Assessment of Infrastructure Vulnerability to Tsunamis upon the Coastal Zone of Oman Using GIS
Abstract
:1. Introduction
1.1. Tsunamis in the Sea of Oman and the Arabian Sea
1.2. The Study Area
2. Materials and Methods
3. Results
3.1. The 2 m Height Tsunami Scenario
3.2. The 5-m Height Tsunami Scenario
3.3. The 8-m Height Tsunami Scenario
3.4. The 10 m Height Tsunami Scenario
4. Discussions and Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Small, C.; Nicholls, R.J. A global analysis of human settlement in coastal zones. J. Coast. Res. 2003, 19, 584–599. [Google Scholar]
- Doukakis, E. Coastal vulnerability and risk parameters. Eur. Water 2005, 11, 3–7. [Google Scholar]
- Hereher, M. Assessment of South Sinai Coastal Vulnerability to Climate Change. J. Coast. Res. 2015, 31, 1469–1477. [Google Scholar] [CrossRef]
- Bird, E. Coastal Geomorphology: An Introduction; John Wiley & Sons: New York, NY, USA, 2008. [Google Scholar]
- U.S. Global Change Research Program. Climate Science Special Report: Fourth National Climate Assessment; Wuebbles, D.J., Fahey, D.W., Hibbard, K.A., Dokken, D.J., Stewart, B.C., Maycock, T.K., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2017; Volume I, p. 470.
- IPCC. Climate Change: The Physical Science Basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Hereher, M. Vulnerability of the Nile Delta to sea level rise: An assessment using remote Sensing. Geomat. Nat. Hazards Risk 2010, 1, 315–321. [Google Scholar] [CrossRef]
- Hereher, M. Vulnerability assessment of the Saudi Arabian Red Sea coast to climate change. Environ. Earth Sci. 2016, 75, 1–13. [Google Scholar] [CrossRef]
- Hassan, M.H.; Frischknecht, C.; ElGabry, M.; Hussein, H.; ElWazir, M. Tsunami hazard and risk assessment for Alexandria (Egypt) based on the maximum credible earthquake. J. Afr. Earth Sci. 2020, 162, 103735. [Google Scholar] [CrossRef]
- Geist, E.; Titov, V.; Synolakis, C. Tsunami: Wave of change. Sci. Am. 2006, 294, 56–63. [Google Scholar] [CrossRef]
- National Geophysical Data Center (NGDC/WDS). Global Historical Tsunami Database. Boulder, Colorado, 2013. Available online: http://www.ngdc.noaa.gov/hazard/tsu_db.shtml (accessed on 23 March 2020).
- Sarker, M.A. A Review of numerical modelling of cyclones and tsunamis in the Arabian Sea by Royal HaskoningDHV. Inter. J. Hydrol. 2017, 1, 00014. [Google Scholar]
- Hoffmann, G.; Grützner, C.; Schneidera, B.; Preusserd, F.; Reicherter, K. Large Holocene tsunamis in the northern Arabian Sea. Mar. Geol. 2020, 419, 106068. [Google Scholar] [CrossRef]
- Heidarzadeh, M.; Pirooz, M.; Zaker, N.; Yalciner, A. Preliminary estimation of the tsunami hazards associated with the Makran subduction zone at the northwestern Indian Ocean. Nat. Hazards 2009, 48, 229–243. [Google Scholar] [CrossRef]
- Sultanpour, M. A study on the probability of tsunami attacks in the Persian Gulf and Gulf of Oman. In Handbook of Coastal Disaster Mitigation for Engineers and Planners; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Byrine, D.E.; Sykes, L.R.; Davis, D.M. Great thrust earthquakes and aseismic slip along the plate boundary of the Makran Subduction Zone. J. Geophys. Res. 1992, 97, 449–478. [Google Scholar] [CrossRef]
- Heidarzadeh, M.; Pirooz, M.D.; Zaker, N.H.; Yalciner, A.C.; Mokhtari, M.; Esmaeily, A. Historical tsunami in the Makran subduction zone off the southern coasts of Iran and Pakistan and results of numerical modeling. Ocean Eng. 2008, 35, 774–786. [Google Scholar] [CrossRef]
- Browning, J.; Thomas, N. An assessment of the tsunami risk in Muscat and Salalah, Oman, based on estimations of probable maximum loss. Int. J. Disas. Risk Red. 2016, 16, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Lin, I.; Tung, C. A preliminary investigation of tsunami hazard, B Seismol. Soc. Am. 1982, 72, 2323–2337. [Google Scholar]
- Geist, E.; Parsons, T. Probabilistic analysis of tsunami hazards. Nat. Hazards 2006, 37, 277–314. [Google Scholar] [CrossRef]
- Schneider, B.; Hoffmann, G.; Reicherter, K. Scenario-based tsunami risk assessment using a static flooding approach and high-resolution digital elevation data: An example from Muscat in Oman. Glob. Planet. Chan. 2016, 139, 183–194. [Google Scholar] [CrossRef]
- El-Hussain, I.; Omira, R.; Deif, A.; Al-Habsi, Z.; Al-Rawas, G.; Mohamad, A.; Al-Jabri, K.; Baptista, M. Probabilistic tsunami hazard assessment along Oman coast from submarine earthquakes in the Makran subduction zone. Arab. J. Geosci. 2016, 9, 668. [Google Scholar] [CrossRef]
- El-Hussain, I.; Omira, R.; Al-Habsi, Z.; Baptista, M.A.; Deif, A.; Mohamed, A.M. Probabilistic and deterministic estimates of near-field tsunami hazards in northeast Oman. Geosci. Lett. 2018, 5, 30. [Google Scholar] [CrossRef] [Green Version]
- Heidarzadeh, M.; Pirooz, M.; Zaker, N. Modeling the near-field effects of the worstcase tsunami in the Makran subduction zone. Ocean Eng. 2009, 36, 368–376. [Google Scholar] [CrossRef]
- Panahi, F.; Asadollahi, R.; Asadollahi, M. Bafarani A Experience of cyclone Gonu in the Islamic Republic of Iran: Lessons learned. East. Mediterr. Health J. 2010, 16, 1290–1294. [Google Scholar] [CrossRef]
- Haggag, M.; Badry, H. Hydrometeorological Modeling Study of Tropical Cyclone Phet in the Arabian Sea in 2010. Atmos. Clim. Sci. 2012, 2, 174–190. [Google Scholar] [CrossRef] [Green Version]
- Fritz, H.M.; Blount, C.D.; Albusaidi, F.B.; Al-Harthy, A.H. Cyclone Gonu storm surge in Oman. Estuar. Coast. Shelf Sci. 2010, 86, 102–106. [Google Scholar] [CrossRef]
- Yan, K.; Di Baldassarre, G.; Solomatine, D.P.; Schumann, G.J.P. A review of lowcost space-borne data for flood modelling: Topography, flood extent and water level. Hydrol. Proc. 2015, 29, 3368–3387. [Google Scholar] [CrossRef]
- Pham, H.; Marshalla, L.; Johnsona, F.; Sharma, A.A. method for combining SRTM DEM and ASTER GDEM2 to improve topography estimation in regions without reference data. Remote Sens. Environ. 2018, 210, 229–241. [Google Scholar] [CrossRef]
- Jarihani, A.A.; Callow, J.N.; McVicar, T.R.; Van Niel, T.G.; Larsen, J.R. Satellite derived Digital Elevation Model (DEM) selection, preparation and correction for hydrodynamic modelling in large, low-gradient and data-sparse catchments. J. Hydrol. 2015, 524, 489–506. [Google Scholar] [CrossRef]
- Mukul, M.; Srivastava, V.; Jade, S.; Mukul, M. Uncertainties in the Shuttle Radar Topography Mission (SRTM) Heights: Insights from the Indian Himalaya and Peninsula. Sci. Rep. 2017, 7, 41672. [Google Scholar] [CrossRef] [Green Version]
- Fujisada, H. Terra ASTER instrument design and geometry. In Land Remote Sensing and Global Environmental Change; Springer: New York, NY, USA, 2010; pp. 59–82. [Google Scholar]
- Fujisada, H.; Urai, M.; Iwasaki, A. Technical methodology for ASTER global DEM. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3725–3736. [Google Scholar] [CrossRef]
- Wang, X.; Holland, D.; Gudmundsson, H. Accurate coastal DEM generation by merging ASTER GDEM and ICESat/GLAS data over Mertz Glacier, Antarctica. Remote Sens. Environ. 2018, 206, 218–230. [Google Scholar] [CrossRef]
- Fujisada, H.; Urai, M.; Iwasaki, A. Advanced methodology for ASTER DEM generation. IEEE Trans. Geosci. Remote Sens. 2011, 49, 5080–5091. [Google Scholar] [CrossRef]
- Hereher, M. Capacity assessment of the Qattara Depression: Egypt as a sink for the global sea level rise. Geocarto Internat. 2015, 30, 123–131. [Google Scholar] [CrossRef]
- Clarke, K.C. Advances in geographic information systems. Comput. Environ. Urban Syst. 1986, 10, 175–184. [Google Scholar] [CrossRef]
- Szlafsztein, C.; Sterr, H. A GIS-based vulnerability assessment of coastal natural hazards, state of Pará, Brazil. J. Coast. Conserv. 2007, 11, 53–66. [Google Scholar] [CrossRef]
- Lichter, M.; Felsenstein, D. Assessing the costs of sea-level rise and extreme flooding at the local level: A GIS-based approach. Ocean Coast. Manag. 2012, 59, 47–62. [Google Scholar] [CrossRef]
- Mavromatidi, A.; Briche, E.; Claeys, C. Mapping and analyzing socio-environmental vulnerability to coastal hazards induced by climate change: An application to coastal Mediterranean cities in France. Cities 2018, 72, 189–200. [Google Scholar] [CrossRef]
- Kwarteng, A.Y.; Dorvlo, A.S.; Vijaya Kumar, G.T. Analysis of a 27-year rainfall data (1977–2003) in the Sultanate of Oman. Int. J. Climat. 2009, 29, 605–617. [Google Scholar] [CrossRef]
- Hereher, M. Estimation of monthly surface air temperatures from MODIS LST time series data: Application to the deserts in the Sultanate of Oman. Environ. Monit. Assess. 2019, 191, 592. [Google Scholar] [CrossRef]
- Fouda, M.; Al-Muharrami, M. Significance of the mangroves in the arid environment of the Sultanate of Oman. Agric. Sci. 1996, 1, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Spalding, M.D.; Ravilious, C.; Green, E. World Atlas of Coral Reefs. In Prepared at the UNEP World Conservation Monitoring Centre; University of California Press: Berkeley, CA, USA, 2001. [Google Scholar]
- National Center of Statistics and Information (NCSI). Statistical Year Book; NCSI: Muscat, Oman, 2018.
- National Center of Statistics and Information (NCSI). Oman National Spatial Data Infrastructure. Available online: http://nsdig2gapps.ncsi.gov.om/oej/index.html?config=config_oe_public_en.json&locale=en (accessed on 1 May 2020).
- Hoffmann, G.; Rupprechter, M.; Al Balushi, N.; Grützner, C.; Reicherter, K. The impact of the 1945 Makran tsunami along the coastlines of the Arabian Sea (Northern Indian Ocean)—A review. Z. Für Geomorph. 2013, 57 (Suppl. 4), 257–277. [Google Scholar] [CrossRef]
- Satakea, K.; Heidarzadeh, M.; Quiroz, M.; Cienfuegos, R. History and features of trans-oceanic tsunamis and implications for paleotsunami studies. Earth Sci. Rev. 2020, 202, 103112. [Google Scholar] [CrossRef]
- Brink, U.S.; Chaytor, J.D.; Geist, E.L.; Brothers, D.S.; Andrews, B.D. Assessment of tsunami hazard to the U.S. Atlantic margin. Mar. Geology. 2014, 353, 31–54. [Google Scholar] [CrossRef] [Green Version]
- Glasstone, S.; Dolan, P. Shock effects of surface and subsurface bursts. In The Effects of Nuclear Weapons, 3rd ed.; U.S. Department of Defense; Energy Research and Development Administration: Washington, DC, USA, 1977. [Google Scholar]
- Sultan, M.; Ahmed, K.I. Statistical Analysis of Earthquakes and Tsunami of Makran Subduction Zone (MSZ), and Tsunami Hazard Assessment of Gwadar Coast. J. Earth Sci. Clim. Chang. 2017, 8, 9. [Google Scholar] [CrossRef] [Green Version]
- Hereher, M. Assessment of climate change impacts on sea surface temperatures and sea level rise—The Arabian Gulf. Climate 2020, 8, 50. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, G.; Reicherter, K.; Wiatr, T.; Grützner, C.; Rausch, T. Block and boulder accumulations along the coastline between Fins and Sur (Sultanate of Oman): Tsunamigenic remains? Nat. Hazards 2013, 65, 851–873. [Google Scholar] [CrossRef]
- Yousef, A. Addressing Stability of Shoreline around Rosetta Branch, Nile River. Ph.D. Thesis, The Egypt-Japan University of Science and Technology, Borg Al-Arab, Alexandria, 2015. [Google Scholar]
- Ministry of Transportation and Communication (MTAC). Highway Design Standards; The Sultanate of Oman: Muscat, Oman, 2017; Volume I.
- Olwig, M.F.; Sørensen, M.K.; Rasmussen, M.S.; Danielsen, F.; Selvam, V.; Hansen, L.B.; Nyborg, L.; Vestergaard, K.B.; Parish, F.; Karunagaran, V.M. Using remote sensing to assess the protective role of coastal woody vegetation against tsunami waves. Int. J. Remote Sens. 2007, 28, 3153–3169. [Google Scholar] [CrossRef]
Infrastructure Feature | Layer | Data Type | Number | Length, km | Area km2 |
---|---|---|---|---|---|
Education | Government schools | Point | 1124 | ||
Private schools | Point | 551 | |||
Government universities | Point | 1 | |||
Private universities | Point | 6 | |||
Health | Health centers | Point | 183 | ||
Hospitals | Point | 49 | |||
Security | Police stations | Point | 67 | ||
Financial | Government banks | Point | 34 | ||
Private banks | Point | 617 | |||
Shopping | Malls | Point | 121 | ||
Market | Point | 203 | |||
Department stores | Point | 457 | |||
Religious | Mosques | Point | 12,210 | ||
Automotive | Fuel stations | Point | 548 | ||
Historical | Archeological sites | Point | 499 | ||
Transportation | Expressway | Polyline | 3360 | ||
Highway | Polyline | 4161 | |||
Streets | Polyline | 54,968 | |||
Urban | Built-up | Polygon | 24,512 | ||
Vegetation | Crops | Polygon | 866 |
Elevation | Area (km2) | Inundation Area (km2) | % of Oman Area |
---|---|---|---|
1 | 46 | 46 | 0.01 |
2 | 48 | 94 | 0.03 |
3 | 51 | 144 | 0.05 |
4 | 61 | 205 | 0.07 |
5 | 97 | 301 | 0.10 |
6 | 196 | 497 | 0.16 |
7 | 408 | 905 | 0.29 |
8 | 750 | 1656 | 0.54 |
9 | 1202 | 2858 | 0.93 |
10 | 1724 | 4582 | 1.48 |
Level, m | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 m | 2 m | 3 m | 4 m | 5 m | 6 m | 7 m | 8 m | 9 m | 10 m | |
Government schools | 0 | 0 | 0 | 0 | 1 | 1 | 8 | 18 | 39 | 63 |
Private schools | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 9 | 14 | 28 |
Hospitals | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Health centers | 0 | 0 | 0 | 0 | 1 | 3 | 5 | 10 | 12 | 17 |
Police stations | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 5 |
Government Banks | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
Priv. Banks | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 5 | 8 | 23 |
Market | 0 | 0 | 0 | 1 | 2 | 6 | 10 | 13 | 18 | 22 |
Malls | 0 | 0 | 0 | 0 | 1 | 2 | 2 | 3 | 6 | 9 |
Stores | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 7 | 16 |
Mosques | 8 | 8 | 8 | 10 | 13 | 37 | 106 | 241 | 467 | 703 |
Fuel stations | 4 | 4 | 4 | 5 | 5 | 9 | 16 | 28 | 45 | 59 |
Archeological | 0 | 0 | 0 | 0 | 0 | 2 | 8 | 11 | 21 | 35 |
Expressway, km | 0 | 0 | 0 | 1 | 4 | 13 | 27 | 51 | 85 | 136 |
Highways, km | 1 | 2 | 2 | 2 | 3 | 8 | 21 | 39 | 66 | 104 |
Streets, km | 15 | 15 | 15 | 21 | 72 | 276 | 719 | 1360 | 2167 | 3098 |
Built-up, km2 | 3 | 3 | 3 | 6 | 22 | 69 | 160 | 261 | 439 | 600 |
Vegetation, km2 | 0 | 0 | 0 | 0 | 1 | 6 | 16 | 32 | 52 | 77 |
Al-Batinah North | Al-Batinah South | Muscat | Ash Sharqiya South | Al-Wusta | Dhofar | Musandam | Total | |
---|---|---|---|---|---|---|---|---|
Population | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Government schools | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Private schools | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Health centers | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Hospitals | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Government banks | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Private banks | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Police station | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Malls | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Market | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Department stores | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Expressway (km) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Highway (km) | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
Streets (km) | 1 | 0 | 1 | 9 | 2 | 1 | 2 | 16 |
Mosques | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 8 |
Archeological sites | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Fuel stations | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 4 |
Built-up area (km2) | 0 | 0 | 2 | 1 | 1 | 0 | 0 | 4 |
Croplands (km2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Al-Batinah North | Al-Batinah South | Muscat | Ash Sharqiya South | Al-Wusta | Dhofar | Musandam | Total | |
---|---|---|---|---|---|---|---|---|
Government schools | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Private schools | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Health centers | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
Hospitals | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Government banks | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Private banks | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
Police station | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Malls | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
Market | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 2 |
Department stores | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Expressway (km) | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
Highway (km) | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 2 |
Streets (km) | 18 | 16 | 9 | 11 | 4 | 7 | 7 | 72 |
Mosques | 2 | 0 | 0 | 8 | 0 | 0 | 3 | 13 |
Archeological sites | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Fuel stations | 0 | 1 | 2 | 2 | 0 | 0 | 0 | 5 |
Built-up area (km2) | 8 | 6 | 4 | 1 | 0 | 1 | 0 | 20 |
Croplands (km2) | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 3 |
Al-Batinah North | Al-Batinah South | Muscat | Ash Sharqiya South | Al-Wusta | Dhofar | Musandam | Total | |
---|---|---|---|---|---|---|---|---|
Government schools | 8 | 3 | 4 | 1 | 1 | 1 | 0 | 18 |
Private schools | 5 | 3 | 1 | 0 | 0 | 0 | 0 | 9 |
Health centers | 2 | 2 | 1 | 1 | 1 | 2 | 1 | 10 |
Hospitals | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Government banks | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Private banks | 3 | 1 | 0 | 0 | 0 | 0 | 1 | 5 |
Police station | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Malls | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 3 |
Market | 9 | 1 | 2 | 0 | 0 | 0 | 1 | 13 |
Department stores | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 6 |
Expressway (km) | 50 | 0 | 0 | 0 | 0 | 0 | 0 | 50 |
Highway (km) | 16 | 0 | 0 | 13 | 4 | 4 | 0 | 39 |
Streets (km) | 494 | 340 | 165 | 87 | 103 | 108 | 64 | 1360 |
Mosques | 106 | 42 | 19 | 20 | 10 | 16 | 28 | 241 |
Archeological sites | 6 | 1 | 0 | 2 | 0 | 0 | 2 | 11 |
Fuel stations | 8 | 3 | 7 | 4 | 1 | 3 | 2 | 28 |
Built-up area (km2) | 135 | 62 | 33 | 8 | 14 | 7 | 2 | 261 |
Croplands (km2) | 26 | 3 | 1 | 1 | 0 | 1 | 1 | 33 |
Al-Batinah North | Al-Batinah South | Muscat | Ash Sharqiya South | Al-Wusta | Dhofar | Musandam | Total | |
---|---|---|---|---|---|---|---|---|
Government schools | 23 | 14 | 9 | 6 | 1 | 7 | 3 | 63 |
Private schools | 11 | 6 | 4 | 4 | 0 | 3 | 0 | 28 |
Health centers | 5 | 3 | 2 | 3 | 2 | 2 | 0 | 17 |
Hospitals | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
Government banks | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Private banks | 7 | 1 | 8 | 1 | 0 | 3 | 3 | 23 |
Police station | 0 | 1 | 2 | 1 | 1 | 0 | 0 | 5 |
Malls | 0 | 1 | 6 | 0 | 0 | 1 | 1 | 9 |
Market | 13 | 2 | 4 | 1 | 0 | 1 | 1 | 22 |
Department stores | 4 | 6 | 4 | 0 | 0 | 2 | 0 | 16 |
Expressway (km) | 125 | 5 | 0 | 0 | 0 | 6 | 0 | 135 |
Highway (km) | 43 | 0 | 0 | 32 | 16 | 1 | 0 | 92 |
Streets (km) | 1149 | 716 | 386 | 237 | 269 | 214 | 127 | 3098 |
Mosques | 321 | 122 | 61 | 58 | 30 | 40 | 71 | 703 |
Archeological sites | 23 | 2 | 1 | 5 | 0 | 1 | 3 | 35 |
Fuel stations | 14 | 7 | 11 | 9 | 3 | 11 | 3 | 58 |
Built-up area (km2) | 268 | 121 | 69 | 44 | 68 | 16 | 4 | 589 |
Croplands (km2) | 60 | 11 | 2 | 0 | 1 | 3 | 1 | 78 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hereher, M.E. Assessment of Infrastructure Vulnerability to Tsunamis upon the Coastal Zone of Oman Using GIS. Geosciences 2020, 10, 175. https://doi.org/10.3390/geosciences10050175
Hereher ME. Assessment of Infrastructure Vulnerability to Tsunamis upon the Coastal Zone of Oman Using GIS. Geosciences. 2020; 10(5):175. https://doi.org/10.3390/geosciences10050175
Chicago/Turabian StyleHereher, Mohamed E. 2020. "Assessment of Infrastructure Vulnerability to Tsunamis upon the Coastal Zone of Oman Using GIS" Geosciences 10, no. 5: 175. https://doi.org/10.3390/geosciences10050175
APA StyleHereher, M. E. (2020). Assessment of Infrastructure Vulnerability to Tsunamis upon the Coastal Zone of Oman Using GIS. Geosciences, 10(5), 175. https://doi.org/10.3390/geosciences10050175