet wires requires harmful processes and products. The target of the industry in the actual context of electrification is to increase the electrical machines’ efficiency. Indeed, the electrical insulation systems (EIS) of an electrical machine undergo various environmental constraints that can shorten their lifespans. Consequently, aspects of the insulation need to be improved, such as its thermal resistance. One of the challenges is to implement sustainable technology without losing performance. This work consists of the thermal performance evaluation of new magnet wires insulated by three types of composites of silica-based solution from the Sol–gel process and amorphous polyamide-imide (PAI). These composite coats are overcoated by an extruded thermoplastic resin with and without fillers. Different types of insulation are tested and compared to determine the better configuration. Thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) analysis, scanning electron microscopy (SEM) analysis, curing characteristics by tangent delta curve, and thermal-aging tests at three temperatures were carried out on the different EIS systems. Dielectric measurements were made between thermal-aging cycles. Their basic mechanical, electrical, and thermal characteristics are promising: the cut-through temperature is situated above 430 °C, their breakdown voltage values are between 5 kV and 9 kV (grade 3), and a good adhesion (overcoming more than 140 turns on a peel test). The thermal-aging results have been consistent with the TGA analysis results. The thermal index following the IEC standards was estimated for the selected EIS, which would have the main basic characteristics of a magnet wire of 200 class; moreover, it would be a greener enameled wire compared to the conventional one. Full article
(This article belongs to the Special Issue Advances in Functional Gel)
Show Figures

Figure 1

12 pages, 2624 KiB  
Article
A Study on the Corrosion Resistance of a Coating Prepared by Electrical Explosion of 321 Metal Wire
by Ye Liu, Qiuzhi Song, Hongbin Deng, Yali Liu, Pengwan Chen and Kun Huang
Lubricants 2023, 11(7), 309; https://doi.org/10.3390/lubricants11070309 - 22 Jul 2023
Viewed by 2036
Abstract
Corrosion is known as a breakdown effect that causes the deterioration of substances in enriched petroleum/gas conditions. This reaction occurs in all materials, which is highlighted in alloys. In the present study, the morphological properties, as well as the corrosion resistance behavior of [...] Read more.
Corrosion is known as a breakdown effect that causes the deterioration of substances in enriched petroleum/gas conditions. This reaction occurs in all materials, which is highlighted in alloys. In the present study, the morphological properties, as well as the corrosion resistance behavior of the AISI1045 steel substrate coated with 321 austenitic stainless steel metal particulate fillers, were investigated. The electro-explosive spraying technique was employed to achieve a homogenous coating on the substrate surface. According to the results, the grain size of the 321 austenitic stainless steel coating layer was shrunk and reduced to 1–3 μm after the coating procedure. The coated layer also showed a homogenous and uniform thickness with an average value of 137 μm. Also, the average adhesion strength of 49.21 MPa was obtained between the sprayed coating and the substrate. The analytical analysis found the presence of Fe-Cr and Fe-Ni phases in the coating layer. The hardness of the original metal wire is 186 HV, and the microhardness of the coating after spraying is 232 HV. After subjecting the specimen to the corrosion examination, a 0.1961 mm/a corrosion rate was obtained for up to 120 h. Moreover, the corrosion products of CaCO3, Fe3O4, and MgFe2O4 were determined by XRD analysis. Furthermore, the observed results were further confirmed by the data obtained from EPMA and EDS evaluations. Hence, this study implies the beneficial role of electro-explosive sprayed alloy 321 austenitic stainless steel in creating a protective layer against corrosion on 45 steel substrate in an enriched oil/water environment. Full article
(This article belongs to the Special Issue Wear and Corrosion Behaviour of Metals and Alloys)
Show Figures

Figure 1

14 pages, 2055 KiB  
Article
First Report on Several NO-Donor Sets and Bidentate Schiff Base and Its Metal Complexes: Characterization and Antimicrobial Investigation
by Amira A. Mohamed, Abeer A. Nassr, Sadeek A. Sadeek, Nihad G. Rashid and Sherif M. Abd El-Hamid
Compounds 2023, 3(3), 376-389; https://doi.org/10.3390/compounds3030029 - 5 Jul 2023
Cited by 6 | Viewed by 2170
Abstract
The condensation product of the reaction between aniline and salicylaldehyde was a 2-(2-hydroxybenzylidinemine)—aniline Schiff base bidentate ligand (L). L was used to generate complexes by interacting with the metal ions lanthanum(III), zirconium(IV), yttrium(III), and copper(II), in addition to cobalt(II). Various physicochemical [...] Read more.
The condensation product of the reaction between aniline and salicylaldehyde was a 2-(2-hydroxybenzylidinemine)—aniline Schiff base bidentate ligand (L). L was used to generate complexes by interacting with the metal ions lanthanum(III), zirconium(IV), yttrium(III), and copper(II), in addition to cobalt(II). Various physicochemical techniques were utilized to analyze the synthesized L and its metal chelates, including elemental analysis (CHN), conductimetry (Λ), magnetic susceptibility investigations (μeff), Fourier-transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1H NMR) spectroscopy, ultraviolet–visible (UV-Vis.) spectrophotometry, and thermal studies (TG/DTG). FT-IR revealed that the L molecule acted as a bidentate ligand by binding to metal ions via both the oxygen atom of the phenolic group in addition to the nitrogen atom of the azomethine group. Additionally, 1H NMR data indicated the formation of complexes via the oxygen atom of the phenolic group. An octahedral geometrical structure for all of the chelates was proposed according to the UV-Vis. spectra and magnetic moment investigations. Thermal analysis provided insight into the pattern of L in addition to its chelates’ breakdown. In addition, the investigation furnished details on the chelates’ potential chemical formulas, the characteristics of adsorbed or lattice H2O molecules, and the water that is coordinated but separated from the structure at temperatures exceeding 120 °C. The thermodynamic parameters utilizing Coats–Redfern in addition to Horowitz–Metzger equations were studied. The antimicrobial effectiveness of L and its chelates against distinct species of bacteria and fungi was studied using the disc diffusion method. Cu(II) and Y(III) chelates had significant antimicrobial activity against Staphylococcus aureus and Micrococcus luteus. Full article
Show Figures

Figure 1

13 pages, 4399 KiB  
Article
Coating Condition Detection and Assessment on the Steel Girder of a Bridge through Hyperspectral Imaging
by Pengfei Ma, Jiaoli Li, Ying Zhuo, Pu Jiao and Genda Chen
Coatings 2023, 13(6), 1008; https://doi.org/10.3390/coatings13061008 - 29 May 2023
Cited by 11 | Viewed by 3202
Abstract
The organic coating of bridge steel girders is subjected to physical scratches, corrosion, and aging in natural weathering. The breakdown of the coating may cause serviceability and safety problems if left unnoticed. Conventional coating inspection is time-consuming and lacks information about the coating’s [...] Read more.
The organic coating of bridge steel girders is subjected to physical scratches, corrosion, and aging in natural weathering. The breakdown of the coating may cause serviceability and safety problems if left unnoticed. Conventional coating inspection is time-consuming and lacks information about the coating’s chemical integrity. A hyperspectral imaging method is proposed to detect the condition of steel coatings based on coating-responsive features in reflectance spectra. A field test was conducted on the real-world bridge, which shows obvious signs of degradation. The hyperspectral signature enables an assessment of the coating’s health and defect severity. The results indicated that the coating scratch can be effectively located in the domain of a hyperspectral image and the scratch depth can be determined by mapping a scratch depth indicator (SDI = R532 nm/R641 nm). Rust sources and products in steel girders can be identified by the unique spectral signatures in the VNIR range, and the rust stains (and thus stain areas) scattered on the coating can be pinpointed at pixel level by the chloride rust (CR) indicators >1.11 (CR = R733 nm/R841 nm). The chemical integrity of a topcoat is demonstrated by the short-wave infrared spectroscopy and the topcoat degradation can be evaluated by the decreased absorption at 8000 cm−1 and 5850 cm−1. Hyperspectral imaging enables faster and more reliable coating condition detection by the spectral features and provides an alternative for multi-object coating detection. Full article
(This article belongs to the Special Issue Novel Coatings for Corrosion Protection)
Show Figures

Figure 1

10 pages, 4005 KiB  
Article
Highly Improved Dielectric and Thermal Performance of Polyalphaolefin Oil-Based Fluids Using MgO Nanoparticles
by Nguyen Van Thanh, Nguyen Thi Hong Ngoc, Dang Minh Thuy, Luu Van Tuynh, Ha Huu Son and Nguyen Phi Long
Coatings 2023, 13(5), 931; https://doi.org/10.3390/coatings13050931 - 16 May 2023
Cited by 9 | Viewed by 2862
Abstract
Polyalphaolefin (PAO) oil is widely used as a dielectric liquid due to its outstanding dielectric strength, high flash point, good oxidation resistance, and stability. The dispersion of MgO nanoparticles in PAO yields nanofluids with many properties superior to base oils. This study clarifies [...] Read more.
Polyalphaolefin (PAO) oil is widely used as a dielectric liquid due to its outstanding dielectric strength, high flash point, good oxidation resistance, and stability. The dispersion of MgO nanoparticles in PAO yields nanofluids with many properties superior to base oils. This study clarifies the influence of MgO nanoparticles on the dielectric properties (breakdown voltage, volume resistivity, and relative permittivity) and heat transfer properties of PAO/MgO nanofluids. Changes in the concentration and size and the modification of MgO nanoparticles with surfactants change the dielectric and thermal performance of PAO/MgO nanofluids. Using PAO/MgO nanofluids as raw material to prepare dielectric fluid obtains a product with higher dielectric strength and thermal conductivity than those using PAO. The results show that PAO/MgO nanofluid-based dielectric fluid has the potential to be applied as a soft coating to protect electronic equipment in industries. Full article
(This article belongs to the Special Issue Advances in Oxide Thin Films and Nanostructures)
Show Figures

Figure 1

56 pages, 14024 KiB  
Review
Chromate-Free Corrosion Protection Strategies for Magnesium Alloys—A Review: Part II—PEO and Anodizing
by Ewa Wierzbicka, Bahram Vaghefinazari, Marta Mohedano, Peter Visser, Ralf Posner, Carsten Blawert, Mikhail Zheludkevich, Sviatlana Lamaka, Endzhe Matykina and Raúl Arrabal
Materials 2022, 15(23), 8515; https://doi.org/10.3390/ma15238515 - 29 Nov 2022
Cited by 28 | Viewed by 4721
Abstract
Although hexavalent chromium-based protection systems are effective and their long-term performance is well understood, they can no longer be used due to their proven Cr(VI) toxicity and carcinogenic effect. The search for alternative protection technologies for Mg alloys has been going on for [...] Read more.
Although hexavalent chromium-based protection systems are effective and their long-term performance is well understood, they can no longer be used due to their proven Cr(VI) toxicity and carcinogenic effect. The search for alternative protection technologies for Mg alloys has been going on for at least a couple of decades. However, surface treatment systems with equivalent efficacies to that of Cr(VI)-based ones have only begun to emerge much more recently. It is still proving challenging to find sufficiently protective replacements for Cr(VI) that do not give rise to safety concerns related to corrosion, especially in terms of fulfilling the requirements of the transportation industry. Additionally, in overcoming these obstacles, the advantages of newly introduced technologies have to include not only health safety but also need to be balanced against their added cost, as well as being environmentally friendly and simple to implement and maintain. Anodizing, especially when carried out above the breakdown potential (technology known as Plasma Electrolytic Oxidation (PEO)) is an electrochemical oxidation process which has been recognized as one of the most effective methods to significantly improve the corrosion resistance of Mg and its alloys by forming a protective ceramic-like layer on their surface that isolates the base material from aggressive environmental agents. Part II of this review summarizes developments in and future outlooks for Mg anodizing, including traditional chromium-based processes and newly developed chromium-free alternatives, such as PEO technology and the use of organic electrolytes. This work provides an overview of processing parameters such as electrolyte composition and additives, voltage/current regimes, and post-treatment sealing strategies that influence the corrosion performance of the coatings. This large variability of the fabrication conditions makes it possible to obtain Cr-free products that meet the industrial requirements for performance, as expected from traditional Cr-based technologies. Full article
(This article belongs to the Special Issue Coatings on Light Alloys Substrate)
Show Figures

Graphical abstract

17 pages, 2834 KiB  
Article
Development of a Multifunctional Edible Coating and Its Preservation Effect on Sturgeon (Acipenser baeri× Acipenser schrenckii) Fillets during Refrigerated Storage at 4 °C
by Chunming Tan, De Pang, Ruiyun Wu, Fanglei Zou, Bo Zhang, Nan Shang and Pinglan Li
Foods 2022, 11(21), 3380; https://doi.org/10.3390/foods11213380 - 27 Oct 2022
Cited by 10 | Viewed by 2945
Abstract
Although many coatings and films can improve the quality and shelf life of fish fillets during refrigerated storage, a more multifunctional coating material is needed. In this study, an edible alginate/protein-based coating solution was prepared by incorporating antimicrobial agents. The coating properties were [...] Read more.
Although many coatings and films can improve the quality and shelf life of fish fillets during refrigerated storage, a more multifunctional coating material is needed. In this study, an edible alginate/protein-based coating solution was prepared by incorporating antimicrobial agents. The coating properties were characterized and its effects on the quality and shelf life of sturgeon fillets during refrigeration (4 °C) were investigated. Compared with sodium alginate coating (2% sodium alginate + antibacterial agents, H), the composite coatings (2% sodium alginate + antibacterial agents + 1:15 or 1:10 protein solution, HP-15 and HP-10) exhibited a more stable structure and better light, gas, and water barrier properties, and showed better quality-preservation effects on sturgeon fillets. The composite coatings treatments, especially HP-10 composite coating, exhibited significant (p < 0.05) effects in inhibiting microbial growth, maintaining sensory quality, reducing the production of total volatile basic nitrogen (TVB-N), decreasing nucleotide breakdown, and delaying the lipid oxidation and protein degradation in fillets. These findings confirm that the composite coatings can be used as a multifunctional coating material for freshness preservation of sturgeon fillets to improve quality and extend shelf life. Full article
(This article belongs to the Special Issue Meat Microflora and the Quality of Meat Products)
Show Figures

Figure 1

25 pages, 925 KiB  
Review
The Role of Extracellular Matrix in Human Neurodegenerative Diseases
by Panka Pintér and Alán Alpár
Int. J. Mol. Sci. 2022, 23(19), 11085; https://doi.org/10.3390/ijms231911085 - 21 Sep 2022
Cited by 30 | Viewed by 4497
Abstract
The dense neuropil of the central nervous system leaves only limited space for extracellular substances free. The advent of immunohistochemistry, soon followed by advanced diagnostic tools, enabled us to explore the biochemical heterogeneity and compartmentalization of the brain extracellular matrix in exploratory and [...] Read more.
The dense neuropil of the central nervous system leaves only limited space for extracellular substances free. The advent of immunohistochemistry, soon followed by advanced diagnostic tools, enabled us to explore the biochemical heterogeneity and compartmentalization of the brain extracellular matrix in exploratory and clinical research alike. The composition of the extracellular matrix is critical to shape neuronal function; changes in its assembly trigger or reflect brain/spinal cord malfunction. In this study, we focus on extracellular matrix changes in neurodegenerative disorders. We summarize its phenotypic appearance and biochemical characteristics, as well as the major enzymes which regulate and remodel matrix establishment in disease. The specifically built basement membrane of the central nervous system, perineuronal nets and perisynaptic axonal coats can protect neurons from toxic agents, and biochemical analysis revealed how the individual glycosaminoglycan and proteoglycan components interact with these molecules. Depending on the site, type and progress of the disease, select matrix components can either proactively trigger the formation of disease-specific harmful products, or reactively accumulate, likely to reduce tissue breakdown and neuronal loss. We review the diagnostic use and the increasing importance of medical screening of extracellular matrix components, especially enzymes, which informs us about disease status and, better yet, allows us to forecast illness. Full article
(This article belongs to the Special Issue The Role of Extracellular Matrix in Human Health and Disease)
Show Figures

Figure 1

18 pages, 6873 KiB  
Article
Effect of Nano-SiO2 Modification on Mechanical and Insulation Properties of Basalt Fiber Reinforced Composites
by Hechen Liu, Yu Sun, Yunfei Yu, Mingjia Zhang, Le Li and Long Ma
Polymers 2022, 14(16), 3353; https://doi.org/10.3390/polym14163353 - 17 Aug 2022
Cited by 21 | Viewed by 3094
Abstract
Basalt fiber (BF) has high mechanical strength, good insulation performance and low cost. It is suitable to be used as reinforcement material in the manufacture of electrical equipment. However, the large surface inertia of basalt fiber makes it difficult to combine with the [...] Read more.
Basalt fiber (BF) has high mechanical strength, good insulation performance and low cost. It is suitable to be used as reinforcement material in the manufacture of electrical equipment. However, the large surface inertia of basalt fiber makes it difficult to combine with the matrix material, which seriously limits its service life and application scenarios. In addition, the serious vacancy in the research of insulation properties also limits its production and application in the electrical field. Therefore, in order to solve the problem of difficult bonding between basalt fiber and resin matrix and make up for the research blank of basalt fiber composites in insulation performance, this paper provides a basalt fiber modification method—SiO2 coating, and tests the insulation and mechanical properties of the modified composite. We used nano-SiO2 coating solution to modify basalt fiber, and manufactured BF/resin composite (BFRP) by hand lay-up and hot-pressing technology, and experimentally analyzed the influence of nano-SiO2 content on the mechanical and insulation properties of the modified composite. Fourier transform infrared spectrum and scanning electron microscope analysis showed that nano-SiO2 was successfully coated on basalt fibers. Through the microdroplet debonding test, it was found that the IFSS of fiber/resin was improved by 35.15%, 72.97 and 18.9%, respectively, after the modification of the coating solution with SiO2 concentration of 0.5%, 1% and 1.5%, showing better interface properties; the single fiber tensile test found that the tensile strength of the modified fiber increased slightly. Among all composites, 1 wt% SiO2 coating modified composites showed the best comprehensive properties. The surface flashover voltage and breakdown field strength reached 13.12 kV and 33 kV/mm, respectively, which were 34.6% and 83% higher than unmodified composite. The dielectric loss is reduced to 1.43%, which is 33.8% lower than the dielectric loss (2.16%) of the untreated composite, showing better insulation ability; the tensile strength, bending strength and interlaminar shear strength were increased to 618.22 MPa, 834.74 MPa and 16.29 MPa, respectively, which were increased by 53%, 42.4% and 59.7%, compared with untreated composites. DMA and glass transition temperature showed that the modified composite had better heat resistance. TGA experiments showed that the resin content of the modified composite increased, and the internal structure of the composite became denser. Full article
(This article belongs to the Special Issue Fibre-Reinforced Polymer Composite)
Show Figures

Figure 1

Back to TopTop