Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (18,172)

Search Parameters:
Keywords = co-researchers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 258 KiB  
Article
Strategic Digital Change in Action: A Transferable Model for Teacher Competence Development
by Alberto A. Jiménez-Hidalgo, Linda Castañeda and María Dolores Lettelier
Educ. Sci. 2025, 15(8), 1018; https://doi.org/10.3390/educsci15081018 (registering DOI) - 7 Aug 2025
Abstract
This article presents a case of strategic and participatory institutional innovation in higher education, focused on developing teacher digital competence (TDC) as a key enabler of sustainable digital transformation. In response to the post-pandemic challenges faced by the National University of Cuyo (UNCuyo), [...] Read more.
This article presents a case of strategic and participatory institutional innovation in higher education, focused on developing teacher digital competence (TDC) as a key enabler of sustainable digital transformation. In response to the post-pandemic challenges faced by the National University of Cuyo (UNCuyo), a large and multi-campus public university in Argentina, the European CUTE methodology was adapted and implemented to align professional development with institutional planning. Grounded in the DigCompEdu framework, this action-oriented process moved beyond individual initiatives to create a coordinated, multi-level strategy involving educators, department leaders, and university authorities. Through a research-based design that included context analysis, participatory diagnosis, and co-designed interventions, the project built a shared understanding of digital teaching needs and institutional readiness. The implementation highlights how locally adapted frameworks, collaborative structures, and iterative decision-making can drive meaningful change across a complex university system. This case contributes to the international conversation on how higher education institutions can operationalize innovation at scale by investing in teacher competence, inclusive processes, and strategic alignment. Lessons learned from this experience are relevant for universities seeking to build institutional capacity for digital transformation in diverse educational contexts with potential downstream benefits for student learning and inclusion. Full article
(This article belongs to the Special Issue Higher Education Development and Technological Innovation)
19 pages, 2981 KiB  
Article
Evaluating the Effect of Fresh and Aged Antioxidant Formulations in Skin Protection Against UV Damage
by John Ivarsson, Patricia Brieva, Hina Choudhary and Giuseppe Valacchi
Cosmetics 2025, 12(4), 166; https://doi.org/10.3390/cosmetics12040166 (registering DOI) - 7 Aug 2025
Abstract
Introduction: Extrinsic skin damage is often a result of oxidative stress caused by exposure to environmental factors such as ultraviolet (UV) radiation, ozone (O3), and various pollutants. As a result, topical antioxidants have been evaluated for their effectiveness in mitigating [...] Read more.
Introduction: Extrinsic skin damage is often a result of oxidative stress caused by exposure to environmental factors such as ultraviolet (UV) radiation, ozone (O3), and various pollutants. As a result, topical antioxidants have been evaluated for their effectiveness in mitigating or reversing skin damage caused by environmental factors. Topical antioxidants containing a combination of l-ascorbic acid, tocopherol, and ferulic acid have significantly improved markers of skin health after exposure to environment-induced skin damage. However, research suggests that l-ascorbic acid and tocopherol tend to be relatively unstable, possibly affecting their efficacy against outdoor stressor damage. It has been shown that ferulic acid significantly improves the stability of both l-ascorbic acid and tocopherol, but its long-term stabilization effects on these antioxidants are relatively unknown. Material and Methods: This study evaluated the time-dependent effectiveness of a topical antioxidant mix containing 15% l-ascorbic acid, 1% tocopherol, and 0.5% ferulic acid (AOX) on UV-induced skin damage. Skin biopsies (12 mm, n = 60) were placed in a 6-well plate with medium and incubated at 37 °C and 5% CO2 overnight. The day after, skin samples were pretreated with 10 µL of differently aged AOX (0-, 6-, 12-, and 36-month-old) and then exposed to different doses of UV light (100, 200, 400 mJ/cm2) daily over four days. AOX formulations were stored in a cool, dry, and dark place at approximately 20–22 °C during the whole study. This study evaluated 4-hydroxynonenal (4-HNE) and 8-hydroxy-2′-deoxyguanosine (8-OHdG) as oxidative damage and skin DNA damage markers, Collagen1 and Filaggrin as skin structure, and IL-8 and Nrf2 as inflammatory and defensive response. Results: UV exposure significantly increased oxidative and inflammatory markers in human skin explants affecting also filaggrin and collagen levels. However, pre-treatment with the antioxidant formulation, particularly in its younger formulations (0-, 6-, and 12-month-old), significantly reduced the damaging effect of UV. Additionally, all antioxidant formulations effectively mitigated UV-induced damage across all doses. Conclusions: Our results indicate that pre-treatment with this formulation consistently reduces UV-induced oxidative damage and DNA damage in human skin explants, regardless of the formulation age and the discoloration state. Although effective, the protective capacity of aged formulations may be reduced only when extreme UV exposure is tested, a condition that is unlikely to occur under typical environmental conditions. These results support ferulic acid as a stabilization agent for topical antioxidant mixtures. Full article
(This article belongs to the Section Cosmetic Formulations)
20 pages, 3206 KiB  
Article
Experiment Driven Co-Simulation Model of Wheel Loader Attachment Hydraulics System for Influence Assessment of Hydraulic Accumulator Parameters on Energy Recuperation Efficiency
by Cezary Rudzki, Adam Bartnicki, Arkadiusz Rubiec, Tomasz Muszyński and Mirosław Przybysz
Energies 2025, 18(15), 4208; https://doi.org/10.3390/en18154208 (registering DOI) - 7 Aug 2025
Abstract
The following paper describes research on the influence of hydraulic accumulator parameters on the efficiency of energy recovery for a simulation model of a wheel loader using the results of experimental research. A design solution for the energy recovery system for the loader [...] Read more.
The following paper describes research on the influence of hydraulic accumulator parameters on the efficiency of energy recovery for a simulation model of a wheel loader using the results of experimental research. A design solution for the energy recovery system for the loader attachment was presented, which allows for the recovery of the potential energy of the boom, bucket, and load. The presented simulation model was developed based on a real object. The necessary operating parameters were determined using experimental tests. The study used the co-simulation method of mechanical and hydraulic models in order to more accurately reflect the actual behavior of the research object. The validated simulation model was extended with the developed energy recovery module based on a hydraulic accumulator. The results of the conducted tests have indicated the influence of hydraulic accumulator parameters on the efficiency of energy recovery and potential directions for further research. Full article
Show Figures

Figure 1

28 pages, 11672 KiB  
Article
Microwave-Assisted Hydrothermal Synthesis of Cu/Sr-Doped Hydroxyapatite with Prospective Applications for Bone Tissue Engineering
by Diana-Elena Radulescu, Bogdan Stefan Vasile, Otilia Ruxandra Vasile, Ionela Andreea Neacsu, Roxana Doina Trusca, Vasile-Adrian Surdu, Alexandra Catalina Birca, Georgiana Dolete, Cornelia-Ioana Ilie and Ecaterina Andronescu
J. Compos. Sci. 2025, 9(8), 427; https://doi.org/10.3390/jcs9080427 (registering DOI) - 7 Aug 2025
Abstract
One of the main challenges in hydroxyapatite research is to develop cost-effective synthesis methods that consistently produce materials closely resembling natural bone, while maintaining high biocompatibility, phase purity, and mechanical stability for biomedical applications. Traditional synthetic techniques frequently fail to provide desirable mechanical [...] Read more.
One of the main challenges in hydroxyapatite research is to develop cost-effective synthesis methods that consistently produce materials closely resembling natural bone, while maintaining high biocompatibility, phase purity, and mechanical stability for biomedical applications. Traditional synthetic techniques frequently fail to provide desirable mechanical characteristics and antibacterial activity, necessitating the development of novel strategies based on natural precursors and selective ion doping. The present study aims to explore the possibility of synthesizing hydroxyapatite through the co-precipitation method, followed by a microwave-assisted hydrothermal maturation process. The main CaO sources selected for this study are eggshells and mussel shells. Cu2+ and Sr2+ ions were added into the hydroxyapatite structure at concentrations of 1% and 5% to investigate their potential for biomedical applications. Furthermore, the morpho-structural and biological properties have been investigated. Results demonstrated the success of hydroxyapatite synthesis and ion incorporation into its chemical structure. Moreover, HAp samples exhibited significant antimicrobial properties, especially the samples doped with 5% Cu and Sr. Additionally, all samples presented good biological activity on MC3T3-E1 osteoblast cells, demonstrating good cellular viability of all samples. Therefore, by correlating the results, it could be concluded that the undoped and doped hydroxyapatite samples are suitable biomaterials to be further applied in orthopedic applications. Full article
(This article belongs to the Special Issue Composites: A Sustainable Material Solution, 2nd Edition)
Show Figures

Figure 1

18 pages, 4029 KiB  
Article
Characterizing CO2 Emission from Various PHEVs Under Charge-Depleting Conditions
by Nan Yang, Xuetong Lian, Zhenxiao Bai, Liangwu Rao, Junxin Jiang, Jiaqiang Li, Jiguang Wang and Xin Wang
Atmosphere 2025, 16(8), 946; https://doi.org/10.3390/atmos16080946 - 7 Aug 2025
Abstract
With the significant growth in the number of PHEVs, conducting in-depth research on their CO2 emission characteristics is essential. This study used the Horiba OBS-ONE Portable Emission Measurement System (PEMS) to measure the CO2 emissions of three Plug-in Hybrid Electric Vehicle [...] Read more.
With the significant growth in the number of PHEVs, conducting in-depth research on their CO2 emission characteristics is essential. This study used the Horiba OBS-ONE Portable Emission Measurement System (PEMS) to measure the CO2 emissions of three Plug-in Hybrid Electric Vehicle (PHEV) types: one Series Hybrid Electric Vehicle (S-HEV), one Parallel Hybrid Electric Vehicle (P-HEV), and one Series-Parallel Hybrid Electric Vehicle (SP-HEV), during real driving conditions. The findings show a correlation between acceleration and increased CO2 emissions for P-HEV, while acceleration has a relatively minor impact on S-HEV and SP-HEV emissions. Under urban driving conditions, the SP-HEV displays the lowest average CO2 emission rate. However, under suburban and highway conditions, the average CO2 emission rates follow the order S-HEV > SP-HEV > P-HEV. An analysis of CO2 emission factors across different road types and vehicle-specific power (VSP) ranges indicates that within low VSP intervals (VSP ≤ 0 for urban, VSP ≤ 5 for suburban, and VSP ≤ 15 for highway roads), the P-HEV exhibits the best CO2 emission control. As VSP increases, the P-HEV’s emission factors rise under all three road conditions, with its emission control capability weakening when VSP exceeds 5 in urban, 15 in suburban, and 20 on highway roads. For the SP-HEV, CO2 emission factors increase with VSP in urban and suburban areas but remain stable on highways. The S-HEV shows minimal changes in emission factors with varying VSP. This research provides valuable insights into the CO2 emission patterns of PHEVs, aiding vehicle optimization and policy development. Full article
(This article belongs to the Special Issue Traffic Related Emission (3rd Edition))
Show Figures

Figure 1

18 pages, 8248 KiB  
Article
The Stabilization Mechanism of a Stable Landslide Dam on the Eastern Margin of the Tibetan Plateau, China: Insights from Field Investigation and Numerical Simulation
by Liang Song, Yanjun Shang, Yunsheng Wang, Tong Li, Zhuolin Xiao, Yuchao Zhao, Tao Tang and Shicheng Liu
Appl. Sci. 2025, 15(15), 8745; https://doi.org/10.3390/app15158745 - 7 Aug 2025
Abstract
As a globally renowned alpine gorge region and seismically active zone, the eastern margin of the Qinghai–Tibet Plateau (QTP) is highly prone to landslide dam formation. Considering unstable landslide dams often pose catastrophic risks to downstream areas, current research on landslide dams along [...] Read more.
As a globally renowned alpine gorge region and seismically active zone, the eastern margin of the Qinghai–Tibet Plateau (QTP) is highly prone to landslide dam formation. Considering unstable landslide dams often pose catastrophic risks to downstream areas, current research on landslide dams along QTP primarily focuses on the breach mechanisms of unstable dams, while studies on the formation mechanisms of stable landslide dams—which can provide multiple benefits to downstream regions—remain limited. This paper selected the Conaxue Co landslide dam on the eastern margin of the QTP as one case example. Field investigation, sampling, numerical simulation, and comprehensive analysis were carried out to disclose its formation mechanisms. Field investigation shows that the Conaxue Co landslide dam was formed by a high-speed long-runout landslide blocking the river, with its structure exhibiting a typical inverse grading pattern characterized by coarse-grained rock overlying fine-grained layers. The inverse grading structure plays a critical role in the stability of the Conaxue Co landslide dam. On one hand, the coarse, hard rock boulders in the upper dam mitigate fluvial erosion of the lower fine-grained sediments. On the other hand, the fine-grained layer in the lower dam acts as a relatively impermeable aquitard, preventing seepage of dammed lake water. Additionally, the step-pool system formed in the spillway of the Conaxue Co landslide dam contributes to the protection of the dam structure by dissipating 68% of the river’s energy (energy dissipation rate η = 0.68). Understanding the formation mechanisms of the Conaxue Co landslide dam can provide critical insights into managing future landslide dams that may form in the QTP, both in emergency response and long-term strategies. Full article
24 pages, 5480 KiB  
Article
Liposomal Co-Delivery of Acteoside, CBD, and Naringenin: A Synergistic Strategy Against Gliomas
by Jagoda Szkudlarek, Ludwika Piwowarczyk, Violetta Krajka-Kuźniak, Aleksandra Majchrzak-Celińska, Szymon Tomczak, Mikołaj Baranowski, Rafał Pietrzyk, Aneta Woźniak-Braszak and Anna Jelińska
Pharmaceutics 2025, 17(8), 1026; https://doi.org/10.3390/pharmaceutics17081026 - 7 Aug 2025
Abstract
Background/Objectives: Adult-type diffuse gliomas, including astrocytoma and glioblastoma multiforme (GBM), are brain tumors with a very poor prognosis. While current treatment options for glioma patients are not providing satisfactory outcomes, research indicates that natural compounds could serve as alternative treatments. However, their [...] Read more.
Background/Objectives: Adult-type diffuse gliomas, including astrocytoma and glioblastoma multiforme (GBM), are brain tumors with a very poor prognosis. While current treatment options for glioma patients are not providing satisfactory outcomes, research indicates that natural compounds could serve as alternative treatments. However, their low bioavailability requires nanotechnology solutions, such as liposomes. Methods: In this study, we propose the co-encapsulation of acteoside (ACT) with other natural compounds, cannabidiol (CBD) or naringenin (NG), in a cationic liposomal nanoformulation consisting of DOTAP and POPC lipids, which were prepared using the dry lipid film method. The liposomes were characterized by their physicochemical properties, including particle size, zeta potential, and polydispersity index (PDI), with additional analyses performed using 1H Nuclear Magnetic Resonance (NMR). Furthermore, biological experiments were performed with U-87 MG astrocytoma and U-138 MG GBM cell lines and non-cancerous MRC-5 lung fibroblasts using the MTT assay and evaluating the expression of Bax and Bcl-xL to evaluate their potential as anticancer agents. Conclusions: The IC50 values for the nanoformulations in U-138 MG cells at 48 h were 6 µM for ACT + CBD and 5 µM for ACT + NG. ACT and CBD or NG demonstrated a potential synergistic effect against GBM in a liposomal formulation. Notably, treatment with ACT + CBD (5 µM) and ACT + NG (5 µM) liposomal formulations significantly upregulated Bax protein level in U-138 cells at both 24 and 48 h. In parallel, ACT + CBD (5 µM) also modulated Bcl-xL protein level in both U-138 MG and U-87 MG cell lines at the same time points. The obtained nanoformulations were homogeneous and stable for 21 days, evidenced by a narrow particle size distribution, a low polydispersity index (PDI) < 0.3, and a positive zeta potential. Full article
(This article belongs to the Special Issue PLGA Micro/Nanoparticles in Drug Delivery)
Show Figures

Graphical abstract

15 pages, 676 KiB  
Review
Obstructive Sleep Apnea and Type 2 Diabetes: An Update
by Sandro Gentile, Vincenzo Maria Monda, Giuseppina Guarino, Ersilia Satta, Maria Chiarello, Giuseppe Caccavale, Edi Mattera, Raffaele Marfella and Felice Strollo
J. Clin. Med. 2025, 14(15), 5574; https://doi.org/10.3390/jcm14155574 - 7 Aug 2025
Abstract
Obstructive sleep apnea (OSA) syndrome is a severe, debilitating, and pervasive sleep disorder. OSA mainly affects people with obesity, type 2 diabetes mellitus (T2DM), hypertension, and dyslipidemia and is strongly associated with cardiovascular complications. Based on the bidirectional relationship between T2DM and OSA, [...] Read more.
Obstructive sleep apnea (OSA) syndrome is a severe, debilitating, and pervasive sleep disorder. OSA mainly affects people with obesity, type 2 diabetes mellitus (T2DM), hypertension, and dyslipidemia and is strongly associated with cardiovascular complications. Based on the bidirectional relationship between T2DM and OSA, the latter represents a risk factor for the former, and, vice versa, people with T2DM have a high risk of OSA. Mechanical and hormonal factors, inflammatory mediators, and a dysregulated autonomic nervous system contribute to the mechanisms underlying the disease. Treatment of OSA is necessary even if the available remedies are not always effective. In addition to traditional treatments, including lifestyle adaptations and bariatric surgery, CPAP equipment, i.e., a breathing device ensuring continuous positive pressure to keep the airways open during sleep, represents the most common treatment tool. More recently, pharmacological research has paved the way to newer seemingly effective therapeutic strategies involving, in particular, two hypoglycemic agent classes, i.e., sodium–glucose co-transporter 2 inhibitors (SGLT2-is) and glucagon-like peptide-1 (GLP-1) receptor agonists (GLP1-ras). This narrative review provides an update on all of the above. Full article
(This article belongs to the Special Issue Association Between Sleep Disorders and Diabetes)
Show Figures

Figure 1

21 pages, 3405 KiB  
Article
Allelic Variation of Helicobacter pylori vacA Gene and Its Association with Gastric Pathologies in Clinical Samples Collected in Jordan
by Mamoon M. Al-Hyassat, Hala I. Al-Daghistani, Lubna F. Abu-Niaaj, Sima Zein and Talal Al-Qaisi
Microorganisms 2025, 13(8), 1841; https://doi.org/10.3390/microorganisms13081841 - 7 Aug 2025
Abstract
Helicobacter pylori is a well-established causative agent of gastritis, peptic ulcers, gastric adenocarcinoma, and primary gastric lymphoma. It colonizes the human stomach and expresses numerous virulent factors that influence disease progression. Among these factors is the cytotoxin vacA gene, which encodes the vacuolating [...] Read more.
Helicobacter pylori is a well-established causative agent of gastritis, peptic ulcers, gastric adenocarcinoma, and primary gastric lymphoma. It colonizes the human stomach and expresses numerous virulent factors that influence disease progression. Among these factors is the cytotoxin vacA gene, which encodes the vacuolating capacity of the cytotoxin and plays a key role in the bacterium’s pathogenic potential. This study investigated the allelic diversity of the vacA among H. pylori strains infecting patients in Jordan with various gastric conditions and examined potential associations between vacA s-and m- genotypes, histopathological and endoscopic findings, and the development of gastric diseases. Gastric biopsies were collected from 106 patients at two hospitals in Jordan who underwent endoscopic examination. The collected biopsies for each patient were subjected to histopathological assessment, urease detection using the Rapid Urease Test (RUT), a diagnostic test for H. pylori, and molecular detection of the vacA gene and its s and m alleles. The histopathology reports indicated that 83 of 106 patients exhibited gastric disorders, of which 81 samples showed features associated with H. pylori infection. The RUT was positive in 76 of 106 with an accuracy of 93.8%. Real-time polymerase chain reaction (RT-PCR) targeting the 16S rRNA gene confirmed the presence of H. pylori in 79 of 81 histologically diagnosed cases as infected (97.5%), while the vacA gene was detected only in 75 samples (~95%). To explore genetic diversity, PCR-amplified fragments underwent sequence analysis of the vacA gene. The m-allele was detected in 58 samples (73%), the s-allele was detected in 45 (57%), while both alleles were not detected in 13% of samples. The predominant genotype combination among Jordanians was vacA s2/m2 (50%), significantly linked to mild chronic gastritis, followed by s1/m2 (35%) and s1/m1 (11.8%) which are linked to severe gastric conditions including malignancies. Age-and gender-related differences in vacA genotype were observed with less virulent s2m2 and s1m2 genotypes predominating in younger adults specially males, while the more virulent m1 genotypes were found exclusively in females and middle-aged patients. Genomic sequencing revealed extensive diversity within H. pylori, likely reflecting its long-standing co-evolution with human hosts in Jordan. This genetic variability plays a key role in modulating virulence and influencing clinical outcomes. Comprehensive characterization of vacA genotypic variations through whole-genome sequencing is essential to enhance diagnostic precision, strengthen epidemiological surveillance, and inform targeted therapeutic strategies. While this study highlights the significance of the vacA m and s alleles, future research is recommended in order to investigate the other vacA allelic variations, such as the i, d, and c alleles, to achieve a more comprehensive understanding of H. pylori pathogenicity and associated disease severity across different strains. These investigations will be crucial for improving diagnostic accuracy and guiding the development of targeted therapeutic strategies. Full article
(This article belongs to the Special Issue Helicobacter pylori Infection: Detection and Novel Treatment)
Show Figures

Figure 1

16 pages, 369 KiB  
Systematic Review
Addressing Sleep Health in Refugee Populations: A Systematic Review of Intervention Effectiveness and Cultural Adaptation
by Jaclyn Kirsch, Christine E. Spadola, Kabir Parikh, Kristen Kerr and Hrayr Attarian
Soc. Sci. 2025, 14(8), 485; https://doi.org/10.3390/socsci14080485 - 7 Aug 2025
Abstract
Refugees experience disproportionately high rates of sleep disturbances due to trauma, displacement, and resettlement stressors. Sleep health is critically linked to both physical and mental well-being, yet remains an underexplored area of intervention for refugee populations. This systematic review aimed to (1) identify [...] Read more.
Refugees experience disproportionately high rates of sleep disturbances due to trauma, displacement, and resettlement stressors. Sleep health is critically linked to both physical and mental well-being, yet remains an underexplored area of intervention for refugee populations. This systematic review aimed to (1) identify interventions implemented to improve sleep health among refugees, (2) assess their effectiveness, and (3) evaluate the extent of cultural adaptation in their design and implementation. A comprehensive search of peer-reviewed literature from 2004 to 2024 identified nine studies focused on adult refugees in high-income countries. Interventions included psychoeducation, music-assisted relaxation, guided imagery, and nightmare-focused therapies. Several demonstrated improvements in sleep quality, insomnia severity, and nightmare frequency. Music-based interventions and sleep health education stood out as accessible, non-stigmatizing strategies that may be particularly well suited to refugee contexts. However, cultural adaptation emerged as the most significant gap. Using the 4-Domain Cultural Adaptation Model (CAM4)—which assesses adaptation across context, content, delivery, and engagement—most studies showed only surface-level modifications. Few incorporated community voices, and none validated sleep assessment tools for cultural relevance. Future research should prioritize co-creation with refugee communities to ensure interventions are not only evidence-based, but also culturally grounded, trusted, and sustainable across diverse refugee populations. Full article
(This article belongs to the Section International Migration)
Show Figures

Figure 1

27 pages, 1578 KiB  
Article
Tapio-Z Decoupling of the Valuation of Energy Sources, CO2 Emissions, and GDP Growth in the United States and China Using a Fuzzy Logic Model
by Rabnawaz Khan and Weiqing Zhuang
Energies 2025, 18(15), 4188; https://doi.org/10.3390/en18154188 - 7 Aug 2025
Abstract
Our contemporary society is powered by fossil fuels, which results in environmental catastrophes. The combustion of these materials results in the release of CO2, which accelerates the progression of climate change and its catastrophic consequences. The environmental repercussions of fossil fuel [...] Read more.
Our contemporary society is powered by fossil fuels, which results in environmental catastrophes. The combustion of these materials results in the release of CO2, which accelerates the progression of climate change and its catastrophic consequences. The environmental repercussions of fossil fuel extraction have been highlighted through research into alternative energy sources. This inquiry uses the Tapio-Z decoupling approach to assess energy inputs and emissions. Furthermore, the fuzzy logic model is used to inspect the economic growth of the USA and China, as well as the impact of environmental factors, energy sources, and utilization, through decoupling effects from 1994 to 2023. The findings are substantiated by the individual perspectives of the environmental factors regarding decoupling, which ultimately lead to the acquisition of valuable results. We anticipate a substantial reduction in the total volume of CO2 emissions in both the USA and China. Compared to China, the USA shows a significant increase in CO2 emissions due to its reliance on fossil fuels. It is evident that a comprehensive transition to renewable resources and a broad range of technology is required to mitigate CO2 emissions in high-energy zones. In their pursuit of sustainability, these two nations are making remarkable strides. The percentage change in CO2 emissions indicates that effective changes in economic growth, energy input, and energy utilization, particularly sustainable energy, transmute energy output, as does the sustained implementation of robust environmental protection policies. The percentage change in CO2 emissions indicates a remarkable transformation in energy input, energy consumption, and economic growth. This transition has been most visible in the areas of energy transformation, sustainability, and the maintenance of strong environmental protection measures. Full article
(This article belongs to the Special Issue Energy Transition and Environmental Sustainability: 3rd Edition)
Show Figures

Figure 1

9 pages, 192 KiB  
Review
Underdiagnosed and Misunderstood: Clinical Challenges and Educational Needs of Healthcare Professionals in Identifying Autism Spectrum Disorder in Women
by Beata Gellert, Janusz Ostrowski, Jarosław Pinkas and Urszula Religioni
Behav. Sci. 2025, 15(8), 1073; https://doi.org/10.3390/bs15081073 - 7 Aug 2025
Abstract
Autism Spectrum Disorder (ASD) remains significantly underdiagnosed in women, resulting in a persistent gender gap with important clinical, functional, and psychosocial implications. This narrative review explores the multifactorial barriers contributing to diagnostic disparities, including the male-oriented structure of current diagnostic criteria, the prevalence [...] Read more.
Autism Spectrum Disorder (ASD) remains significantly underdiagnosed in women, resulting in a persistent gender gap with important clinical, functional, and psychosocial implications. This narrative review explores the multifactorial barriers contributing to diagnostic disparities, including the male-oriented structure of current diagnostic criteria, the prevalence of co-occurring psychiatric conditions, and the phenomenon of social camouflaging shaped by culturally reinforced gender norms. These factors frequently lead to delayed identification, clinical misinterpretation, and suboptimal care. The review synthesizes evidence from clinical, psychological, and sociocultural research to demonstrate how the under-recognition of ASD in women impacts mental health outcomes, access to education, occupational stability, and overall quality of life. Special emphasis is placed on the consequences of missed or late diagnoses for healthcare delivery and the educational needs of clinicians involved in ASD assessment and care. This article concludes with actionable, evidence-based recommendations for enhancing diagnostic sensitivity, developing gender-responsive screening strategies, and integrating training on female autism presentation into medical and allied health education. Addressing these challenges is essential to reducing diagnostic inequities and ensuring timely, accurate, and person-centered care for autistic women throughout their lifespan. Full article
17 pages, 780 KiB  
Review
Progress in the Study of Plant Nitrogen and Potassium Nutrition and Their Interaction Mechanisms
by Weiyu Cao, Hai Sun, Cai Shao, Yue Wang, Jiapeng Zhu, Hongjie Long, Xiaomeng Geng and Yayu Zhang
Horticulturae 2025, 11(8), 930; https://doi.org/10.3390/horticulturae11080930 - 7 Aug 2025
Abstract
Nitrogen (N) and potassium (K) are essential macronutrients for plants whose functions and interactions profoundly influence plant physiological metabolism, environmental adaptation, and agricultural production efficiency. This review summarizes research advances in plant N and K nutrition and their interaction mechanisms, elucidating the key [...] Read more.
Nitrogen (N) and potassium (K) are essential macronutrients for plants whose functions and interactions profoundly influence plant physiological metabolism, environmental adaptation, and agricultural production efficiency. This review summarizes research advances in plant N and K nutrition and their interaction mechanisms, elucidating the key physiological functions of N and K individually and their respective absorption and transport mechanisms involving transporters such as NRTs and HAKs/KUPs. The review discusses the types of nutrient interactions (synergism and antagonism), with a primary focus on the physiological basis of N–K interactions and their interplay in root absorption and transport (e.g., K+-NO3 co-transport; NH4+ inhibition of K+ uptake), photosynthesis (jointly optimizing CO2 conductance, mesophyll conductance, and N allocation within photosynthetic machinery to enhance photosynthetic N use efficiency, PNUE), as well as sensing, signaling, co-regulation, and metabolism. This review emphasizes that N–K balance is crucial for improving crop yield and quality, enhancing fertilizer use efficiency (NUE/KUE), and reducing environmental pollution. Consequently, developing effective N–K management strategies based on these interaction mechanisms and implementing Balanced Fertilization Techniques (BFT) to optimize N–K ratios and application strategies in agricultural production represent vital pathways for ensuring food security, addressing resource constraints, and advancing green, low-carbon agriculture, including through coordinated management of greenhouse gas emissions. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

60 pages, 8707 KiB  
Review
Automation in Construction (2000–2023): Science Mapping and Visualization of Journal Publications
by Mohamed Marzouk, Abdulrahman A. Bin Mahmoud, Khalid S. Al-Gahtani and Kareem Adel
Buildings 2025, 15(15), 2789; https://doi.org/10.3390/buildings15152789 - 7 Aug 2025
Abstract
This paper presents a scientometric review that provides a quantitative perspective on the evolution of Automation in Construction Journal (AICJ) research, emphasizing its developmental paths and emerging trends. The study aims to analyze the journal’s growth and citation impact over time. It also [...] Read more.
This paper presents a scientometric review that provides a quantitative perspective on the evolution of Automation in Construction Journal (AICJ) research, emphasizing its developmental paths and emerging trends. The study aims to analyze the journal’s growth and citation impact over time. It also seeks to identify the most influential publications and the cooperation patterns among key contributors. Furthermore, the study explores the journal’s primary research themes and their evolution. Accordingly, 4084 articles were identified using the Web of Science (WoS) database and subjected to a multistep analysis using VOsviewer version 1.6.18 and Biblioshiny as software tools. First, the growth and citation of the publications over time are inspected and evaluated, in addition to ranking the most influential documents. Second, the co-authorship analysis method is applied to visualize the cooperation patterns between countries, organizations, and authors. Finally, the publications are analyzed using keyword co-occurrence and keyword thematic evolution analyses, revealing five major research clusters: (i) foundational optimization, (ii) deep learning and computer vision, (iii) building information modeling, (iv) 3D printing and robotics, and (v) machine learning. Additionally, the analysis reveals significant growth in publications (54.5%) and citations (78.0%) from 2018 to 2023, indicating the journal’s increasing global influence. This period also highlights the accelerated adoption of digitalization (e.g., BIM, computational design), increased integration of AI and machine learning for automation and predictive analytics, and rapid growth of robotics and 3D printing, driving sustainable and innovative construction practices. The paper’s findings can help readers and researchers gain a thorough understanding of the AICJ’s published work, aid research groups in planning and optimizing their research efforts, and inform editorial boards on the most promising areas in the existing body of knowledge for further investigation and development. Full article
Show Figures

Figure 1

19 pages, 22713 KiB  
Article
Geospatial and Correlation Analysis of Heavy Metal Distribution on the Territory of Integrated Steel and Mining Company Qarmet JSC
by Yryszhan Zhakypbek, Kanay Rysbekov, Vasyl Lozynskyi, Sergey Mikhalovsky, Ruslan Salmurzauly, Yerkezhan Begimzhanova, Gulmira Kezembayeva, Bakhytzhan Yelikbayev and Assel Sankabayeva
Sustainability 2025, 17(15), 7148; https://doi.org/10.3390/su17157148 - 7 Aug 2025
Abstract
This paper provides geospatial and correlation analysis of heavy metal distribution in the soil cover of the city of Temirtau and its industrial zones. Based on 25 soil samples taken in 2024, concentrations of nine heavy metals (As, Pb, Zn, Cu, Ni, Co, [...] Read more.
This paper provides geospatial and correlation analysis of heavy metal distribution in the soil cover of the city of Temirtau and its industrial zones. Based on 25 soil samples taken in 2024, concentrations of nine heavy metals (As, Pb, Zn, Cu, Ni, Co, Mn, Cr, Ba) were determined using X-ray fluorescence analysis. Spatial data interpolation was performed using the Kriging method in the ArcGIS Pro environment. The results showed the presence of localized extreme pollution zones, primarily near the Qarmet JSC metallurgical plant. The most significant exceedances of maximum permissible concentrations (MPC), up to 348× MPC for Cr, 160× MPC for Zn, and 72× MPC for As, were recorded at individual locations. Correlation analysis revealed a moderate positive relationship between several elements, particularly Mn and Cu (r = 0.64). Comparison of the spatial distribution of pollution with population data allowed for the assessment of potential environmental risks. This research emphasizes the need to implement systematic monitoring, sustainable land management practices, ecological maps, and preventive measures to reduce the long-term impact of heavy metals on ecosystems and public health, and to promote environmental sustainability in industrial regions. Full article
Show Figures

Figure 1

Back to TopTop