Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = coated desiccant performance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4018 KiB  
Article
Assessment of Beaded, Powdered and Coated Desiccants for Atmospheric Water Harvesting in Arid Environments
by Mona Rafat, Gokul Chandrasekaran, Shubham Shrivastava, Alireza Farsad, Jirapat Ananpattarachai, Abigail Qiu, Shahnawaz Sinha, Paul Westerhoff and Patrick Phelan
Environments 2025, 12(4), 110; https://doi.org/10.3390/environments12040110 - 5 Apr 2025
Viewed by 762
Abstract
Atmospheric water harvesting (AWH) is a promising alternative to address immediate water needs. Desiccant-based AWH could compete effectively with other commercially available AWH technologies. One of the primary challenges facing desiccant-based AWH is the energy required to desorb the captured water vapor from [...] Read more.
Atmospheric water harvesting (AWH) is a promising alternative to address immediate water needs. Desiccant-based AWH could compete effectively with other commercially available AWH technologies. One of the primary challenges facing desiccant-based AWH is the energy required to desorb the captured water vapor from the desiccant. This work presents a multi-faceted approach targeted explicitly at low-humidity and arid regions, aiming to overcome the limitations of the refrigerant-based AWH system. It includes assessing common desiccants (zeolite, activated alumina, and silica gel) and their forms (beads, powdered, or coated on a substrate). A bench-scale test rig was designed to evaluate different types and forms of desiccants for adsorption and desorption cycles and overall adsorption capacity (g/g), kinetic profiles, and rates. Experimental results indicate that beaded desiccants possess the highest adsorption capacity compared to powdered or coated forms. Furthermore, coated desiccants double the water uptake (1.12 vs. 0.56 g water/g desiccant) and improve adsorption/desorption cycling by 52% compared to beaded forms under the same conditions. Additionally, Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), and dynamic vapor sorption (DVS) analysis show the pore geometry, morphology, and sorption capacity. The goal is to integrate these performance improvements and propose a more effective, energy-efficient desiccant-based AWH system. Full article
Show Figures

Figure 1

13 pages, 6302 KiB  
Article
Fabrication and Advanced Imaging Characterization of Magnetic Aerogel-Based Thin Films for Water Decontamination
by Adelina-Gabriela Niculescu, Bogdan Mihaiescu, Alexandra Cătălina Bîrcă, Alina Moroșan, Oana Maria Munteanu (Mihaiescu), Bogdan Ștefan Vasile, Tony Hadibarata, Daniela Istrati, Dan Eduard Mihaiescu and Alexandru Mihai Grumezescu
Gels 2024, 10(6), 394; https://doi.org/10.3390/gels10060394 - 11 Jun 2024
Cited by 4 | Viewed by 1849
Abstract
Aerogels have emerged as appealing materials for various applications due to their unique features, such as low density, high porosity, high surface area, and low thermal conductivity. Aiming to bring the advantages of these materials to the environmental field, this study focuses on [...] Read more.
Aerogels have emerged as appealing materials for various applications due to their unique features, such as low density, high porosity, high surface area, and low thermal conductivity. Aiming to bring the advantages of these materials to the environmental field, this study focuses on synthesizing magnetic silica aerogel-based films suitable for water decontamination. In this respect, a novel microfluidic platform was created to obtain core-shell iron oxide nanoparticles that were further incorporated into gel-forming precursor solutions. Afterward, dip-coating deposition was utilized to create thin layers of silica-based gels, which were further processed by 15-hour gelation time, solvent transfer, and further CO2 desiccation. A series of physicochemical analyses (XRD, HR-MS FT-ICR, FT-IR, TEM, SEM, and EDS) were performed to characterize the final films and intermediate products. The proposed advanced imaging experimental model for film homogeneity and adsorption characteristics confirmed uniform aerogel film deposition, nanostructured surface, and ability to remove pesticides from contaminated water samples. Based on thorough investigations, it was concluded that the fabricated magnetic aerogel-based thin films are promising candidates for water decontamination and novel solid-phase extraction sample preparation. Full article
Show Figures

Figure 1

18 pages, 6447 KiB  
Article
Enhanced Water Sorption Performance of Polyacrylamide & Glass Fiber Paper Composites: Investigation and Comparison of Application in Desiccant Wheels
by Yimo Liu, Zhongbao Liu, Zepeng Wang and Weiming Sun
Polymers 2023, 15(18), 3678; https://doi.org/10.3390/polym15183678 - 6 Sep 2023
Cited by 3 | Viewed by 2046
Abstract
The water sorption and desorption properties of solid adsorbent materials are crucial in rotary dehumidification systems. Metal organic frameworks (MOFs) and hydrogels are mostly at the laboratory stage due to factors like the synthesis process and yield. In this study, we utilized an [...] Read more.
The water sorption and desorption properties of solid adsorbent materials are crucial in rotary dehumidification systems. Metal organic frameworks (MOFs) and hydrogels are mostly at the laboratory stage due to factors like the synthesis process and yield. In this study, we utilized an eco-friendly and large-scale synthesis method to prepare polyacrylamide (PAM) hydrogels (yielding approximately 500 mL from a single polymerization). Subsequently, PAM was then coated onto glass fiber paper (GFP), which serves as a commonly employed substrate in desiccant wheels. By incorporating the hygroscopic salt LiCl and optimizing the content of each component, the water sorption performance of the composite was notably improved. The water sorption and desorption performances, as well as cycling stability, were evaluated and compared with composites containing aluminum fumarate, LiCl, and GFP (AlFum-LiCl&GFP). The results revealed that PAM-LiCl&GFP outperformed AlFum-LiCl&GFP in terms of sorption capacity throughout various relative humidity (RH) levels. It achieved a water uptake of 1.06 g·g−1 at 25 °C and 30% RH, corresponding to a water sorption rate coefficient K of 15.32 × 10−4 s−1. Furthermore, the lower desorption temperature (60 °C) resulting in a desorption ratio of 82.6%, along with the excellent cycling stability and effective performance as a desiccant wheel module, provide evidence for the potential application of PAM-LiCl&GFP in desiccant wheels. Full article
(This article belongs to the Collection Polymer Applications in Environmental Science)
Show Figures

Graphical abstract

14 pages, 3213 KiB  
Article
Experimental Investigation on Dehumidification Using a Solid Composite Bio Desiccant Internally Cooled Using Nanofluids for Building Cooling
by Shiva Kumar, Girish Hariharan, Muhammad Fayaz and Nitesh Kumar
Buildings 2023, 13(6), 1461; https://doi.org/10.3390/buildings13061461 - 3 Jun 2023
Cited by 5 | Viewed by 2270
Abstract
Indoor comfort has become a major factor with advancements in science and technology. This also leads to an increase in greenhouse gases as well as energy consumption. Desiccant-coated heat exchangers are one of the common solutions to these risks and to lower energy [...] Read more.
Indoor comfort has become a major factor with advancements in science and technology. This also leads to an increase in greenhouse gases as well as energy consumption. Desiccant-coated heat exchangers are one of the common solutions to these risks and to lower energy usage. In the present work, the capability of a solid composite desiccant blend prepared from coconut shell-based activated carbon and bio char was studied. Aluminum plates have been coated with the prepared solid desiccants. Desiccant-coated heat exchangers were cooled by the cerium oxide nanofluid passing through the pipes connected along the length of the heat exchanger. Air was blown through the plates where dehumidification occurs due to the vapor pressure difference between the air and the desiccant-coated plate. The experiments were conducted by varying the air velocity, water flow rate, and nanoparticle concentration. The nanoparticle volume fraction varied from 0.05% to 0.3%. Different performance parameters such as the moisture removal rate, dehumidification efficiency, cooling capacity, and coefficient of performance (COP) were calculated. Results showed that the performance parameters were enhanced with an increase in the water flow rate as well as the air flow rate. Furthermore, it was seen that with the addition and increase in nanoparticle concentration, the moisture removal rate and dehumidification efficiency were enhanced. In comparison to no addition of nanoparticles, a 0.3% addition of nanoparticles demonstrated a maximum increase in MRR of 53% and dehumidification efficiency of 57%. A maximum reduction of 6.1% in the dehumidification area was achieved by using 0.3% nanoparticles with water. It is recommended to use nanofluids for dehumidification using solid desiccants, which can enhance the performance without having negative influence on the environment. Full article
(This article belongs to the Topic Built Environment and Human Comfort)
Show Figures

Figure 1

17 pages, 9617 KiB  
Article
Durable Polymer Coatings: A Comparative Study of PDMS-Based Nanocomposites as Protective Coatings for Stone Materials
by Maduka L. Weththimuni, Marwa Ben Chobba, Donatella Sacchi, Mouna Messaoud and Maurizio Licchelli
Chemistry 2022, 4(1), 60-76; https://doi.org/10.3390/chemistry4010006 - 29 Jan 2022
Cited by 20 | Viewed by 4886
Abstract
Nowadays, durable protective coatings receive more attention in the field of conservation for several reasons (they are cost effective, time consuming, more resistance, etc.). Hence, this study was focused on producing a multi-functional, durable coating to protect different stone materials, especially, Lecce stone, [...] Read more.
Nowadays, durable protective coatings receive more attention in the field of conservation for several reasons (they are cost effective, time consuming, more resistance, etc.). Hence, this study was focused on producing a multi-functional, durable coating to protect different stone materials, especially, Lecce stone, bricks, and marble. For this purpose, ZrO2-doped-ZnO-PDMS nanocomposites (PDMS, polydimethylsiloxane used as the binder) were synthesized by in situ reaction (doped nanoparticles were inserted into the polymer matrix during the synthesis of PDMS) and the performances of resulting coatings were examined by handling different experimental analyses. In particular, the study aimed to evaluate the durability properties of the coating along with the self-cleaning effect. As a result, the durability of the nanocomposite coating with respect to the well-known PDMS coating was assessed after exposure to two different ageing cycles: solar ageing (300 W, 1000 h) and humid chamber ageing (RH > 80%, T = 22 ± 3 °C, desiccator, 2 years). All the results were in good agreement with each other providing that newly prepared nanocomposite coating can be used as a durable protective coating for different stone materials. Full article
(This article belongs to the Section Chemistry of Materials)
Show Figures

Figure 1

16 pages, 2726 KiB  
Review
Review of Hygroscopic Coating on Aluminum Fin Surface of Air Conditioning Heat Exchanger
by Song He, Wang Chen, Wansheng Yang and Xudong Zhao
Appl. Sci. 2021, 11(11), 5193; https://doi.org/10.3390/app11115193 - 3 Jun 2021
Cited by 6 | Viewed by 4000
Abstract
Air conditioning energy consumption accounts for most building energy consumption, indoor dehumidification is the main cause of air conditioning energy consumption. Optimize the dehumidification methods of air conditioning systems have great significance to the development of green buildings and people’s pursuit of comfort. [...] Read more.
Air conditioning energy consumption accounts for most building energy consumption, indoor dehumidification is the main cause of air conditioning energy consumption. Optimize the dehumidification methods of air conditioning systems have great significance to the development of green buildings and people’s pursuit of comfort. Improvement of fins on air conditioning heat exchangers is a hot topic of current research and has achieved considerable results in terms of indoor dehumidification and energy saving compared to traditional air conditioners. This paper reviews two kinds of heat exchangers modified by coating, including desiccant-coated heat exchangers and hydrophobic/hydrophilic coated heat exchangers. For desiccant-coated heat exchangers, the preparation methods of advanced desiccant materials and the possibilities of using this material to achieve excellent energy efficiencies were presented, and the operating parameters that affect thermal performance and dehumidification are determined, including airflow temperature, air velocity, inlet air relative humidity, and regeneration temperature. For hydrophobic/hydrophilic coated heat exchangers, different kinds of hybrid hydrophobic-hydrophilic surfaces are highlighted for they are a high water droplet nucleation rate and surface heat transfer efficiency. In addition, the challenges and future works are explained at last. This paper will provide a valuable reference for the follow-up research, which will be helpful for indoor humidity control and reducing the energy consumption of air conditioning. Full article
(This article belongs to the Special Issue Characterization and Application of Nanoporous Materials)
Show Figures

Figure 1

16 pages, 2665 KiB  
Article
Dehumidification Effect of Polymeric Superabsorbent SAP-LiCl Composite Desiccant-Coated Heat Exchanger with Different Cyclic Switching Time
by Bivas Panigrahi, Yu Sheng Chen, Win Jet Luo and Hung Wei Wang
Sustainability 2020, 12(22), 9673; https://doi.org/10.3390/su12229673 - 19 Nov 2020
Cited by 19 | Viewed by 2989
Abstract
This study investigated a composite polymer desiccant material’s performance, which is prepared by impregnating solid desiccant such as sodium polyacrylate (SAP) on to hygroscopic salts such as lithium chloride (LiCl). Dehumidification performance of the proposed composite polymer desiccant (SAP-LiCl) was analyzed by coating [...] Read more.
This study investigated a composite polymer desiccant material’s performance, which is prepared by impregnating solid desiccant such as sodium polyacrylate (SAP) on to hygroscopic salts such as lithium chloride (LiCl). Dehumidification performance of the proposed composite polymer desiccant (SAP-LiCl) was analyzed by coating the suitable weight percentage (wt %) of the desiccant onto a single fin-tube heat exchanger (FTHE) system and testing the desiccant-coated heat exchanger (DCHE) in a testing tunnel under various operating conditions. Net dehumidification efficacy of DCHE in terms of sorption and desorption amount and thermal performance (COPth) were analyzed. For instance, with processed air inflow temperature, relative humidity and regeneration temperature setting of 30 °C, 80% RH and 70 °C, DCHE’s sorption, desorption amount and COPth were recorded as high as 945.1 g, 1115.1 g, and 0.39, respectively. It was further realized that the performance of the DCHE could be enhanced by modulating the cyclic switching time for dehumidification and regeneration processes. For instance, with the aforementioned processed airflow conditions, when the cyclic switching time tuned as 60 min instead of 10 min for a total time period of 120 min, there is a net 58% improvement to the COPth of the system. It was further observed that, under the same time period corresponding to the increase in cyclic switching time, the overall COPth can be enhanced; however, the water vapor sorption and desorption amounts of desiccant were decreased. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

19 pages, 2728 KiB  
Article
Performance Analysis of Two-Stage Solid Desiccant Densely Coated Heat Exchangers
by Kun-Ying Li, Win-Jet Luo, Bo-Yi Tsai and Yean-Der Kuan
Sustainability 2020, 12(18), 7357; https://doi.org/10.3390/su12187357 - 8 Sep 2020
Cited by 17 | Viewed by 2796
Abstract
In this study, silica gel and sodium polyacrylate desiccants are coated onto a finned tube heat exchanger (Desiccant Coating Heat Exchanger, DCHE), which can absorb the vapor in the process air for dehumidification. In the experiments, the desiccant is coated on fins using [...] Read more.
In this study, silica gel and sodium polyacrylate desiccants are coated onto a finned tube heat exchanger (Desiccant Coating Heat Exchanger, DCHE), which can absorb the vapor in the process air for dehumidification. In the experiments, the desiccant is coated on fins using the dense coating method, which causes the fixed fin area to be coated with greater amounts of desiccants for a better dehumidification performance. This study discusses the dehumidification performances of a single stage DCHE and two-stage DCHEs in series under different relative humidity conditions of the inlet process air and different regeneration water temperatures. The results show that the thermal coefficient of performance (COPth) of the DCHEs for the two desiccants prepared by the dense coating method is better than that of DCHEs with the general immersing coating method by a factor of 2–2.4. The two-stage DCHEs in series have a lower supply humidity ratio than a single stage DCHE at different inlet humidity levels, and they can be used in the industry when a special low humidity manufacturing process is required. The overall dehumidifying capacities of two-stage series-connected DCHEs at regeneration temperatures of 50 °C and 70 °C are approximately twice as high as those of a single stage DCHE. The COPth value of a single stage or two stages increases with an increase in the inlet humidity of the process air. The COPth values of the sodium polyacrylate single stage and two-stage DCHEs are 1–1.3 times greater than those of the silica gel single stage and two-stage DCHEs at a high inlet air humidity. Finally, the effects of different regeneration water temperatures on the performance of DCHEs are investigated. With an increase in the regeneration water temperature, the COPth value, dehumidifying capacity and regeneration capacity of single stage or two-stage DCHEs increase as well. Full article
Show Figures

Figure 1

13 pages, 2171 KiB  
Article
Impact of Air Exposure Time on the Water Contact Angles of Daily Disposable Silicone Hydrogels
by Petar Eftimov, Norihiko Yokoi, Nikola Peev and Georgi As. Georgiev
Int. J. Mol. Sci. 2019, 20(6), 1313; https://doi.org/10.3390/ijms20061313 - 15 Mar 2019
Cited by 26 | Viewed by 4762
Abstract
The wettability of silicone hydrogel (SiHy) contact lens (CLs) is crucial for the pre-lens tear film stability throughout the day. Therefore, sessile drop and captive bubble setups were used to study the advancing and receding water contact angles (CA) of four SiHy materials: [...] Read more.
The wettability of silicone hydrogel (SiHy) contact lens (CLs) is crucial for the pre-lens tear film stability throughout the day. Therefore, sessile drop and captive bubble setups were used to study the advancing and receding water contact angles (CA) of four SiHy materials: narafilcon A (TE), senofilcon A (AOD), stenfilcon A (MD), and delefilcon A (DT). TE and AOD have 48% and 38% water content, respectively, and no surface coating. MD (54% water) implements “smart chemistry” with just 4.4% bulk silicone content, while DT has >80% water at its surface. These SiHy were subjected to continuous blink-like air exposure (10 s)/rehydration (1s) cycles for 0, 1, 2, 3, 4, 6, 8, 10, 12, 14, and 16 h. The advancing CA, which measures the rehydration propensity of the CL surface, proved to be the most sensitive parameter to discriminate between the samples. The order of performance for the entire time scale was DT > MD >> AOD ≥ TE. The extended desiccation/rehydration cycling increased the differences between the CA of DT and MD compared to AOD and TE. This suggests that the low Si surface content and the high surface hydration are major determinants of SiHy wettability. Full article
(This article belongs to the Section Materials Science)
Show Figures

Graphical abstract

13 pages, 1900 KiB  
Article
Thermodynamic Analysis of Irreversible Desiccant Systems
by Niccolò Giannetti, Seiichi Yamaguchi, Andrea Rocchetti and Kiyoshi Saito
Entropy 2018, 20(8), 595; https://doi.org/10.3390/e20080595 - 9 Aug 2018
Cited by 5 | Viewed by 3894
Abstract
A new general thermodynamic mapping of desiccant systems’ performance is conducted to estimate the potentiality and determine the proper application field of the technology. This targets certain room conditions and given outdoor temperature and humidity prior to the selection of the specific desiccant [...] Read more.
A new general thermodynamic mapping of desiccant systems’ performance is conducted to estimate the potentiality and determine the proper application field of the technology. This targets certain room conditions and given outdoor temperature and humidity prior to the selection of the specific desiccant material and technical details of the system configuration. This allows the choice of the operative state of the system to be independent from the limitations of the specific design and working fluid. An expression of the entropy balance suitable for describing the operability of a desiccant system at steady state is obtained by applying a control volume approach, defining sensible and latent effectiveness parameters, and assuming ideal gas behaviour of the air-vapour mixture. This formulation, together with mass and energy balances, is used to conduct a general screening of the system performance. The theoretical advantage and limitation of desiccant dehumidification air conditioning, maximum efficiency for given conditions constraints, least irreversible configuration for a given operative target, and characteristics of the system for a target efficiency can be obtained from this thermodynamic mapping. Once the thermo-physical properties and the thermodynamic equilibrium relationship of the liquid desiccant mixture or solid coating material are known, this method can be applied to a specific technical case to select the most appropriate working medium and guide the specific system design to achieve the target performance. Full article
(This article belongs to the Special Issue Entropy: From Physics to Information Sciences and Geometry)
Show Figures

Figure 1

Back to TopTop