Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (162)

Search Parameters:
Keywords = coal burst

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5687 KiB  
Article
Mechanism and Application of Static Stress Intervention for Controlled Directional Roof Caving in Fully Mechanized Mining Faces
by Hao Shi, Bingyuan Hao, Xingyun Ren and Ji Zhang
Processes 2025, 13(5), 1552; https://doi.org/10.3390/pr13051552 - 17 May 2025
Viewed by 401
Abstract
To address roof overhang hazards (e.g., rock bursts and gas accumulation) in high-gas coal mines, this study proposes a static stress intervention method for controlled directional roof collapse. Using the 150110 fully mechanized face at Yiyuan Coal Mine as a case study, we [...] Read more.
To address roof overhang hazards (e.g., rock bursts and gas accumulation) in high-gas coal mines, this study proposes a static stress intervention method for controlled directional roof collapse. Using the 150110 fully mechanized face at Yiyuan Coal Mine as a case study, we investigate the mechanical mechanism of static stress intervention-induced roof collapse through theoretical modeling and FLAC3D simulations in the absence of pre-cracks. The study reveals that advanced boreholes filled with static expansion agents generate stress concentration zones along the drilling array. When superimposed with mining-induced stresses, this configuration induces tensile failure preferentially at borehole locations, thereby achieving controlled directional roof collapse. Theoretical calculations indicate that roof fracturing occurs at predetermined locations when expansion pressure reaches ≥9.11 MPa. FLAC3D simulations analyzed stress redistribution and plastic zone evolution under combined static and mining-induced stresses, demonstrating the method’s efficacy in optimizing roadway stability. Field trials implement spaced boreholes (65 mm diameter, 16 m depth, 1 m spacing) with alternating expansion agent charging, achieving a 6 m reduction in roof collapse intervals, effectively mitigating overhang hazards. Results confirm that static stress intervention reshapes the roof stress field, inducing tensile failure along predetermined paths without relying on pre-cracks. The findings provide theoretical and technical insights for roof stability control in high-gas coal mines. Full article
(This article belongs to the Special Issue Advances in Coal Processing, Utilization, and Process Safety)
Show Figures

Figure 1

15 pages, 9276 KiB  
Article
Mechanical Response Mechanism and Yield Characteristics of Coal Under Quasi-Static and Dynamic Loading
by Liupeng Huo, Feng Gao and Yan Xing
Appl. Sci. 2025, 15(10), 5238; https://doi.org/10.3390/app15105238 - 8 May 2025
Viewed by 458
Abstract
During deep mining engineering, coal bodies are subjected to complex geological stresses such as periodic roof pressure and blasting impacts, which may induce mechanical property deterioration and trigger severe rock burst accidents. This study systematically investigated the mechanical characteristics and failure mechanisms of [...] Read more.
During deep mining engineering, coal bodies are subjected to complex geological stresses such as periodic roof pressure and blasting impacts, which may induce mechanical property deterioration and trigger severe rock burst accidents. This study systematically investigated the mechanical characteristics and failure mechanisms of coal under strain rates on two orders of magnitude through quasi-static cyclic loading–unloading experiments and split Hopkinson pressure bar (SHPB) tests, combined with acoustic emission (AE) localization and crack characteristic stress analysis. The research focused on the differential mechanical responses of coal-rock masses under distinct stress environments in deep mining. The results demonstrated that under quasi-static loading, the stress–strain curve exhibited four characteristic stages: compaction (I), linear elasticity (II), nonlinear crack propagation (III), and post-peak softening (IV). The peak strain displayed linear growth with increasing cycle, accompanied by a failure mode characterized by oblique shear failure that induced a transition from gradual to abrupt increases in the AE counts. In contrast, under the dynamic loading conditions, there was a bifurcated post-peak phase consisting of two unloading stages due to elastic rebound effects, with nonlinear growth of the peak strain and an interlaced failure pattern combining lateral tensile cracks and axial compressive fractures. The two loading conditions exhibited similar evolutionary trends in crack damage stress, though a slight reduction in stress occurred during the final dynamic loading phase due to accumulated damage. Notably, the crack closure stress under quasi-static loading followed a decrease–increase pattern with cycle progression, whereas the dynamic loading conditions presented the inverse increase–decrease tendency. These findings provide theoretical foundations for stability control in underground engineering and prevention of dynamic hazards. Full article
Show Figures

Figure 1

21 pages, 4109 KiB  
Article
Using Coal Resources with Optimal Bursting Pressure for the Production of High-Quality Metallurgical Coke
by Denis Miroshnichenko, Kateryna Shmeltser, Maryna Kormer, Oleksiy Sytnyk, Iliya Avdeyuk, Mykhailo Miroshnychenko and Mariia Shved
Resources 2025, 14(5), 70; https://doi.org/10.3390/resources14050070 - 23 Apr 2025
Viewed by 627
Abstract
When applying advanced technologies and technological methods for the preparation of coal raw materials (technology for coking stamped batch, technology for coking dry or thermally prepared batch), the problem of developing high bursting pressure arises. The aim of this research is to assess [...] Read more.
When applying advanced technologies and technological methods for the preparation of coal raw materials (technology for coking stamped batch, technology for coking dry or thermally prepared batch), the problem of developing high bursting pressure arises. The aim of this research is to assess the possibility of predicting the bursting pressure of coal blends taking into account their technological properties and petrographic characteristics, as well as to study the effect of bursting pressure on the metallurgical properties of coke. Standardized methods were used to study the technological properties of coal and coal blends (determination of technical and petrographic analyses). The qualitative characteristics of coke were studied using physical, mechanical, and thermochemical methods for the study of standardized indicators: crushability (M25), abrasion (M10), reactivity (CRI), and post-reaction strength (CSR). The regression equations for predicting the bursting pressure of coal blends, taking into account the volatile matter in the blend, vitrinite content, and grinding, which are characterized by high correlation coefficients (0.89 and 0.9), were proposed. Their use will make it possible to optimize the composition of coal batches, control the bursting pressure during regrinding, and reduce the number of experimental measurements in a particular coke production. It was also found that an increase in the bursting pressure by 1 kPa can be expected to increase the mechanical strength of coke in terms of crushability M25 by about 2.6% and reduce the abrasion of coke M10 by 1%. Full article
(This article belongs to the Special Issue Mineral Resource Management 2025: Assessment, Mining and Processing)
Show Figures

Figure 1

15 pages, 6887 KiB  
Article
SCA Fracturing Mechanisms of Rock Mass and Application in Overhanging Roof Structure Fragmentation of Mine Goaf
by Hui Li, Ruifu Yuan, Penghui Zai, Qunlei Zhang and Chun Feng
Processes 2025, 13(5), 1275; https://doi.org/10.3390/pr13051275 - 22 Apr 2025
Viewed by 349
Abstract
During coal resource mining, hard roof mining is prone to causing rock-burst disasters because traditional blasting–cutting roof technology has the disadvantages of low efficiency and high cost. This article studies the theoretical basis and engineering application of fracturing technology with a static expansion [...] Read more.
During coal resource mining, hard roof mining is prone to causing rock-burst disasters because traditional blasting–cutting roof technology has the disadvantages of low efficiency and high cost. This article studies the theoretical basis and engineering application of fracturing technology with a static expansion agent (SCA). The influences of borehole diameter and spacing on the fracturing effect of a rock mass are studied through theoretical analysis and simulation. Rock mass models of a cantilever beam for a single rock layer and multiple layers were established, and the mechanical properties of the roof strata under three working conditions were analyzed. The research results show that the maximum annular stress value occurs along the drill hole wall between the adjacent drill holes, and the annular stress at the center line between two drill holes is the smallest. As the spacing between the holes increases, the annular stress at the center line decreases; however, the annular stress at the center of the drill line becomes larger with the increase in hole diameter. The degree of stress concentration increases sharply with the decrease in distance f from the borehole center to the free surface. Relative to the cantilever beam model of a single rock layer, the combined rock layers can effectively control the displacement and deformation of the cantilever roof. Based on the above research results, a drilling method with a 75 mm diameter and a 10° inclination angle is used, demonstrating that the suspended roof area can be reduced to below 20 m2 using the fracturing technology with a static expansion agent, allowing the roof strata to fall simultaneously during mining. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

25 pages, 7113 KiB  
Article
Assessing Characteristics of Strong Dynamic Loads in Deep Coal Mining and Their Mechanisms in Triggering Secondary Disasters
by Wentao Ren, Jiazhuo Li, Xuwei Li, Changbin Wang, Shun Liu and Hang Qiu
Appl. Sci. 2025, 15(8), 4529; https://doi.org/10.3390/app15084529 - 19 Apr 2025
Viewed by 331
Abstract
After entering deep mining, coal mines often experience various intense dynamic load phenomena due to increasingly complex geological conditions, which can lead to secondary disasters, where it is urgent to identify their sources and analyze their disaster-causing effects. This article takes the 3310 [...] Read more.
After entering deep mining, coal mines often experience various intense dynamic load phenomena due to increasingly complex geological conditions, which can lead to secondary disasters, where it is urgent to identify their sources and analyze their disaster-causing effects. This article takes the 3310 working face in Gu Cheng Coal Mine as the engineering background, and uses theoretical analysis, numerical simulation, on-site monitoring, and other methods to analyze the spatial and temporal distribution of dynamic load events during the mining period of this face. The study classifies dynamic load events based on this background into roof-type, fault-type, and coal pillar-type classes, revealing the differences in the spectra, waveforms, and disaster-causing effects of each class. The results show that the strong dynamic load events are mainly concentrated in the working face roof and fault zone areas. The first principal frequency of the three classes has an estimated boundary between 30 and 60 Hz. The waveform decay coefficients of the roof-type, coal pillar-type, and fault-type strong dynamic load events have average values of 4.53, 1.57, and 1.41, respectively. By adopting the above research methods, a theoretical basis can be provided for the source of dynamic loads, thereby achieving source-based prevention and control of rock burst. Full article
Show Figures

Figure 1

25 pages, 15668 KiB  
Article
Study on the Influence of Drilling Parameters on the Mechanical Properties and Pressure Relief Effect of Coal Rock
by Yujiang Zhang, Yexing Chen, Shuai Zhang, Guorui Feng, Yuguo Wang, Shule Li, Qian Wang, Bo Wang and Liang Zhao
Processes 2025, 13(4), 993; https://doi.org/10.3390/pr13040993 - 26 Mar 2025
Viewed by 435
Abstract
Based on considering the stress state distribution and potential failure surface of the specimen during uniaxial compression, the drilling parameters (layout, spacing, position) are set. Thoroughly understanding the influence of different drilling parameters on the pressure relief effect is conducive to reducing the [...] Read more.
Based on considering the stress state distribution and potential failure surface of the specimen during uniaxial compression, the drilling parameters (layout, spacing, position) are set. Thoroughly understanding the influence of different drilling parameters on the pressure relief effect is conducive to reducing the occurrence of coal mine rock burst accidents. Through laboratory tests and numerical simulation tests under different drilling parameters, the influence laws of mechanical parameters, failure characteristics, AE characteristic parameters and energy evolution of specimens under different drilling parameters were studied. The pressure relief effect under different drilling parameters was evaluated by using the pressure relief effect evaluation index (X), and the best combination of drilling parameters was obtained. The results show the following: (1) Compared with the intact specimen, the peak strength of the drilling specimen is significantly reduced, and the drilling layout has the greatest influence on the mechanical properties, followed by the drilling spacing and drilling position. (2) Different drilling layouts will form different weak-strength surfaces in the specimen, and lead the expansion and penetration of cracks, resulting in different failure modes of the specimen. The stress distribution inside the specimen will affect the stress concentration around the borehole, finally affect the damage degree of the specimen. (3) Drilling can not only effectively reduce the energy accumulation capacity, but also enhance the degree of energy dissipation. The AE ringing counts and energy of the triangular-drilling specimens are the least. The AE ringing counts and energy decrease first and then increase with the increase in drilling spacing, and are the smallest at three times the drilling diameter. The AE ringing counts and energy increase gradually with the upward movement of the drilling position. (4) The optimal combination of drilling parameters was obtained by the test, and it was triangular-layout drilling, drilling spacing three times the diameter, and the drilling position in the middle of the specimen, and the value of the pressure relief effect evaluation index (X) was 65.41. The research results can provide some reference for the selection and optimization of drilling pressure relief parameters in rock burst mines. Full article
(This article belongs to the Special Issue Advances in Coal Processing, Utilization, and Process Safety)
Show Figures

Figure 1

20 pages, 5858 KiB  
Article
Signal Super Prediction and Rock Burst Precursor Recognition Framework Based on Guided Diffusion Model with Transformer
by Mingyue Weng, Zinan Du, Chuncheng Cai, Enyuan Wang, Huilin Jia, Xiaofei Liu, Jinze Wu, Guorui Su and Yong Liu
Appl. Sci. 2025, 15(6), 3264; https://doi.org/10.3390/app15063264 - 17 Mar 2025
Viewed by 592
Abstract
Implementing precise and advanced early warning systems for rock bursts is a crucial approach to maintaining safety during coal mining operations. At present, FEMR data play a key role in monitoring and providing early warnings for rock bursts. Nevertheless, conventional early warning systems [...] Read more.
Implementing precise and advanced early warning systems for rock bursts is a crucial approach to maintaining safety during coal mining operations. At present, FEMR data play a key role in monitoring and providing early warnings for rock bursts. Nevertheless, conventional early warning systems are associated with certain limitations, such as a short early warning time and low accuracy of early warning. To enhance the timeliness of early warnings and bolster the safety of coal mines, a novel early warning model has been developed. In this paper, we present a framework for predicting the FEMR signal in deep future and recognizing the rock burst precursor. The framework involves two models, a guided diffusion model with a transformer for FEMR signal super prediction and an auxiliary model for recognizing the rock burst precursor. The framework was applied to the Buertai database, which was recognized as having a rock burst risk. The results demonstrate that the framework can predict 360 h (15 days) of FEMR signal using only 12 h of known signal. If the duration of known data is compressed by adjusting the CWT window length, it becomes possible to predict data over longer future time spans. Additionally, it achieved a maximum recognition accuracy of 98.07%, which realizes the super prediction of rock burst disaster. These characteristics make our framework an attractive approach for rock burst predicting and early warning. Full article
Show Figures

Figure 1

16 pages, 11121 KiB  
Article
A Study on the Failure Characteristics of Coal–Rock Structures with Different Bursting Liabilities
by Hongyan Li, Shi He, Yunlong Mo, Zhongxue Sun and Lei Li
Processes 2025, 13(3), 652; https://doi.org/10.3390/pr13030652 - 25 Feb 2025
Viewed by 517
Abstract
Research on the deformation and failure behavior of coal is a key scientific issue in the study of coal–rock dynamic disaster prevention technology. It is a critical means to grasp the structural effect of coal–rock deformation and failure behavior to explore the effects [...] Read more.
Research on the deformation and failure behavior of coal is a key scientific issue in the study of coal–rock dynamic disaster prevention technology. It is a critical means to grasp the structural effect of coal–rock deformation and failure behavior to explore the effects of fracture structure on coal–rock deformation and failure behavior. Our experiment on the failure characteristics of coal–rock and the evolution of deformation–fracture structures before the peak stress of coal–rock primarily investigates the influence of fracture structures on its deformation and failure behavior under loading, with a focus on analyzing the size of the primary fractures. The results indicate that the influence of the primary fracture structure on the physical and mechanical properties of coal–rock varies, and the sensitivity of different properties to these structures also differs. Compared to coal–rock without outburst proneness, the fracture structure evolution of coal–rock with strong outburst proneness before failure is more intense and exhibits significant geometric nonlinearity. The size of the fracture that plays the main role in the pre-peak deformation of coal–rock with strong outburst proneness is about one-third of the size of the specimen, and it is about one-fifth of the size of the specimen for coal–rock without outburst proneness. The fracture structure affects the whole deformation process before the failure of coal–rock with strong outburst proneness, but its influence on coal–rock without outburst proneness is gradually reduced with the loading. Full article
Show Figures

Figure 1

25 pages, 7311 KiB  
Article
Prediction, Prevention, and Control of “Overall–Local” Coal Burst of Isolated Working Faces Prior to Mining
by Ming Zhang and Shiji Yang
Appl. Sci. 2025, 15(4), 2150; https://doi.org/10.3390/app15042150 - 18 Feb 2025
Viewed by 529
Abstract
Ensuring the accurate prediction, prevention, and control of coal bursts in isolated working faces is crucial for ensuring safe mining operations. Coal bursts are typically caused by the accumulation of stress and energy released in coal seams and the overlying strata. This study [...] Read more.
Ensuring the accurate prediction, prevention, and control of coal bursts in isolated working faces is crucial for ensuring safe mining operations. Coal bursts are typically caused by the accumulation of stress and energy released in coal seams and the overlying strata. This study focuses on the 76 isolated working faces at Shanxi Wuyang Mine, employing a combination of theoretical analysis, numerical simulation, and field monitoring. Through theoretical analysis, the study examines the influence of the spatial structure of the overlying strata on support stress and develops corresponding estimation functions. Additionally, bearing strength calculation formulas under varying confining pressures are derived. Numerical simulations are used to validate the effectiveness of borehole stress relief, while field monitoring further confirms the accuracy of the proposed model, leading to the development of the “overall–local” coal burst prediction method. The results demonstrate that the proposed method effectively assesses coal burst risks and, based on different coal burst types, recommends borehole stress relief and roof deep-hole blasting as primary mitigation strategies. These methods were successfully applied to the 76 isolated working faces at Wuyang Mine, yielding conclusions of overall stability with localized instability. This study provides new insights into coal burst prediction theory and offers practical guidance for preventive engineering in isolated working faces, demonstrating substantial engineering applicability. Full article
Show Figures

Figure 1

11 pages, 4330 KiB  
Article
Drill Cuttings Test of Coal Under Different Stresses and Characteristics of Coal Particle Distribution During Borehole Collapse
by Yanchun Yin, Qingzhi Zhang, Lei Guo, Cunwen Wang, Shudong He and Dongdong Zhang
Processes 2025, 13(2), 499; https://doi.org/10.3390/pr13020499 - 11 Feb 2025
Cited by 1 | Viewed by 730
Abstract
The drill cuttings method is a commonly used method for evaluating coal burst risk in mines. In engineering applications, due to the development of fractures in coal seams, borehole collapse can easily occur during drilling, which leads to a greater quantity of drill [...] Read more.
The drill cuttings method is a commonly used method for evaluating coal burst risk in mines. In engineering applications, due to the development of fractures in coal seams, borehole collapse can easily occur during drilling, which leads to a greater quantity of drill cuttings. This in turn affects the accuracy of the evaluation results of coal burst risk. Through laboratory tests on drill cuttings from intact coal and fractured coal specimens, the impact of coal stress and diameter of the borehole on the quantity of drill cuttings and the occurrence of borehole collapse was studied. When there is no collapse, the quantity of drill cuttings increases in proportion to the diameter of the borehole and the coal stress and has a power function relationship with the diameter of the borehole and an exponential function relationship with the coal stress. When the collapse occurs, the failure characteristics of coal specimens mainly present two forms. One is the cylindrical collapse area, and the other is the conical collapse area. Compared to normal drilling, there are notable changes in the particle size of drill cuttings after borehole collapse, and the characteristic value of drill cuttings size D50 increases significantly after the collapse of the borehole, which can be used to determine whether the borehole collapse occurs. Full article
Show Figures

Figure 1

16 pages, 5407 KiB  
Article
Application of Long-Distance Drilling and Blasting Technology to Prevent Rock Bursts in High-Level Roofs
by Qianyue Gu, Anye Cao, Weiwei Zhao, Yao Yang, Chengchun Xue and Qi Hao
Appl. Sci. 2025, 15(4), 1821; https://doi.org/10.3390/app15041821 - 11 Feb 2025
Cited by 2 | Viewed by 804
Abstract
In view of the high-level, thick, and hard roof in a mine in Shaanxi, it is difficult for existing technology to solve the problem of frequent rock bursts, which are caused by the direct weakening of the whole underground layer. In this paper, [...] Read more.
In view of the high-level, thick, and hard roof in a mine in Shaanxi, it is difficult for existing technology to solve the problem of frequent rock bursts, which are caused by the direct weakening of the whole underground layer. In this paper, a technology for preventing rock bursts using the long-distance drilling and blasting of a thick and hard roof in a high drilling field is proposed. The authors used theoretical analyses, numerical simulations, and other research methods to analyze the mechanisms of pressure relief and load reduction achieved by this technology, determined its layout parameters and layers, and carried out engineering practices in 2412 working faces in a mine in Shaanxi. The results show that the long-distance drilling and blasting technology can achieve the aim of unloading the pressure drop load by arranging a high-level drilling field to achieve the whole-layer presplitting of the thick and hard roof above the working face. According to the orthogonal test method, when using long-distance drilling and blasting under the condition of a high-level roof, the choice of the blasting layer is the biggest factor affecting the change in overburden subsidence. Using the identification basis of the main control disaster causing the layer of overburden, it was determined that 52~67 m above the coal seam of the 2412 working faces was the blasting layer. According to the periodic weighting interval of the working face and the development radius of the fractures in the blasting surrounding rock, the blast hole spacing was determined to be 30 m. After long-distance drilling and blasting, the frequency and energy of micro seismic events were reduced, the entry deformation was reduced compared with the common roof deep-hole blasting technology, and the pressure relief effect of the long-distance drilling and blasting technology was better. These research conclusions can provide theoretical support for the prevention and control of rock bursts during mining production under similar conditions by reducing the load and the unloading pressure on thick and hard roof layers that are difficult to unload from the source. Full article
Show Figures

Figure 1

16 pages, 6247 KiB  
Article
Experimental Study on Mechanical Properties of Thermally Conductive High-Strength Concrete
by Xiaojun Li, Shenglei Jia, Longgang Chen, Rongjian Shen, Yang Liu and Ruifeng Mou
Materials 2025, 18(3), 642; https://doi.org/10.3390/ma18030642 - 31 Jan 2025
Cited by 1 | Viewed by 864
Abstract
Ultra-high-performance concrete (UHPC) is considered one of the future building materials due to its excellent performance. UHPC with good thermal conductivity has potential high-value applications in large-scale bridges and nuclear facilities. As a by-product of the coal gasification process, coal gasification slag (CGS) [...] Read more.
Ultra-high-performance concrete (UHPC) is considered one of the future building materials due to its excellent performance. UHPC with good thermal conductivity has potential high-value applications in large-scale bridges and nuclear facilities. As a by-product of the coal gasification process, coal gasification slag (CGS) can replace sand in traditional UHPC. In this paper, based on the preparation of UHPC by CGS, silicon carbide (SiC) was added to improve the thermal conductivity of specimens. The application of CGS and SiC as alternatives to quartz sand with varying mix ratios in UHPC was studied. The impact of the substitution ratios of CGS and SiC on fluidity, mechanical properties, and thermal performance was analyzed. The compressive strength and splitting tensile strength of five different kinds of specimens were tested at 7 d, 14 d, and 28 d. The compressive strength and mass loss rate of specimens with five different ratios were also determined under five different temperature conditions (110 °C, 200 °C, 300 °C, 400 °C, and 500 °C). The results show that the maximum compressive strength of 28 d can reach 159.5 MPa and the splitting strength is 15.30 MPa. The addition of SiC can improve the thermal conductivity and thermal stability of concrete. The compressive strength of all specimens is improved after high-temperature treatment. When substitution rate of SiC reaches 100%, the compressive strength of the specimens is up to 182.2 MPa. With the increase in temperature, the concrete burst phenomenon occurs above 300 °C. It is observed that the high-temperature burst resistance of the specimens with low strength is better than that of the specimens with high strength. Two specimens were scanned with Industrial Computerized Tomography (ICT) and the microstructures of the specimens were compared. It was found that the samples with higher SiC substitution rates had more minor total pore defects and larger pores. Full article
Show Figures

Figure 1

12 pages, 11141 KiB  
Article
Key Parameters of the Roof Cutting and Pressure Relief Technology in the Pre-Splitting Blasting of a Hard Roof in Guqiao Coal Mine
by Hanlin You and Zegong Liu
Appl. Sci. 2024, 14(24), 11779; https://doi.org/10.3390/app142411779 - 17 Dec 2024
Cited by 1 | Viewed by 861
Abstract
The phenomenon of crushing the support of the hard roof of a coal seam occurs occasionally during the coal mining process. However, making the hard roof fall is difficult due to its good integrity and high strength. A vast area of unsupported, suspended [...] Read more.
The phenomenon of crushing the support of the hard roof of a coal seam occurs occasionally during the coal mining process. However, making the hard roof fall is difficult due to its good integrity and high strength. A vast area of unsupported, suspended roof can easily form in the goaf, inducing the hidden dangers of rock burst and coal and gas outbursts. A deep-hole pre-splitting blasting technique is used to fracture the roof and relieve the pressure exerted by the rigid roof in order to improve the caving of the hard roof and protect the stability of the roadway, ensuring safe and effective operational production of the 1127 (1) working face in Guqiao Coal Mine. By collecting field samples, the mechanical properties of relevant rock formations are ascertained. Combining numerical simulation with theoretical computation, a roof cutting pressure-relief scheme with a roof cutting height of 13.5 m and a roof cutting angle of 20° is selected. This scheme can decrease the peak vertical stress on the roadway roof from 22.01 MPa to 13.63 MPa compared to when roof cutting is not performed. By ensuring the effectiveness of roof cutting for pressure relief, this scheme can optimize the actual construction workload to a minimum. The study’s conclusions provide insightful information and can be used as a guide for future research on related technical topics. Full article
(This article belongs to the Special Issue Advances and Challenges in Rock Mechanics and Rock Engineering)
Show Figures

Figure 1

24 pages, 9936 KiB  
Article
Research on the Correlation Between Overburden Rock Fracture Development and High-Energy Events During Deep Mining in Extremely Thick and Weakly Consolidated Strata for Regional Coal Mining Safety
by Jingchao Sun, Huaizhan Li, Guangli Guo, Yonghua Hu, Chao Tang, Tiening Wang, Hui Zheng, Liangui Zhang and Hang Sun
Sustainability 2024, 16(23), 10705; https://doi.org/10.3390/su162310705 - 6 Dec 2024
Viewed by 928
Abstract
The environmental damage and mining accidents caused by water inrush accidents and rock burst are two major problems faced in the safe and sustainable deep mining of extremely thick weakly cemented overlying strata. Mastering the fracture development law of the overlying strata, the [...] Read more.
The environmental damage and mining accidents caused by water inrush accidents and rock burst are two major problems faced in the safe and sustainable deep mining of extremely thick weakly cemented overlying strata. Mastering the fracture development law of the overlying strata, the evolution characteristics of high-energy events, and their correlative relationships in the deep mining of extremely thick weakly cemented overlying strata is the key to solving the above two problems, which is directly related to the sustainable development of regional coal and the protection of underground water resources in mining areas. By integrating the geological characteristics of extremely thick and weakly cemented overburdens in the Shaanxi–Inner Mongolia mining region of China, this study adopts methods such as field measurements, numerical simulations, and theoretical analyses to investigate the energy evolution characteristics of regional mining-induced tremors, as well as the correlation and mutual influence mechanisms between overburden fracture development and high-energy events. The results indicate a positive correlation between high-energy events and the development height of overburden fractures, suggesting that the occurrence of high-energy events can increase the height of overburden fracture development. Furthermore, high-energy events occurring before and after the “parallel joining” of two working faces have a relatively minor impact on the development height of overburden fractures, with an increase in the fracture-to-mining ratio (FMR) ranging from 1.56 to 2.78. In contrast, high-energy events occurring during the “parallel joining” of two working faces significantly affect the development height of overburden fractures, resulting in an FMR increase of 10.33 to 13.44, approximately one-third of the FMR measured through boreholes. The research results can provide a scientific basis for the safe and sustainable coal mining and the protection of underground water resources in similar mining areas with extremely thick weakly cemented overlying strata. Full article
Show Figures

Figure 1

17 pages, 18471 KiB  
Article
Finite-Difference Analysis of Influence of Borehole Diameter and Spacing on Reduction in Rockburst Potential of Burst-Prone Coal Seams
by Mikhail O. Eremin, Artyom O. Chirkov, Albert Pazhin, Sergey A. Laptev and Dmitriy V. Chanov
Mining 2024, 4(4), 1058-1074; https://doi.org/10.3390/mining4040058 - 2 Dec 2024
Viewed by 911
Abstract
Decreasing the rockburst potential in longwall mining of burst-prone coal seams has been a longstanding challenge for geotechnical engineering worldwide. One of the effective approaches is drilling of relief boreholes in front of the coal seam face from the airways. This work presents [...] Read more.
Decreasing the rockburst potential in longwall mining of burst-prone coal seams has been a longstanding challenge for geotechnical engineering worldwide. One of the effective approaches is drilling of relief boreholes in front of the coal seam face from the airways. This work presents a novel approach based on the integral rockburst factor (KIrb) taking account of the length of the dynamic abutment stress influence zone and the ratio of the vertical stress to the remote field virgin stress. The geotechnical conditions of seam 3 of the Alardinskaya mine (Kuznetsky basin, Russia) are taken as a study site. An approach of the finite-difference continuum damage mechanics is employed to describe the processes of deformation and fracture of coal and host rocks using an in-house software. The results indicate that the abutment stress maximum shifts deep into the seam after drilling and that the stress distribution along the coal seam horizon is a superposition of the solutions similar to those of the elastoplastic Kirsch problem. The results also indicate that the curves of KIrb dependence on spacing between the boreholes and their diameter are nonlinear and non-monotonic functions, which allows for optimizing of the drilling technology. Full article
Show Figures

Figure 1

Back to TopTop