Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = coastal inundation delineation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 19756 KB  
Article
Impact of Climate Change and Other Disasters on Coastal Cultural Heritage: An Example from Greece
by Chryssy Potsiou, Sofia Basiouka, Styliani Verykokou, Denis Istrati, Sofia Soile, Marcos Julien Alexopoulos and Charalabos Ioannidis
Land 2025, 14(10), 2007; https://doi.org/10.3390/land14102007 - 7 Oct 2025
Viewed by 1452
Abstract
Protection of coastal cultural heritage is among the most urgent global priorities, as these sites face increasing threats from climate change, sea level rise, and human activity. This study emphasises the value of innovative geospatial tools and data ecosystems for timely risk assessment. [...] Read more.
Protection of coastal cultural heritage is among the most urgent global priorities, as these sites face increasing threats from climate change, sea level rise, and human activity. This study emphasises the value of innovative geospatial tools and data ecosystems for timely risk assessment. The role of land administration systems, geospatial documentation of coastal cultural heritage sites, and the adoption of innovative techniques that combine various methodologies is crucial for timely action. The coastal management infrastructure in Greece is presented, outlining the key public authorities and national legislation, as well as the land administration and geospatial ecosystems and the various available geospatial ecosystems. We profile the Hellenic Cadastre and the Hellenic Archaeological Cadastre along with open geospatial resources, and introduce TRIQUETRA Decision Support System (DSS), produced through the EU’s Horizon project, and a Digital Twin methodology for hazard identification, quantification, and mitigation. Particular emphasis is given to the role of Digital Twin technology, which acts as a continuously updated virtual replica of coastal cultural heritage sites, integrating heterogeneous geospatial datasets such as cadastral information, photogrammetric 3D models, climate projections, and hazard simulations, allowing for stakeholders to test future scenarios of sea level rise, flooding, and erosion, offering an advanced tool for resilience planning. The approach is validated at the coastal archaeological site of Aegina Kolona, where a UAV-based SfM-MVS survey produced using high-resolution photogrammetric outputs, including a dense point cloud exceeding 60 million points, a 5 cm resolution Digital Surface Model, high-resolution orthomosaics with a ground sampling distance of 1 cm and 2.5 cm, and a textured 3D model using more than 6000 nadir and oblique images. These products provided a geospatial infrastructure for flood risk assessment under extreme rainfall events, following a multi-scale hydrologic–hydraulic modelling framework. Island-scale simulations using a 5 m Digital Elevation Model (DEM) were coupled with site-scale modelling based on the high-resolution UAV-derived DEM, allowing for the nested evaluation of water flow, inundation extents, and velocity patterns. This approach revealed spatially variable flood impacts on individual structures, highlighted the sensitivity of the results to watershed delineation and model resolution, and identified critical intervention windows for temporary protection measures. We conclude that integrating land administration systems, open geospatial data, and Digital Twin technology provides a practical pathway to proactive and efficient management, increasing resilience for coastal heritage against climate change threats. Full article
(This article belongs to the Special Issue Land Modifications and Impacts on Coastal Areas, Second Edition)
Show Figures

Figure 1

25 pages, 6316 KB  
Article
Integration of Remote Sensing and Machine Learning Approaches for Operational Flood Monitoring Along the Coastlines of Bangladesh Under Extreme Weather Events
by Shampa, Nusaiba Nueri Nasir, Mushrufa Mushreen Winey, Sujoy Dey, S. M. Tasin Zahid, Zarin Tasnim, A. K. M. Saiful Islam, Mohammad Asad Hussain, Md. Parvez Hossain and Hussain Muhammad Muktadir
Water 2025, 17(15), 2189; https://doi.org/10.3390/w17152189 - 23 Jul 2025
Cited by 1 | Viewed by 2763
Abstract
The Ganges–Brahmaputra–Meghna (GBM) delta, characterized by complex topography and hydrological conditions, is highly susceptible to recurrent flooding, particularly in its coastal regions where tidal dynamics hinder floodwater discharge. This study integrates Synthetic Aperture Radar (SAR) imagery with machine learning (ML) techniques to assess [...] Read more.
The Ganges–Brahmaputra–Meghna (GBM) delta, characterized by complex topography and hydrological conditions, is highly susceptible to recurrent flooding, particularly in its coastal regions where tidal dynamics hinder floodwater discharge. This study integrates Synthetic Aperture Radar (SAR) imagery with machine learning (ML) techniques to assess near real-time flood inundation patterns associated with extreme weather events, including recent cyclones between 2017 to 2024 (namely, Mora, Titli, Fani, Amphan, Yaas, Sitrang, Midhili, and Remal) as well as intense monsoonal rainfall during the same period, across a large spatial scale, to support disaster risk management efforts. Three machine learning algorithms, namely, random forest (RF), support vector machine (SVM), and K-nearest neighbors (KNN), were applied to flood extent data derived from SAR imagery to enhance flood detection accuracy. Among these, the SVM algorithm demonstrated the highest classification accuracy (75%) and exhibited superior robustness in delineating flood-affected areas. The analysis reveals that both cyclone intensity and rainfall magnitude significantly influence flood extent, with the western coastal zone (e.g., Morrelganj and Kaliganj) being most consistently affected. The peak inundation extent was observed during the 2023 monsoon (10,333 sq. km), while interannual variability in rainfall intensity directly influenced the spatial extent of flood-affected zones. In parallel, eight major cyclones, including Amphan (2020) and Remal (2024), triggered substantial flooding, with the most severe inundation recorded during Cyclone Remal with an area of 9243 sq. km. Morrelganj and Chakaria were consistently identified as flood hotspots during both monsoonal and cyclonic events. Comparative analysis indicates that cyclones result in larger areas with low-level inundation (19,085 sq. km) compared to monsoons (13,829 sq. km). However, monsoon events result in a larger area impacted by frequent inundation, underscoring the critical role of rainfall intensity. These findings underscore the utility of SAR-ML integration in operational flood monitoring and highlight the urgent need for localized, event-specific flood risk management strategies to enhance flood resilience in the GBM delta. Full article
Show Figures

Figure 1

19 pages, 4376 KB  
Article
Tracing the 2018 Sulawesi Earthquake and Tsunami’s Impact on Palu, Indonesia: A Remote Sensing Analysis
by Youshuang Hu, Aggeliki Barberopoulou and Magaly Koch
J. Mar. Sci. Eng. 2025, 13(1), 178; https://doi.org/10.3390/jmse13010178 - 19 Jan 2025
Viewed by 4697
Abstract
The 2018 Sulawesi Earthquake and Tsunami serves as a backdrop for this work, which employs simple and straightforward remote sensing techniques to determine the extent of the destruction and indirectly evaluate the region’s vulnerability to such catastrophic events. Documenting damage from tsunamis is [...] Read more.
The 2018 Sulawesi Earthquake and Tsunami serves as a backdrop for this work, which employs simple and straightforward remote sensing techniques to determine the extent of the destruction and indirectly evaluate the region’s vulnerability to such catastrophic events. Documenting damage from tsunamis is only meaningful shortly after the disaster has occurred because governmental agencies clean up debris and start the recovery process within a few hours after the destruction has occurred, deeming impact estimates unreliable. Sentinel-2 and Maxar WorldView-3 satellite images were used to calculate well-known environmental indices to delineate the tsunami-affected areas in Palu, Indonesia. The use of NDVI, NDSI, and NDWI indices has allowed for a quantifiable measure of the changes in vegetation, soil moisture, and water bodies, providing a clear demarcation of the tsunami’s impact on land cover. The final tsunami inundation map indicates that the areas most affected by the tsunami are found in the urban center, low-lying regions, and along the coast. This work charts the aftermath of one of Indonesia’s recent tsunamis but may also lay the groundwork for an easy, handy, and low-cost approach to quickly identify tsunami-affected zones. While previous studies have used high-resolution remote sensing methods such as LiDAR or SAR, our study emphasizes accessibility and simplicity, making it more feasible for resource-constrained regions or rapid disaster response. The scientific novelty lies in the integration of widely used environmental indices (dNDVI, dNDWI, and dNDSI) with threshold-based Decision Tree classification to delineate tsunami-affected areas. Unlike many studies that rely on advanced or proprietary tools, we demonstrate that comparable results can be achieved with cost-effective open-source data and straightforward methodologies. Additionally, we address the challenge of differentiating tsunami impacts from other phenomena (et, liquefaction) through index-based thresholds and propose a framework that is adaptable to other vulnerable coastal regions. Full article
(This article belongs to the Special Issue Coastal Disaster Assessment and Response)
Show Figures

Figure 1

14 pages, 8044 KB  
Article
Assessing the Origin and Mapping the Extension of Salinity Around Shrimp Culture Ponds in Rio Grande Do Norte (Brazil)
by José A. Beltrão-Sabadía, Albert Casas-Ponsatí, Evanimek Bernardo Sabino da Silva, Alex Sendrós, Josefina C. Tapias and Francisco Pinheiro Lima-Filho
Hydrology 2024, 11(11), 188; https://doi.org/10.3390/hydrology11110188 - 6 Nov 2024
Cited by 1 | Viewed by 1915
Abstract
The increasing installation of shrimp farms in vulnerable coastal areas around the world generates an environmental impact and makes it urgent to develop methodologies and studies for assessing and scaling the potential risks and sustainability of these activities. One of the main hazards [...] Read more.
The increasing installation of shrimp farms in vulnerable coastal areas around the world generates an environmental impact and makes it urgent to develop methodologies and studies for assessing and scaling the potential risks and sustainability of these activities. One of the main hazards of these activities is that the prolonged inundation of excavated ponds for shrimp farming allows the percolation of saltwater in the surroundings, resulting in increasing groundwater salinity. Saltwater intrusion in coastal aquifers, accompanied by salinization of soils, causes a decrease in available freshwater resources, a decline in crop productivity and the deterioration of the natural ecosystem. The coastal aquifer of Rio Grande do Norte State (Brazil) where, for years, several shrimp farm factories have been operating, reported some issues related to aquifer and soil salinization. The present study aims to assess the origin of and delineate groundwater salinization in a sector of this coastal aquifer using a low-budget procedure. The integration of hydrogeological and hydrogeochemical characterization by drilling shallow piezometers, measuring the hydrostatic level and analyzing the major ion concentrations of the groundwater has made it possible to establish that the origin of groundwater pollution in the studied area is caused by saltwater percolation from shrimp farms. The joint use of both characterization techniques has been shown to have an efficient cost–benefit ratio and less-intrusive methodology, which can be applied in other areas with similar environmental concerns. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment)
Show Figures

Figure 1

17 pages, 2049 KB  
Article
Assessment of Flood Risk Map under Climate Change RCP8.5 Scenarios in Taiwan
by Yun-Ju Chen, Hsuan-Ju Lin, Jun-Jih Liou, Chao-Tzuen Cheng and Yung-Ming Chen
Water 2022, 14(2), 207; https://doi.org/10.3390/w14020207 - 11 Jan 2022
Cited by 25 | Viewed by 9582
Abstract
Climate change has exerted a significant global impact in recent years, and extreme weather-related hazards and incidents have become the new normal. For Taiwan in particular, the corresponding increase in disaster risk threatens not only the environment but also the lives, safety, and [...] Read more.
Climate change has exerted a significant global impact in recent years, and extreme weather-related hazards and incidents have become the new normal. For Taiwan in particular, the corresponding increase in disaster risk threatens not only the environment but also the lives, safety, and property of people. This highlights the need to develop a methodology for mapping disaster risk under climate change and delineating those regions that are potentially high-risk areas requiring adaptation to a changing climate in the future. This study provides a framework of flood risk map assessment under the RCP8.5 scenario by using different spatial scales to integrate the projection climate data of high resolution, inundation potential maps, and indicator-based approach at the end of the 21st century in Taiwan. The reference period was 1979–2003, and the future projection period was 2075–2099. High-resolution climate data developed by dynamic downscaling of the MRI-JMA-AGCM model was used to assess extreme rainfall events. The flood risk maps were constructed using two different spatial scales: the township level and the 5 km × 5 km grid. As to hazard-vulnerability(H-V) maps, users can overlay maps of their choice—such as those for land use distribution, district planning, agricultural crop distribution, or industrial distribution. Mapping flood risk under climate change can support better informed decision-making and policy-making processes in planning and preparing to intervene and control flood risks. The elderly population distribution is applied as an exposure indicator in order to guide advance preparation of evacuation plans for high-risk areas. This study found that higher risk areas are distributed mainly in northern and southern parts of Taiwan and the hazard indicators significantly increase in the northern, north-eastern, and southern regions under the RCP8.5 scenario. Moreover, the near-riparian and coastal townships of central and southern Taiwan have higher vulnerability levels. Approximately 14% of townships have a higher risk level of flooding disaster and another 3% of townships will become higher risk. For higher-risk townships, adaptation measures or strategies are suggested to prioritize improving flood preparation and protecting people and property. Such a flood risk map can be a communication tool to effectively inform decision- makers, citizens, and stakeholders about the variability of flood risk under climate change. Such maps enable decision-makers and national spatial planners to compare the relative flood risk of individual townships countrywide in order to determine and prioritize risk adaptation areas for planning spatial development policies. Full article
Show Figures

Figure 1

16 pages, 5929 KB  
Article
Flood Modeling and Groundwater Flooding in Urbanized Reclamation Areas: The Case of Rome (Italy)
by Corrado P. Mancini, Stefano Lollai, Elena Volpi and Aldo Fiori
Water 2020, 12(7), 2030; https://doi.org/10.3390/w12072030 - 17 Jul 2020
Cited by 22 | Viewed by 4501
Abstract
Coastal regions below the sea level, subject to reclamation, are becoming more and more exposed to flooding following increasing urbanization and hydrological changes. In these areas, groundwater and water table dynamics during intense rainfall events can be an important component of flooding and [...] Read more.
Coastal regions below the sea level, subject to reclamation, are becoming more and more exposed to flooding following increasing urbanization and hydrological changes. In these areas, groundwater and water table dynamics during intense rainfall events can be an important component of flooding and inundation, leading to groundwater flooding. Thus, the commonly employed hydrological models based on only the surface component of flow may result in a poor estimation of the extension and persistence of inundation events. We introduce here a simple and parsimonious approach for handling the groundwater contribution to flooding in such areas, which can be easily implemented and introduced into surface hydraulic models for flood management and the delineation of inundation maps. The approach involves few relevant parameters, requiring a minimum of information regarding the hydrogeological setup. The method is exemplified through the flood analysis of a wide reclamation area located in the southern part of Rome, Italy. The introduction of the groundwater component could explain the large water volumes pumped by the stations, which are much larger than excess rainfall. The application confirmed the validity of the proposed approach, emphasizing the important role played by groundwater to flooding in areas similar to the one considered here. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

19 pages, 5512 KB  
Article
Assessment of Infrastructure Vulnerability to Tsunamis upon the Coastal Zone of Oman Using GIS
by Mohamed E. Hereher
Geosciences 2020, 10(5), 175; https://doi.org/10.3390/geosciences10050175 - 10 May 2020
Cited by 10 | Viewed by 6949
Abstract
The coastal zones of Oman are frequently exposed to tropical cyclones and are expected to be overwhelmed by tsunami waves that originate from marine earthquakes in the Indian Ocean. Inundation of low-lying coastal lands is, hence, inevitable. This study aims to provide a [...] Read more.
The coastal zones of Oman are frequently exposed to tropical cyclones and are expected to be overwhelmed by tsunami waves that originate from marine earthquakes in the Indian Ocean. Inundation of low-lying coastal lands is, hence, inevitable. This study aims to provide a spatial database of the major infrastructure of Oman in relation to their vulnerability to the sea-level rise by tsunamis. This investigation relied on high-resolution elevation data obtained from the Advanced Spaceborne Thermal Emission and Reflection Radiometer-Global Digital Elevation Model (ASTER GDEM) and eleven infrastructure variables acquired from the Oman National Spatial Data Infrastructure. These variables include: schools, hospitals, banks, mosques, fuel stations, police centers, shopping centers, archeological sites, vegetation cover, roads and built-up areas. A Geographical Information System (GIS) analysis was carried out to delineate and quantify the features along the coast with elevation ranges between 1 and 10 m above the current sea-level. Four tsunami scenarios were investigated depending on historical and expected estimations of tsunami heights of 2, 5, 8 and 10 m at the shoreline from previous studies. Results provide spatial vulnerability maps and databases that could be of the utmost importance to planners and developers. Al-Batinah coastal plain of northern Oman is the most vulnerable location to tsunami hazards due to its low-elevated coastal plain and high concentration of population, infrastructure and services. The study asserts the benefits of GIS as a geospatial analysis tool for risk assessment. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

18 pages, 7885 KB  
Article
Monitoring Invasion Process of Spartina alterniflora by Seasonal Sentinel-2 Imagery and an Object-Based Random Forest Classification
by Yanlin Tian, Mingming Jia, Zongming Wang, Dehua Mao, Baojia Du and Chao Wang
Remote Sens. 2020, 12(9), 1383; https://doi.org/10.3390/rs12091383 - 27 Apr 2020
Cited by 51 | Viewed by 7540
Abstract
In the late 1990s, the exotic plant Spartina alterniflora (S. alterniflora), was introduced to the Zhangjiang Estuary of China for tidal zone reclamation and protection. However, it invaded rapidly and has caused serious ecological problems. Accurate information on the seasonal invasion [...] Read more.
In the late 1990s, the exotic plant Spartina alterniflora (S. alterniflora), was introduced to the Zhangjiang Estuary of China for tidal zone reclamation and protection. However, it invaded rapidly and has caused serious ecological problems. Accurate information on the seasonal invasion of S. alterniflora is vital to understand invasion pattern and mechanism, especially at a high temporal resolution. This study aimed to explore the S. alterniflora invasion process at a seasonal scale from 2016 to 2018. However, due to the uncertainties caused by periodic inundation of local tides, accurately monitoring the spatial extent of S. alterniflora is challenging. Thus, to achieve the goal and address the challenge, we firstly built a high-quality seasonal Sentinel-2 image collection by developing a new submerged S. alterniflora index (SAI) to reduce the errors caused by high tide fluctuations. Then, an object-based random forest (RF) classification method was applied to the image collection. Finally, seasonal extents of S. alterniflora were captured. Results showed that (1) the red edge bands (bands 5, 6, and 7) of Sentinel-2 imagery played critical roles in delineating submerged S. alterniflora; (2) during March 2016 to November 2018, the extent of S. alterniflora increased from 151.7 to 270.3 ha, with an annual invasion rate of 39.5 ha; (3) S. alterniflora invaded with a rate of 31.5 ha/season during growing season and 12.1 ha/season during dormant season. To our knowledge, this is the first study monitoring S. alterniflora invasion process at a seasonal scale during continuous years, discovering that S. alterniflora also expands during dormant seasons. This discovery is of great significance for understanding the invasion pattern and mechanism of S. alterniflora and will facilitate coastal biodiversity conservation efforts. Full article
(This article belongs to the Special Issue Remote Sensing of Wetlands)
Show Figures

Graphical abstract

20 pages, 5889 KB  
Article
Adjusting Emergent Herbaceous Wetland Elevation with Object-Based Image Analysis, Random Forest and the 2016 NLCD
by David F. Muñoz, Jordan R. Cissell and Hamed Moftakhari
Remote Sens. 2019, 11(20), 2346; https://doi.org/10.3390/rs11202346 - 10 Oct 2019
Cited by 22 | Viewed by 4899
Abstract
Emergent herbaceous wetlands are characterized by complex salt marsh ecosystems that play a key role in diverse coastal processes including carbon storage, nutrient cycling, flood attenuation and shoreline protection. Surface elevation characterization and spatiotemporal distribution of these ecosystems are commonly obtained from LiDAR [...] Read more.
Emergent herbaceous wetlands are characterized by complex salt marsh ecosystems that play a key role in diverse coastal processes including carbon storage, nutrient cycling, flood attenuation and shoreline protection. Surface elevation characterization and spatiotemporal distribution of these ecosystems are commonly obtained from LiDAR measurements as this low-cost airborne technique has a wide range of applicability and usefulness in coastal environments. LiDAR techniques, despite significant advantages, show poor performance in generation of digital elevation models (DEMs) in tidal salt marshes due to large vertical errors. In this study, we present a methodology to (i) update emergent herbaceous wetlands (i.e., the ones delineated in the 2016 National Land Cover Database) to present-day conditions; and (ii) automate salt marsh elevation correction in estuarine systems. We integrate object-based image analysis and random forest technique with surface reflectance Landsat imagery to map three emergent U.S. wetlands in Weeks Bay, Alabama, Savannah Estuary, Georgia and Fire Island, New York. Conducting a hyperparameter tuning of random forest and following a hierarchical approach with three nomenclature levels for land cover classification, we are able to better map wetlands and improve overall accuracies in Weeks Bay (0.91), Savannah Estuary (0.97) and Fire Island (0.95). We then develop a tool in ArcGIS to automate salt marsh elevation correction. We use this ‘DEM-correction’ tool to modify an existing DEM (model input) with the calculated elevation correction over salt marsh regions. Our method and tool are validated with real-time kinematic elevation data and helps correct overestimated salt marsh elevation up to 0.50 m in the studied estuaries. The proposed tool can be easily adapted to different vegetation species in wetlands, and thus help provide accurate DEMs for flood inundation mapping in estuarine systems. Full article
(This article belongs to the Special Issue Earth Observations for Coastal Resilience)
Show Figures

Graphical abstract

20 pages, 16272 KB  
Article
Development of a New Generation of Flood Inundation Maps—A Case Study of the Coastal City of Tainan, Taiwan
by Dong-Jiing Doong, Weicheng Lo, Zoran Vojinovic, Wei-Lin Lee and Shin-Ping Lee
Water 2016, 8(11), 521; https://doi.org/10.3390/w8110521 - 8 Nov 2016
Cited by 30 | Viewed by 11837
Abstract
Flood risk management has become a growing priority for city managers and disaster risk prevention agencies worldwide. Correspondingly, large investments are made towards data collection, archiving and analysis and technologies such as geographic information systems (GIS) and remote sensing play important role in [...] Read more.
Flood risk management has become a growing priority for city managers and disaster risk prevention agencies worldwide. Correspondingly, large investments are made towards data collection, archiving and analysis and technologies such as geographic information systems (GIS) and remote sensing play important role in this regard. GIS technologies offer valuable means for delineation of flood plains, zoning of areas that need protection from floods and identification of plans for development and scoping of various kinds of flood protection measures. Flood inundation maps (FIMs) are particularly useful in planning flood disaster risk responses. The purpose of the present paper is to describe efforts in developing new generation of FIMs at the city scale and to demonstrate effectiveness of such maps in the case of the coastal city of Tainan, Taiwan. In the present work, besides pluvial floods, the storm surge influence is also considered. The 1D/2D coupled model SOBEK was used for flood simulations. Different indicators such as Probability of Detection (POD) and Scale of Accuracy (SA) were applied in the calibration and validation stages of the work and their corresponding values were found to be up to 88.1% and 68.0%, respectively. From the overall analysis, it came up that land elevation, tidal phase, and storm surge are the three dominant factors that influence flooding in Tainan. A large number of model simulations were carried out in order to produce FIMs which were then effectively applied in the stakeholder engagement process. Full article
(This article belongs to the Special Issue Hydroinformatics and Urban Water Systems)
Show Figures

Figure 1

17 pages, 1749 KB  
Article
Evaluation of Airborne Lidar Elevation Surfaces for Propagation of Coastal Inundation: The Importance of Hydrologic Connectivity
by Sandra Poppenga and Bruce Worstell
Remote Sens. 2015, 7(9), 11695-11711; https://doi.org/10.3390/rs70911695 - 14 Sep 2015
Cited by 8 | Viewed by 7160
Abstract
Detailed information about coastal inundation is vital to understanding dynamic and populated areas that are impacted by storm surge and flooding. To understand these natural hazard risks, lidar elevation surfaces are frequently used to model inundation in coastal areas. A single-value surface method [...] Read more.
Detailed information about coastal inundation is vital to understanding dynamic and populated areas that are impacted by storm surge and flooding. To understand these natural hazard risks, lidar elevation surfaces are frequently used to model inundation in coastal areas. A single-value surface method is sometimes used to inundate areas in lidar elevation surfaces that are below a specified elevation value. However, such an approach does not take into consideration hydrologic connectivity between elevation grids cells resulting in inland areas that should be hydrologically connected to the ocean, but are not. Because inland areas that should drain to the ocean are hydrologically disconnected by raised features in a lidar elevation surface, simply raising the water level to propagate coastal inundation will lead to inundation uncertainties. We took advantage of this problem to identify hydrologically disconnected inland areas to point out that they should be considered for coastal inundation, and that a lidar-based hydrologic surface should be developed with hydrologic connectivity prior to inundation analysis. The process of achieving hydrologic connectivity with hydrologic-enforcement is not new, however, the application of hydrologically-enforced lidar elevation surfaces for improved coastal inundation mapping as approached in this research is innovative. In this article, we propagated a high-resolution lidar elevation surface in coastal Staten Island, New York to demonstrate that inland areas lacking hydrologic connectivity to the ocean could potentially be included in inundation delineations. For inland areas that were hydrologically disconnected, we evaluated if drainage to the ocean was evident, and calculated an area exceeding 11 ha (~0.11 km2) that could be considered in inundation delineations. We also assessed land cover for each inland area to determine the type of physical surfaces that would be potentially impacted if the inland areas were considered as part of a coastal inundation. A visual analysis indicated that developed, medium intensity and palustrine forested wetland land cover types would be impacted for those locations. This article demonstrates that hydrologic connectivity is an important factor to consider when inundating a lidar elevation surface. This information is needed for inundation monitoring and management in sensitive coastal regions. Full article
(This article belongs to the Special Issue Remote Sensing in Flood Monitoring and Management)
Show Figures

Graphical abstract

Back to TopTop