Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = coastal dykes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3162 KiB  
Article
Assessing Mangrove Forest Recovery in the British Virgin Islands After Hurricanes Irma and Maria with Sentinel-2 Imagery and Google Earth Engine
by Michael R. Routhier, Gregg E. Moore, Barrett N. Rock, Stanley Glidden, Matthew Duckett and Susan Zaluski
Remote Sens. 2025, 17(14), 2485; https://doi.org/10.3390/rs17142485 - 17 Jul 2025
Viewed by 863
Abstract
Mangroves form the dominant coastal plant community of low-energy tropical intertidal habitats and provide critical ecosystem services to humans and the environment. However, more frequent and increasingly powerful hurricanes and storm surges are creating additional pressure on the natural resilience of these threatened [...] Read more.
Mangroves form the dominant coastal plant community of low-energy tropical intertidal habitats and provide critical ecosystem services to humans and the environment. However, more frequent and increasingly powerful hurricanes and storm surges are creating additional pressure on the natural resilience of these threatened coastal ecosystems. Advances in remote sensing techniques and approaches are critical to providing robust quantitative monitoring of post-storm mangrove forest recovery to better prioritize the often-limited resources available for the restoration of these storm-damaged habitats. Here, we build on previously utilized spatial and temporal ranges of European Space Agency (ESA) Sentinel satellite imagery to monitor and map the recovery of the mangrove forests of the British Virgin Islands (BVI) since the occurrence of back-to-back category 5 hurricanes, Irma and Maria, on September 6 and 19 of 2017, respectively. Pre- to post-storm changes in coastal mangrove forest health were assessed annually using the normalized difference vegetation index (NDVI) and moisture stress index (MSI) from 2016 to 2023 using Google Earth Engine. Results reveal a steady trajectory towards forest health recovery on many of the Territory’s islands since the storms’ impacts in 2017. However, some mangrove patches are slower to recover, such as those on the islands of Virgin Gorda and Jost Van Dyke, and, in some cases, have shown a continued decline (e.g., Prickly Pear Island). Our work also uses a linear ANCOVA model to assess a variety of geospatial, environmental, and anthropogenic drivers for mangrove recovery as a function of NDVI pre-storm and post-storm conditions. The model suggests that roughly 58% of the variability in the 7-year difference (2016 to 2023) in NDVI may be related by a positive linear relationship with the variable of population within 0.5 km and a negative linear relationship with the variables of northwest aspect vs. southwest aspect, island size, temperature, and slope. Full article
(This article belongs to the Special Issue Remote Sensing in Mangroves IV)
Show Figures

Figure 1

16 pages, 4926 KiB  
Article
Study on Characteristics of the Water Diversion Ratio and Impact of the Diversion Dyke at South and North Ports of the Minjiang River During Wet Season
by Cheng Chen, Weijia Yang, Zhihui Wang, Kailong Huangfu, Feng Cai, Haoyan Chen and Youlin Chen
Water 2025, 17(8), 1183; https://doi.org/10.3390/w17081183 - 15 Apr 2025
Viewed by 360
Abstract
The hydrodynamic processes in estuarine regions play a crucial role in the morphological and ecological stability of coastal zones. As a key hydrodynamic characteristic of bifurcated rivers, the water diversion ratio (WDR) influences flow distribution, sediment transport, and shoreline changes in estuaries. This [...] Read more.
The hydrodynamic processes in estuarine regions play a crucial role in the morphological and ecological stability of coastal zones. As a key hydrodynamic characteristic of bifurcated rivers, the water diversion ratio (WDR) influences flow distribution, sediment transport, and shoreline changes in estuaries. This study focuses on the lower Minjiang River and employs a MIKE 21-based two-dimensional hydrodynamic model to quantify the WDR variations between the South and North Ports on the scale of a tidal cycle during the wet season and to reveal the regulatory effects of diversion dyke length and angle. The results indicate that the WDR of the North Port exhibits significant variation with tidal stages. The WDR of the North Port increases with the length of the diversion dyke. The current 110 m-long dyke has little effect on regulating water flow between the North and South Ports, and its WDR remains unaffected by changes in angle. In contrast, a 450 m-long dyke is highly sensitive to angle variations. This study not only provides scientific support for channel regulation in the lower Minjiang River but also offers indirect insights into shoreline stability and ecological management under the combined influence of human activities and natural processes in estuarine environments. Full article
Show Figures

Figure 1

17 pages, 7790 KiB  
Article
Application of UAV-SfM Photogrammetry to Monitor Deformations of Coastal Defense Structures
by Santiago García-López, Mercedes Vélez-Nicolás, Verónica Ruiz-Ortiz, Pedro Zarandona-Palacio, Antonio Contreras-de-Villar, Francisco Contreras-de-Villar and Juan José Muñoz-Pérez
Remote Sens. 2025, 17(1), 71; https://doi.org/10.3390/rs17010071 - 28 Dec 2024
Cited by 1 | Viewed by 1482
Abstract
Coastal defense has traditionally relied on hard infrastructures like breakwaters, dykes, and groins to protect harbors, settlements, and beaches from the impacts of longshore drift and storm waves. The prolonged exposure to wave erosion and dynamic loads of different nature can result in [...] Read more.
Coastal defense has traditionally relied on hard infrastructures like breakwaters, dykes, and groins to protect harbors, settlements, and beaches from the impacts of longshore drift and storm waves. The prolonged exposure to wave erosion and dynamic loads of different nature can result in damage, deformation, and eventual failure of these infrastructures, entailing severe economic and environmental losses. Periodic post-construction monitoring is crucial to identify shape changes, ensure the structure’s stability, and implement maintenance works as required. This paper evaluates the performance and quality of the restitution products obtained from the application of UAV photogrammetry to the longest breakwater in the province of Cádiz, southern Spain. The photogrammetric outputs, an orthomosaic and a Digital Surface Model (DSM), were validated with in situ RTK-GPS measurements, displaying excellent planimetric accuracy (RMSE 0.043 m and 0.023 m in X and Y, respectively) and adequate altimetric accuracy (0.100 m in Z). In addition, the average enveloping surface inferred from the DSM allowed quantification of the deformation of the breakwater and defining of the deformation mechanisms. UAV photogrammetry has proved to be a suitable and efficient technique to complement traditional monitoring surveys and to provide insights into the deformation mechanisms of coastal structures. Full article
(This article belongs to the Special Issue Coastal and Littoral Observation Using Remote Sensing)
Show Figures

Graphical abstract

20 pages, 17386 KiB  
Article
Spectral Water Wave Dissipation by Biomimetic Soft Structure
by Garance Marlier, Frédéric Bouchette, Samuel Meulé, Raphaël Certain and Jean-Yves Jouvenel
J. Mar. Sci. Eng. 2024, 12(11), 2004; https://doi.org/10.3390/jmse12112004 - 7 Nov 2024
Cited by 1 | Viewed by 1099
Abstract
Coastal protection solutions can be categorised as grey, hybrid or natural. Grey infrastructure includes artificial structures like dykes. Natural habitats like seagrasses are considered natural protection infrastructure. Hybrid solutions combine both natural and grey infrastructure. Evidence suggests that grey solutions can negatively impact [...] Read more.
Coastal protection solutions can be categorised as grey, hybrid or natural. Grey infrastructure includes artificial structures like dykes. Natural habitats like seagrasses are considered natural protection infrastructure. Hybrid solutions combine both natural and grey infrastructure. Evidence suggests that grey solutions can negatively impact the environment, while natural habitats prevent flooding without such adverse effects and provide many ecosystem services. New types of protective solutions, called biomimetic solutions, are inspired by natural habitats and reproduce their features using artificial materials. Few studies have been conducted on these new approaches. This study aims to quantify wave dissipation observed in situ above a biomimetic solution inspired by kelps, known for their wave-dampening properties. The solution was deployed in a full water column near Palavas-les-Flots in southern France. A one-month in situ experiment showed that the biomimetic solution dissipates around 10% of total wave energy on average, whatever the meteo-marine conditions. Wave energy dissipation is frequency-dependent: short waves are dissipated, while low-frequency energy increases. An anti-dissipative effect occurs for forcing conditions with frequencies close to the eigen mode linked to the biomimetic solution’s geometry, suggesting that resonance should be considered in designing future biomimetic protection solutions. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

17 pages, 5139 KiB  
Article
Allanite in Variscan Post-Collisional Lamprophyre Dykes from Les Guilleries (NE Iberia) as a Part of Rare Earth Elements Recycling in Collisional Orogens
by Esteban Mellado, Mercè Corbella and Andrew Kylander-Clark
Minerals 2022, 12(8), 954; https://doi.org/10.3390/min12080954 - 28 Jul 2022
Cited by 4 | Viewed by 2926
Abstract
Recent studies of Late Permian calc-alkaline lamprophyre dykes located in the Les Guilleries Paleozoic massif of the Catalan Coastal Range have revealed that allanite is present as the main REE-bearing accessory phase, which is the object of this study. The lamprophyre dykes are [...] Read more.
Recent studies of Late Permian calc-alkaline lamprophyre dykes located in the Les Guilleries Paleozoic massif of the Catalan Coastal Range have revealed that allanite is present as the main REE-bearing accessory phase, which is the object of this study. The lamprophyre dykes are amphibole–plagioclase-dominated spessartites with a wide variety of accessory phases, including titanite, ilmenite, allanite, fluorapatite, spinel, zircon, and sulfides, and show complex alteration textures related to secondary albite, chlorite, epidote, titanite and calcite. The allanite crystal composition, analyzed by SEM-EPMA and LA-ICP-MS, evidences the solid solution between epidote and allanite with a ferriallanite component, similar to what is found in Variscan post-collisional granitoids from western Europe. However, heterogeneity in crystal shapes, sizes, type of zoning, dissolution embayment textures, growth of epidote coronas, mineral paragenesis, and the unique geochemical characteristics of allanite crystals suggest multiple crystallization events. At least two types of allanite–epidote composite grains have been identified: allanite Type I, with regular allanite–epidote core-to-rim zoning and a secondary allanite rim; and allanite Type II, with anhedral allanite cores surrounded by epidote coronas. Additionally, irregular zoning, complex dissolution textures and REE redistribution suggest the occurrence of deuteric and/or post-magmatic processes, which are also common in Variscan post-collisional plutons from the Catalan Coastal Range and nearby Paleozoic massifs. Multivariate statistical analyses of major elements in allanite–epidote composite grains show a relationship between major textural and geochemical variations for three out of ten principal components, mainly related to cationic substitutions between ferriallanite-(Ce) and epidote, but also involving Mn and Ti(REE3+ + Fe2+ + Ti4+ + Mg2+ + Mn2+ = Al3+ + Ca2+ + Fe3+). The allanite U-Pb-Th- weighted mean age of 265 ± 15 Ma (MSWD = 0.57) is roughly similar to the age of emplacement of the lamprophyres in the upper crust in the mid–late Permian, and coincides with the period following the main tectonometamorphic and magmatic events of the post-collisional evolution in the Catalan Coastal Range. Th/U and La/Sm ratios suggest a metamorphic origin for most allanite grains, but a combination of metamorphic processes prior to partial melting, early–late magmatic crystallization, and/or post-magmatic hydrothermal processes is the most plausible explanation to account for the diversity of allanite grains in Les Guilleries lamprophyres. Full article
Show Figures

Figure 1

14 pages, 3979 KiB  
Article
Estimation of Agricultural Dykelands Cultivated in Nova Scotia Using Land Property Boundaries and Crop Inventory
by Mathieu F. Bilodeau, Travis J. Esau, Aitazaz A. Farooque, Qamar U. Zaman and Brandon Heung
ISPRS Int. J. Geo-Inf. 2021, 10(12), 801; https://doi.org/10.3390/ijgi10120801 - 30 Nov 2021
Cited by 4 | Viewed by 3678
Abstract
Dykelands are agricultural ground protected from coastal inundation by dyke infra-structure and constitute some of the most agriculturally productive lands in Nova Scotia. Between 2015 and 2019, Canada’s Annual Crop Inventory was used to characterize and estimate hectares of agricultural dykelands cultivated in [...] Read more.
Dykelands are agricultural ground protected from coastal inundation by dyke infra-structure and constitute some of the most agriculturally productive lands in Nova Scotia. Between 2015 and 2019, Canada’s Annual Crop Inventory was used to characterize and estimate hectares of agricultural dykelands cultivated in Nova Scotia. The number of hectares of wheat, barley, corn, forages and soybeans were compiled for each year and compared to the previous year. This was accomplished using GIS software, satellite images, and geodata from the Nova Scotia’s Land Property Database. Results revealed that from 2015 to 2019, an average of 56% of the dykelands’ total surface was dedicated to the production of field crops (wheat, barley, corn, soybeans) and forage. Results also highlighted the importance of forage production on the dykelands. Forage was the largest commodity grown, representing around 80% of the total crop land area of the agricultural dykelands. Corn and soybeans were the second and third crops of abundance, constituting 12 and 4% of the total crop land area, respectively. This study represents the first attempt to document the number of hectares of the principal crops grown on Nova Scotia’s dykelands using crop inventory and property boundaries. Given the predictions of rising sea levels and the overtopping risks that the dykelands face, this study will facilitate more suitable land-use policies by providing stakeholders with an accurate quantitative assessment of the utilization of agricultural dykelands. Full article
Show Figures

Figure 1

18 pages, 9864 KiB  
Article
Unravelling the Importance of Uncertainties in Global-Scale Coastal Flood Risk Assessments under Sea Level Rise
by Jeremy Rohmer, Daniel Lincke, Jochen Hinkel, Gonéri Le Cozannet, Erwin Lambert and Athanasios T. Vafeidis
Water 2021, 13(6), 774; https://doi.org/10.3390/w13060774 - 12 Mar 2021
Cited by 15 | Viewed by 5056
Abstract
Global scale assessments of coastal flood damage and adaptation costs under 21st century sea-level rise are associated with a wide range of uncertainties, including those in future projections of socioeconomic development (shared socioeconomic pathways (SSP) scenarios), of greenhouse gas concentrations (RCP [...] Read more.
Global scale assessments of coastal flood damage and adaptation costs under 21st century sea-level rise are associated with a wide range of uncertainties, including those in future projections of socioeconomic development (shared socioeconomic pathways (SSP) scenarios), of greenhouse gas concentrations (RCP scenarios), and of sea-level rise at regional scale (RSLR), as well as structural uncertainties related to the modelling of extreme sea levels, data on exposed population and assets, and the costs of flood damages, etc. This raises the following questions: which sources of uncertainty need to be considered in such assessments and what is the relative importance of each source of uncertainty in the final results? Using the coastal flood module of the Dynamic Interactive Vulnerability Assessment modelling framework, we extensively explore the impact of scenario, data and model uncertainties in a global manner, i.e., by considering a large number (>2000) of simulation results. The influence of the uncertainties on the two risk metrics of expected annual damage (EAD), and adaptation costs (AC) related to coastal protection is assessed at global scale by combining variance-based sensitivity indices with a regression-based machine learning technique. On this basis, we show that the research priorities in terms of future data/knowledge acquisition to reduce uncertainty on EAD and AC differ depending on the considered time horizon. In the short term (before 2040), EAD uncertainty could be significantly decreased by 25 and 75% if the uncertainty of the translation of physical damage into costs and of the modelling of extreme sea levels could respectively be reduced. For AC, it is RSLR that primarily drives short-term uncertainty (with a contribution ~50%). In the longer term (>2050), uncertainty in EAD could be largely reduced by 75% if the SSP scenario could be unambiguously identified. For AC, it is the RCP selection that helps reducing uncertainty (up to 90% by the end of the century). Altogether, the uncertainty in future human activities (SSP and RCP) are the dominant source of the uncertainty in future coastal flood risk. Full article
Show Figures

Figure 1

24 pages, 15286 KiB  
Article
A High-Speed, Light-Weight Scalar Magnetometer Bird for km Scale UAV Magnetic Surveying: On Sensor Choice, Bird Design, and Quality of Output Data
by Arne Døssing, Eduardo Lima Simoes da Silva, Guillaume Martelet, Thorkild Maack Rasmussen, Eric Gloaguen, Jacob Thejll Petersen and Johannes Linde
Remote Sens. 2021, 13(4), 649; https://doi.org/10.3390/rs13040649 - 11 Feb 2021
Cited by 25 | Viewed by 6955
Abstract
Magnetic surveying is a widely used and cost-efficient remote sensing method for the detection of subsurface structures at all scales. Traditionally, magnetic surveying has been conducted as ground or airborne surveys, which are cheap and provide large-scale consistent data coverage, respectively. However, ground [...] Read more.
Magnetic surveying is a widely used and cost-efficient remote sensing method for the detection of subsurface structures at all scales. Traditionally, magnetic surveying has been conducted as ground or airborne surveys, which are cheap and provide large-scale consistent data coverage, respectively. However, ground surveys are often incomplete and slow, whereas airborne surveys suffer from being inflexible, expensive and characterized by a reduced signal-to-noise ratio, due to increased sensor-to-source distance. With the rise of reliable and affordable survey-grade Unmanned Aerial Vehicles (UAVs), and the developments of light-weight magnetometers, the shortcomings of traditional magnetic surveying systems may be bypassed by a carefully designed UAV-borne magnetometer system. Here, we present a study on the development and testing of a light-weight scalar field UAV-integrated magnetometer bird system (the CMAGTRES-S100). The idea behind the CMAGTRES-S100 is the need for a high-speed and flexible system that is easily transported in the field without a car, deployable in most terrain and weather conditions, and provides high-quality scalar data in an operationally efficient manner and at ranges comparable to sub-regional scale helicopter-borne magnetic surveys. We discuss various steps in the development, including (i) choice of sensor based on sensor specifications and sensor stability tests, (ii) design considerations of the bird, (iii) operational efficiency and flexibility and (iv) output data quality. The current CMAGTRES-S100 system weighs ∼5.9 kg (including the UAV) and has an optimal surveying speed of 50 km/h. The system was tested along a complex coastal setting in Brittany, France, targeting mafic dykes and fault contacts with magnetite infill and magnetite nuggets (skarns). A 2.0 × 0.3 km area was mapped with a 10 m line-spacing by four sub-surveys (due to regulatory restrictions). The sub-surveys were completed in 3.5 h, including >2 h for remobilisation and the safety clearance of the area. A noise-level of ±0.02 nT was obtained and several of the key geological structures were mapped by the system. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Graphical abstract

22 pages, 7857 KiB  
Article
Flow and Transport Numerical Model of a Coastal Aquifer Based on the Hydraulic Importance of a Dyke and Its Impact on Water Quality. Manglaralto—Ecuador
by Paúl Carrión-Mero, F. Javier Montalván, Fernando Morante-Carballo, Carolina Loor-Flores de Valgas, Boris Apolo-Masache and Javier Heredia
Water 2021, 13(4), 443; https://doi.org/10.3390/w13040443 - 8 Feb 2021
Cited by 15 | Viewed by 5775
Abstract
Coastal aquifers are part of the natural resources contributing to local development and promote resilience in the most vulnerable communities near the sea. Manglaralto, an Ecuadorian coastal parish, is affected by water resource scarcity. The increase in salinity and deterioration of the water [...] Read more.
Coastal aquifers are part of the natural resources contributing to local development and promote resilience in the most vulnerable communities near the sea. Manglaralto, an Ecuadorian coastal parish, is affected by water resource scarcity. The increase in salinity and deterioration of the water quality is generated by the local and floating population’s demand, causing an increase in the Total Dissolved Solids (TDS) concentrations and decreasing the aquifer’s piezometric levels. The aim is to establish a numerical model of flow and transport of the Manglaralto coastal aquifer by using hydrogeological data and Visual Transin software, relating the hydraulic importance of a dyke’s design (“tape”) and its impact on the quality of the water. The methodology is (i) hydrogeological database analysis, (ii) the system’s recharge concerning the soil water balance, (iii) the boundary conditions of the flow and transport model and, (iv) the results and validation of the numerical simulation. The results configure the importance of the coastal aquifer’s artificial recharge in the area where the tape is located, as reflected in the increase in piezometric levels and the decrease in salinity in wells near the sea. In conclusion, the numerical model of flow and transport allows expanding the knowledge of the variation of the piezometric levels and TDS concentrations over time, the importance of recharge in the hydrogeological system’s operation, and correct community management resilience and projection to sustainable development. Full article
(This article belongs to the Special Issue Salinization of Water Resources: Ongoing and Future Trends)
Show Figures

Figure 1

35 pages, 11935 KiB  
Article
Geochemistry of Deccan Tholeiite Flows and Dykes of Elephanta Island: Insights into the Stratigraphy and Structure of the Panvel Flexure Zone, Western Indian Rifted Margin
by Vanit Patel, Hetu Sheth, Ciro Cucciniello, Gopal W. Joshi, Wencke Wegner, Hrishikesh Samant, Bibhas Sen and Christian Koeberl
Geosciences 2020, 10(4), 118; https://doi.org/10.3390/geosciences10040118 - 26 Mar 2020
Cited by 16 | Viewed by 7138
Abstract
Elephanta Island near Mumbai is an important area for understanding the stratigraphic and structural framework of the Deccan flood basalt province in the tectonically disturbed Panvel flexure zone on the western Indian rifted margin. Elephanta exposes a west-dipping, 66–65 Ma sequence of tholeiitic [...] Read more.
Elephanta Island near Mumbai is an important area for understanding the stratigraphic and structural framework of the Deccan flood basalt province in the tectonically disturbed Panvel flexure zone on the western Indian rifted margin. Elephanta exposes a west-dipping, 66–65 Ma sequence of tholeiitic lava flows and dykes. Geochemical correlations with the thick, horizontal, 66–65 Ma Western Ghats sequence to the east show that lava flows of the Khandala and Ambenali formations are present at Elephanta, with two lava flows probably being locally derived. The Elephanta tholeiites have experienced crystal fractionation and accumulation, particularly of olivine. They have εNd(t) ranging from +5.4 to −7.9 and (87Sr/86Sr)t from 0.70391 to 0.70784, with most tholeiites little contaminated by continental lithosphere, probably lower crust. Field and geochemical data indicate a normal fault along the central part of Elephanta with a 220 m downthrow, consistent with a domino-type block-faulted structure of Elephanta, and the surrounding area as previously known. Seventeen of the 20 analyzed Elephanta intrusions, striking ~N–S, belong to the Coastal dyke swarm of the western Deccan province. Several of these are probable feeders to the Ambenali Formation in the Western Ghats sequence, requiring reconsideration of the current view that the voluminous Wai Subgroup lavas of the Western Ghats were erupted without organized crustal extension. East–west-directed extensional strain was already active at 66–65 Ma along this future (62.5 Ma) rifted continental margin. A young (~62 Ma) ankaramite dyke on Elephanta Island is a probable feeder to the Powai ankaramite flow in the 62.5 Ma Mumbai sequence 20 km to the northwest. Full article
Show Figures

Figure 1

17 pages, 4663 KiB  
Article
Overtopping of Coastal Structures by Tsunami Waves
by Miguel Esteban, Toni Glasbergen, Tomoyuki Takabatake, Bas Hofland, Shinsaku Nishizaki, Yuta Nishida, Jacob Stolle, Ioan Nistor, Jeremy Bricker, Hiroshi Takagi and Tomoya Shibayama
Geosciences 2017, 7(4), 121; https://doi.org/10.3390/geosciences7040121 - 24 Nov 2017
Cited by 30 | Viewed by 7694
Abstract
Following the 2011 Tohoku Earthquake and Tsunami, Japanese tsunami protection guidelines stipulate that coastal defences should ensure that settlements are shielded from the coastal inundation that would result from Level 1 tsunami events (with return periods in the order of about 100 [...] Read more.
Following the 2011 Tohoku Earthquake and Tsunami, Japanese tsunami protection guidelines stipulate that coastal defences should ensure that settlements are shielded from the coastal inundation that would result from Level 1 tsunami events (with return periods in the order of about 100 years). However, the overtopping mechanism and leeward inundation heights of tsunami bores as they hit coastal structures has received little attention in the past. To ascertain this phenomenon, the authors conducted physical experiments using a dam-break mechanism, which could generate bores that overtopped different types of structures. The results indicate that it is necessary to move away from only considering the tsunami inundation height at the beach, and also consider the bore velocity as it approaches the onshore area. The authors also prepared a simple, conservative method of estimating the inundation height after a structure of a given height, provided that the incident bore velocity and height are known. Full article
(This article belongs to the Special Issue Interdisciplinary Geosciences Perspectives of Tsunami)
Show Figures

Figure 1

15 pages, 5720 KiB  
Article
Effectiveness and Limitation of Coastal Dykes in Jakarta: The Need for Prioritizing Actions against Land Subsidence
by Hiroshi Takagi, Daisuke Fujii, Miguel Esteban and Xiong Yi
Sustainability 2017, 9(4), 619; https://doi.org/10.3390/su9040619 - 16 Apr 2017
Cited by 42 | Viewed by 13486
Abstract
Jakarta has been experiencing severe land subsidence over the last few decades. A questionnaire survey of local inhabitants revealed that seawater is already overtopping coastal dykes and flooding a vulnerable community along Jakarta’s waterfront. The present study projects coastal floods around Jakarta until [...] Read more.
Jakarta has been experiencing severe land subsidence over the last few decades. A questionnaire survey of local inhabitants revealed that seawater is already overtopping coastal dykes and flooding a vulnerable community along Jakarta’s waterfront. The present study projects coastal floods around Jakarta until the year 2050 to understand the long term effectiveness of proposed dykes under continuing rapid land subsidence scenarios. This is done through a hydrodynamic model that considers land subsidence, sea-level rise, and tides. The analysis confirms that, if high enough, coastal dykes will help to prevent flooding, though their effectiveness will eventually disappear as land subsidence continues. For example, a 3-m dyke, which is expected to be sufficiently high to cope with present-day conditions, could completely lose its ability to stop floods by the year 2040. Moreover, higher dykes can also bring about other problems, because if they are overtopped, they actually prolong flooding, essentially trapping a higher volume of water inland. On the other hand, a small 1-m dyke can be expected to stop coastal floods if land subsidence can be stopped. This study demonstrates that actions to stop land subsidence would be the most effective countermeasure to mitigate coastal floods from the middle of the 21st century onwards, emphasizing the need to prioritize such actions among the range of countermeasures being proposed for Jakarta. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

14 pages, 315 KiB  
Article
Cumulative Pressures on Sustainable Livelihoods: Coastal Adaptation in the Mekong Delta
by Timothy F. Smith, Dana C. Thomsen, Steve Gould, Klaus Schmitt and Bianca Schlegel
Sustainability 2013, 5(1), 228-241; https://doi.org/10.3390/su5010228 - 17 Jan 2013
Cited by 44 | Viewed by 13093
Abstract
Many coastal areas throughout the world are at risk from sea level rise and the increased intensity of extreme events such as storm surge and flooding. Simultaneously, many areas are also experiencing significant socio-economic challenges associated with rural-urban transitions, population growth, and increased [...] Read more.
Many coastal areas throughout the world are at risk from sea level rise and the increased intensity of extreme events such as storm surge and flooding. Simultaneously, many areas are also experiencing significant socio-economic challenges associated with rural-urban transitions, population growth, and increased consumption resulting from improving gross regional product. Within this context we explore the viability of proposed adaptation pathways in Soc Trang province, Vietnam — an area of the Mekong Delta experiencing cumulative pressures on coastal livelihoods. A participatory workshop and interviews, using a combination of systems thinking and futures techniques, revealed a shared goal of sustainable livelihoods, which provides an integrated and systemic focus for coastal adaptation strategies. Emphasizing sustainable livelihoods is less likely to lead to maladaptation because stakeholders consciously seek to avoid optimizing particular system elements at the expense of others — and thus engage in broader decision-making frameworks supportive of social-ecological resilience. However, the broad ambit required for sustainable livelihoods is not supported by governance frameworks that have focused on protective strategies (e.g., dyke building, strengthening and raising, to continue and expand agriculture and aquaculture production) at the expense of developing a diverse suite of adaptation strategies, which may lead to path dependencies and an ultimate reduction in adaptive capacity for system transformation. Full article
(This article belongs to the Special Issue Adaptation or Extinction)
Show Figures

Figure 1

Back to TopTop