Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = clothing fit design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2724 KiB  
Article
Anthropometric Evaluation of NFPA 1977 Sizing System for U.S. Female Wildland Firefighters: A Contingency Table Analysis
by Ziwen Qiu, Josephine Bolaji, Meredith McQuerry and Cassandra Kwon
Fire 2025, 8(7), 270; https://doi.org/10.3390/fire8070270 - 8 Jul 2025
Viewed by 613
Abstract
Ensuring proper sizing and fit for U.S. female firefighters’ personal protective clothing and equipment (PPE) is a crucial challenge for researchers and manufacturers. The National Fire Protection Association (NFPA) establishes design and performance standards in the U.S., with NFPA 1977 specifying sizing guidelines [...] Read more.
Ensuring proper sizing and fit for U.S. female firefighters’ personal protective clothing and equipment (PPE) is a crucial challenge for researchers and manufacturers. The National Fire Protection Association (NFPA) establishes design and performance standards in the U.S., with NFPA 1977 specifying sizing guidelines for wildland firefighting gear. However, the absence of an anthropometric database representing female firefighters limits the effectiveness of these standards. This research evaluates the effectiveness of NFPA 1977 sizing system by investigating whether correlated body measurements maintain internal consistency and provide data-driven recommendations for improvement. Anthropometric data from 187 U.S. female firefighters were analyzed to assess the 2016 and 2022 NFPA 1977 upper and lower torso sizing systems. Correlation analysis was performed between body measurements and corresponding sizes. Contingency tables presented proportion of participants accommodated. Results indicated significant correlations between chest and wrist measurements and sizes in the upper torso, though these were the only available measurements. In the lower torso, hip size strongly correlated with thigh and knee sizes. However, the system inadequately accommodates female firefighters with larger waist and hip measurements. Furthermore, rise sizes demonstrated inconsistent, weak relationships with hip circumference. Overall, the NFPA 1977 sizing requires revision to better serve U.S. female firefighters. Full article
Show Figures

Figure 1

22 pages, 40818 KiB  
Article
Real-Time Cloth Simulation in Extended Reality: Comparative Study Between Unity Cloth Model and Position-Based Dynamics Model with GPU
by Taeheon Kim, Jun Ma and Min Hong
Appl. Sci. 2025, 15(12), 6611; https://doi.org/10.3390/app15126611 - 12 Jun 2025
Viewed by 782
Abstract
This study proposes a GPU-accelerated Position-Based Dynamics (PBD) system for realistic and interactive cloth simulation in Extended Reality (XR) environments, and comprehensively evaluates its performance and functional capabilities on standalone XR devices, such as the Meta Quest 3. To overcome the limitations of [...] Read more.
This study proposes a GPU-accelerated Position-Based Dynamics (PBD) system for realistic and interactive cloth simulation in Extended Reality (XR) environments, and comprehensively evaluates its performance and functional capabilities on standalone XR devices, such as the Meta Quest 3. To overcome the limitations of traditional CPU-based physics simulations, we designed and optimized highly parallelized algorithms utilizing Unity’s Compute Shader framework. The proposed system achieves real-time performance by implementing efficient collision detection and response handling with complex environmental meshes (RoomMesh) and dynamic hand meshes (HandMesh), as well as capsule colliders based on hand skeleton tracking (OVRSkeleton). Performance evaluations were conducted for both single-sided and double-sided cloth configurations across multiple resolutions. At a 32 × 32 resolution, both configurations maintained stable frame rates of approximately 72 FPS. At a 64 × 64 resolution, the single-sided cloth achieved around 65 FPS, while the double-sided configuration recorded approximately 40 FPS, demonstrating scalable quality adaptation depending on application requirements. Functionally, the GPU-PBD system significantly surpasses Unity’s built-in Cloth component by supporting double-sided cloth rendering, fine-grained constraint control, complex mesh-based collision handling, and real-time interaction with both hand meshes and capsule colliders. These capabilities enable immersive and physically plausible XR experiences, including natural cloth draping, grasping, and deformation behaviors during user interactions. The technical advantages of the proposed system suggest strong applicability in various XR fields, such as virtual clothing fitting, medical training simulations, educational content, and interactive art installations. Future work will focus on extending the framework to general deformable body simulation, incorporating advanced material modeling, self-collision response, and dynamic cutting simulation, thereby enhancing both realism and scalability in XR environments. Full article
(This article belongs to the Special Issue New Insights into Computer Vision and Graphics)
Show Figures

Figure 1

22 pages, 1300 KiB  
Systematic Review
Emerging Roles of 3D Body Scanning in Human-Centric Applications
by Mahendran Balasubramanian and Pariya Sheykhmaleki
Technologies 2025, 13(4), 126; https://doi.org/10.3390/technologies13040126 - 24 Mar 2025
Cited by 1 | Viewed by 2310
Abstract
The three-dimensional (3D) body scanning technology has impacted various fields, from digital anthropometry to healthcare. This paper provides an exhaustive review of the existing literature on applications of 3D body scanning technology in human-centered work. Our systematic analysis of Web of Science and [...] Read more.
The three-dimensional (3D) body scanning technology has impacted various fields, from digital anthropometry to healthcare. This paper provides an exhaustive review of the existing literature on applications of 3D body scanning technology in human-centered work. Our systematic analysis of Web of Science and Scopus journal articles revealed six critical themes: product development, healthcare, body shape, anthropometric measurement, avatar creation, and body image. Three-dimensional body scanning technology is used to design and develop ergonomically coherent and fit products. In addition to its application in clothing, footwear, and furniture, its non-invasive and rapid image-capturing capabilities make it an attractive tool for clinical diagnostics and evaluations in healthcare. Given the exponential growth of digital interfaces, 3D avatars and body forms have gained popularity, and scanners facilitate their growth and adoption. The creation of anthropometric databases for various populations, from children to boomers and from adolescents to pregnant women, has been made possible with body scanning technology and has been helpful in several applications. This review highlights the growing importance of 3D body scanning technology in various contexts and provides a foundation for researchers and practitioners seeking to understand its utility and implications. Full article
(This article belongs to the Section Manufacturing Technology)
Show Figures

Figure 1

26 pages, 4923 KiB  
Review
Advancements in Clothing Thermal Comfort for Cold Intolerance
by Amare Abuhay, Melkie Getnet Tadesse, Baye Berhanu, Benny Malengier and Lieva Van Langenhove
Fibers 2025, 13(2), 13; https://doi.org/10.3390/fib13020013 - 31 Jan 2025
Viewed by 2019
Abstract
Due to constantly shifting environmental and personal circumstances, humans have a wide range of thermal comfort needs. Cold intolerance (CI) is a personalized thermoregulation disorder characterized by a persistently cold-feeling problem, regardless of weather conditions. Improvements in clothing thermal comfort can help maintain [...] Read more.
Due to constantly shifting environmental and personal circumstances, humans have a wide range of thermal comfort needs. Cold intolerance (CI) is a personalized thermoregulation disorder characterized by a persistently cold-feeling problem, regardless of weather conditions. Improvements in clothing thermal comfort can help maintain proper insulation levels, hence reducing excess heat loss brought on by thermoregulation disorders since the wearer’s thermal comfort is impacted by controllable environmental and personal factors. Despite extensive research on cold-proof clothing, no studies have examined the current status of cold protective clothing systems when taking individual considerations into account, particularly those who use them and have cold sensitivity. There is a significant study gap in research on cold intolerance discomfort and advancements in appropriate cold protection apparel applied to individuals with thermoregulation disorders. Accordingly, this paper reviews the occurrence and severity of cold intolerance and its comfort challenges. It also addresses recent developments in cold protective clothing design, aimed at opening pathways for further investigation into adopting this cutting-edge technology for cold intolerance wear design. This review also aims to clarify the existing opportunities for enhancing the thermal insulation capabilities and other comfort factors of cold protection apparel, which are conducted during the stages of garment design and clothing material/textile manufacture. A thorough assessment of the research on introducing novel surface finishing methods in the pretreatment section and modifying the structural properties of garment materials at the fiber/yarn or weaving stage is conducted. Furthermore, we systematically discuss the potential design solutions regarding fit and size as well as stitching technologies during garment development for thermal insulation enhancement of cold protective clothing design. Full article
Show Figures

Figure 1

18 pages, 3083 KiB  
Article
The TAXI Method: Reducing Fabric Waste with Recognizable Silhouettes in Sustainable Women’s Clothing
by Franka Karin, Blaženka Brlobašić Šajatović and Irena Šabarić Škugor
Sustainability 2025, 17(2), 698; https://doi.org/10.3390/su17020698 - 17 Jan 2025
Viewed by 1111
Abstract
The problem of textile waste generated in production processes poses new challenges for manufacturers. For this reason, an approach to clothing design has been developed that takes into account aspects of sustainable development and the zero-waste concept. The paper presents the development of [...] Read more.
The problem of textile waste generated in production processes poses new challenges for manufacturers. For this reason, an approach to clothing design has been developed that takes into account aspects of sustainable development and the zero-waste concept. The paper presents the development of “T” and “X” silhouettes for women’s dresses according to the proposed new method. The existing basic cuts of women’s dresses were modeled to obtain “T” and “X” basic silhouettes for women’s dresses, and we compare the reduction in losses between the cuts using the newly proposed TAXI method and the TAXI method according to the proposed design. The use of pattern losses based on the pattern of the basic dress cut provides innovative design solutions according to the TAXI method by applying structural elements that adjust the shape of the basic silhouettes of women’s dresses. Fabric utilization using the basic “T” silhouette cut model is reduced to 75%. The TAXI method improves fabric utilization, achieving 75% fabric use with the basic “T” silhouettes and up to 99.8% with modifications. The fabric utilization of the basic “X” silhouette according to the proposed TAXI design method is 99.8%, which is 32.5% higher than the fabric utilization according to the basic pattern. With this comprehensive concept based on the principles of sustainability, the proposed TAXI design method has been adapted for the maximum possible fabric utilization, esthetic quality and fit, while retaining the recognizable silhouette of the garment. Full article
Show Figures

Figure 1

11 pages, 1231 KiB  
Article
Impact of Self-Contained Breathing Apparatus on Air Gaps in Structural Firefighting Personal Protective Clothing
by Josephine Bolaji and Meredith McQuerry
Appl. Sci. 2025, 15(1), 6; https://doi.org/10.3390/app15010006 - 24 Dec 2024
Viewed by 896
Abstract
The self-contained breathing apparatus (SCBA) is an integral part of the structural firefighting personal protective equipment (PPE) ensemble. However, when donned, it adds significant weight and restriction, interfering with the fit of the turnout suit and the ventilation within the clothing system. This [...] Read more.
The self-contained breathing apparatus (SCBA) is an integral part of the structural firefighting personal protective equipment (PPE) ensemble. However, when donned, it adds significant weight and restriction, interfering with the fit of the turnout suit and the ventilation within the clothing system. This may result in a reduction of air gaps within the clothing microclimate, quickening the onset of heat strain. Therefore, the purpose of this study was to assess the impact of the SCBA on air gaps in structural firefighting turnout suits. Nine active-duty male firefighter participants were scanned in a three-dimensional body scanner in four garment configurations (compression, base layers, turnout suit, and turnout with SCBA). Torso volume, surface area, and air gaps were calculated alongside ease measurements. Findings demonstrated a 59% increase in torso volume when donning the turnout suit over base layers compared to a 1.2% reduction in torso volume when donning the SCBA. The change in torso air gap volume and distance were also found to be negligible when donning the SCBA. This study lays the foundation for full systems ensemble research needed to better understand how the design, weight, and fit of the SCBA impacts the thermal comfort, mobility, and protection of structural firefighters. Full article
(This article belongs to the Special Issue Innovative Functional Textiles and Their Applications)
Show Figures

Figure 1

30 pages, 4599 KiB  
Review
Advances in Wearable Biosensors for Healthcare: Current Trends, Applications, and Future Perspectives
by Dang-Khoa Vo and Kieu The Loan Trinh
Biosensors 2024, 14(11), 560; https://doi.org/10.3390/bios14110560 - 18 Nov 2024
Cited by 29 | Viewed by 18983
Abstract
Wearable biosensors are a fast-evolving topic at the intersection of healthcare, technology, and personalized medicine. These sensors, which are frequently integrated into clothes and accessories or directly applied to the skin, provide continuous, real-time monitoring of physiological and biochemical parameters such as heart [...] Read more.
Wearable biosensors are a fast-evolving topic at the intersection of healthcare, technology, and personalized medicine. These sensors, which are frequently integrated into clothes and accessories or directly applied to the skin, provide continuous, real-time monitoring of physiological and biochemical parameters such as heart rate, glucose levels, and hydration status. Recent breakthroughs in downsizing, materials science, and wireless communication have greatly improved the functionality, comfort, and accessibility of wearable biosensors. This review examines the present status of wearable biosensor technology, with an emphasis on advances in sensor design, fabrication techniques, and data analysis algorithms. We analyze diverse applications in clinical diagnostics, chronic illness management, and fitness tracking, emphasizing their capacity to transform health monitoring and facilitate early disease diagnosis. Additionally, this review seeks to shed light on the future of wearable biosensors in healthcare and wellness by summarizing existing trends and new advancements. Full article
(This article belongs to the Special Issue Artificial Skins and Wearable Biosensors for Healthcare Monitoring)
Show Figures

Figure 1

15 pages, 7533 KiB  
Article
Enhancing Force Absorption, Stress–Strain and Thermal Properties of Weft-Knitted Inlay Spacer Fabric Structures for Apparel Applications
by Mei-Ying Kwan, Yi-Fan Tu, Kit-Lun Yick, Joanne Yip, Nga Wun Li, Annie Yu and Ka-Wai Lo
Polymers 2024, 16(21), 3031; https://doi.org/10.3390/polym16213031 - 29 Oct 2024
Cited by 2 | Viewed by 1501
Abstract
The pursuit of materials that offer both wear comfort and protection for functional and protective clothing has led to the exploration of weft-knitted spacer structures. Traditional cushioning materials such as spacer fabrics and laminated foam often suffer from deformation under compression stresses, thus [...] Read more.
The pursuit of materials that offer both wear comfort and protection for functional and protective clothing has led to the exploration of weft-knitted spacer structures. Traditional cushioning materials such as spacer fabrics and laminated foam often suffer from deformation under compression stresses, thus compromising their protective properties. This study investigates the enhancement of the force absorption, stress–strain, and thermal properties of weft-knitted spacer fabrics with inlays. Surface yarns with superior stretchability and thermal properties are used and combined with elastic yarns in various patterns to fabricate nine different inlay samples. The mechanical and thermal properties of these samples are systematically analyzed, including their compression, stretchability, thermal comfort, and surface properties. The results show that the inlay spacer fabric exhibits superior compression properties and thermal conductivity compared to traditional laminated foam and spacer fabrics while maintaining stretchability, thus providing better performance than traditional fabrics for protective clothing and wearable cushioning products. This study further confirms that the type of inlay yarn and inlay structure are crucial factors that significantly influence the thermal, tensile, and compressive properties of the fabric. This research provides valuable insights into the design and development of advanced textile structures to improve wear comfort and protection in close-fitting apparel applications. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

14 pages, 41016 KiB  
Article
Heat and Moisture Transfer Depending on 3D-Printed Thermoplastic Polyurethane and Ethylene-Vinyl Acetate Foam and the Presence of Holes for 3D Printing Clothing Development
by Sunghyun Kwon, Sungeun Kwon, Heeran Lee and Murali Subramaniyam
Polymers 2024, 16(12), 1684; https://doi.org/10.3390/polym16121684 - 13 Jun 2024
Cited by 1 | Viewed by 1426
Abstract
Recently, clothing development 3D printing and the evaluation of its physical characteristics have been explored. However, few studies have tackled thermal comfort, which is a major contributor to the wearers’ comfort. Therefore, this study was designed to suggest effective materials and hole sizes [...] Read more.
Recently, clothing development 3D printing and the evaluation of its physical characteristics have been explored. However, few studies have tackled thermal comfort, which is a major contributor to the wearers’ comfort. Therefore, this study was designed to suggest effective materials and hole sizes for clothing obtained by 3D printing to maintain a comfortable clothing environment. In particular, two main variables, namely five different materials and three-hole sizes, were analyzed. All samples were placed on a hot plate (36 °C), and their surface temperature and humidity were measured for 10 min. The samples with only thermoplastic polyurethane (TPU) achieved the largest temperature change of 3.2~4.8 °C, whereas those with ethylene-vinyl acetate (EVA) foam exhibited the lowest temperature change of −0.1~2.0 °C. Similarly, the samples with only TPU showed the greatest humidity change of −0.7~−5.5%RH. Moreover, the hole size had a larger effect on humidity change than material type. The samples with large holes achieved the largest humidity change of −4.4%RH, whereas the samples without holes had the smallest humidity change of −1.5%RH after 10 min (p < 0.001). Based on these results, various combinations of materials and hole sizes should be considered to fit the purpose of 3D printing clothing. Full article
Show Figures

Figure 1

16 pages, 4170 KiB  
Article
Tailoring Garment Fit for Personalized Body Image Enhancement: Insights from Digital Fitting Research
by Jiayin Li, Xing Su, Jiahao Liang, P. Y. Mok and Jintu Fan
J. Theor. Appl. Electron. Commer. Res. 2024, 19(2), 942-957; https://doi.org/10.3390/jtaer19020049 - 22 Apr 2024
Cited by 1 | Viewed by 3983
Abstract
In the context of the Fashion Apparel Industry 4.0, a transformative evolution is directed towards the Online Apparel Mass Customization (OAMC) strategy, which provides efficient and personalized apparel product solutions to consumers. A critical challenge within this customization process is the determination of [...] Read more.
In the context of the Fashion Apparel Industry 4.0, a transformative evolution is directed towards the Online Apparel Mass Customization (OAMC) strategy, which provides efficient and personalized apparel product solutions to consumers. A critical challenge within this customization process is the determination of sizes. While existing research addresses comfort evaluation in relation to wearer and garment fit, little attention has been given to how garment fit influences the wearer’s body image, which is also an important purchase consideration. This study investigates the impact of garment fit on the wearer’s body scale perception using quantitative research design. A digital dataset of avatars, clothed in varying sizes of T-shirts, were created for the body scale perception experiment, and an Artificial Neural Network (ANN) model was developed to predict the effect of T-shirt fit on body image. With only a small number of garments and body measurements as inputs, the ANN model can accurately predict the body scales of the clothed persons. It was found that the effect of apparel fit on body image varies depending on the wearer’s gender, body size, and shape. This model can be applied to enhance the online garment shopping experience with respect to personalized body image enhancement. Full article
Show Figures

Figure 1

16 pages, 5308 KiB  
Article
Efficient Model-Based Anthropometry under Clothing Using Low-Cost Depth Sensors
by Byoung-Keon D. Park, Hayoung Jung, Sheila M. Ebert, Brian D. Corner and Matthew P. Reed
Sensors 2024, 24(5), 1350; https://doi.org/10.3390/s24051350 - 20 Feb 2024
Cited by 8 | Viewed by 2016
Abstract
Measuring human body dimensions is critical for many engineering and product design domains. Nonetheless, acquiring body dimension data for populations using typical anthropometric methods poses challenges due to the time-consuming nature of manual methods. The measurement process for three-dimensional (3D) whole-body scanning can [...] Read more.
Measuring human body dimensions is critical for many engineering and product design domains. Nonetheless, acquiring body dimension data for populations using typical anthropometric methods poses challenges due to the time-consuming nature of manual methods. The measurement process for three-dimensional (3D) whole-body scanning can be much faster, but 3D scanning typically requires subjects to change into tight-fitting clothing, which increases time and cost and introduces privacy concerns. To address these and other issues in current anthropometry techniques, a measurement system was developed based on portable, low-cost depth cameras. Point-cloud data from the sensors are fit using a model-based method, Inscribed Fitting, which finds the most likely body shape in the statistical body shape space and providing accurate estimates of body characteristics. To evaluate the system, 144 young adults were measured manually and with two levels of military ensembles using the system. The results showed that the prediction accuracy for the clothed scans remained at a similar level to the accuracy for the minimally clad scans. This approach will enable rapid measurement of clothed populations with reduced time compared to manual and typical scan-based methods. Full article
(This article belongs to the Special Issue Kinect Sensor and Its Application)
Show Figures

Figure 1

19 pages, 7840 KiB  
Article
Cluster Size Intelligence Prediction System for Young Women’s Clothing Using 3D Body Scan Data
by Zhengtang Tan, Shuang Lin and Zebin Wang
Mathematics 2024, 12(3), 497; https://doi.org/10.3390/math12030497 - 5 Feb 2024
Cited by 4 | Viewed by 2740
Abstract
This study adopts a data-driven methodology to address the challenge of garment fitting for individuals with diverse body shapes. Focusing on young Chinese women aged 18–25 from Central China, we utilized the German VITUS SMART LC3 3D body scanning technology to measure 62 [...] Read more.
This study adopts a data-driven methodology to address the challenge of garment fitting for individuals with diverse body shapes. Focusing on young Chinese women aged 18–25 from Central China, we utilized the German VITUS SMART LC3 3D body scanning technology to measure 62 body parts pertinent to fashion design on a sample of 220 individuals. We then employed a hybrid approach, integrating the circumference difference classification method with the characteristic value classification method, and applied the K-means clustering algorithm to categorize these individuals into four distinct body shape groups based on cluster center analysis. Building upon these findings, we formulated specific linear regression models for key body parts associated with each body shape category. This led to the development of an intelligent software capable of automatically calculating the dimensions of 28 body parts and accurately determining the body shape type for young Central Chinese women. Our research underscores the significant role of intelligent predictive systems in the realm of fashion design, particularly within a data-driven framework. The system we have developed offers precise body measurements and classification outcomes, empowering businesses to create garments that more accurately conform to the wearer’s body, thus enhancing both the fit and aesthetic value of the clothing. Full article
Show Figures

Figure 1

17 pages, 2890 KiB  
Article
Facile Preparation of Polyacrylonitrile-Based Activated Carbon Fiber Felts for Effective Adsorption of Dipropyl Sulfide
by Tianhao Zhang, Yafang He, Shiqi Hu, Jianlong Ge, Tianye Chen, Haoru Shan, Tao Ji, Decheng Yu and Qixia Liu
Polymers 2024, 16(2), 252; https://doi.org/10.3390/polym16020252 - 16 Jan 2024
Cited by 6 | Viewed by 1797
Abstract
Activated carbon fibers (ACFs) derived from various polymeric fibers with the characteristics of a high specific surface area, developed pore structure, and good flexibility are promising for the new generation of chemical protection clothing. In this paper, a polyacrylonitrile-based ACF felt was prepared [...] Read more.
Activated carbon fibers (ACFs) derived from various polymeric fibers with the characteristics of a high specific surface area, developed pore structure, and good flexibility are promising for the new generation of chemical protection clothing. In this paper, a polyacrylonitrile-based ACF felt was prepared via the process of liquid phase pre-oxidation, along with a one-step carbonization and chemical activation method. The obtained ACF felt exhibited a large specific surface area of 2219.48 m2/g and pore volume of 1.168 cm3/g, as well as abundant polar groups on the surface. Owing to the developed pore structure and elaborated surface chemical property, the ACF felt possessed an intriguing adsorption performance for a chemical warfare agent simulant dipropyl sulfide (DPS), with the highest adsorption capacity being 202.38 mg/g. The effects of the initial concentration of DPS and temperature on the adsorption performance of ACF felt were investigated. Meanwhile, a plausible adsorption mechanism was proposed based on the kinetic analysis and fitting of different adsorption isotherm models. The results demonstrated that the adsorption process of DPS onto ACF felt could be well fitted with a pseudo-second-order equation, indicating a synergistic effect of chemical adsorption and physical adsorption. We anticipate that this work could be helpful to the design and development of advanced ACF felts for the application of breathable chemical protection clothing. Full article
Show Figures

Figure 1

24 pages, 5174 KiB  
Article
Revolutionizing the Garment Industry 5.0: Embracing Closed-Loop Design, E-Libraries, and Digital Twins
by Semih Donmezer, Pinar Demircioglu, Ismail Bogrekci, Gokcen Bas and Muhammet Numan Durakbasa
Sustainability 2023, 15(22), 15839; https://doi.org/10.3390/su152215839 - 10 Nov 2023
Cited by 18 | Viewed by 3476
Abstract
This study presents an innovative approach for modernizing the garment industry through the fusion of digital human modeling (DHM), virtual modeling for fit sizing, ergonomic body-size data, and e-library resources. The integration of these elements empowers manufacturers to revolutionize their clothing design and [...] Read more.
This study presents an innovative approach for modernizing the garment industry through the fusion of digital human modeling (DHM), virtual modeling for fit sizing, ergonomic body-size data, and e-library resources. The integration of these elements empowers manufacturers to revolutionize their clothing design and production methods, leading to the delivery of unparalleled fit, comfort, and personalization for a wide range of body shapes and sizes. DHM, known for its precision in representing human bodies virtually and integrating anthropometric data, including ergonomic measurements, enhances the shopping experience by providing valuable insights. Consumers gain access to the knowledge necessary for making tailored clothing choices, thereby enhancing the personalization and satisfaction of their shopping experience. The incorporation of e-library resources takes the garment design approach to a data-driven and customer-centric level. Manufacturers can draw upon a wealth of information regarding body-size diversity, fashion trends, and customer preferences, all sourced from e-libraries. This knowledge supports the creation of a diverse range of sizes and styles, promoting inclusivity and relevance. Beyond improving garment fit, this comprehensive integration streamlines design and production processes by reducing the reliance on physical prototypes. This not only enhances efficiency but also contributes to environmental responsibility, fostering a more sustainable and eco-friendly future for the garment industry and embracing the future of fashion, where technology and data converge to create clothing that authentically fits, resonates with consumers, and aligns with the principles of sustainability. This study developed the mobile application integrating with the information in cloud database in order to present the best-suited garment for the user. Full article
(This article belongs to the Special Issue Sustainable Production & Operations Management)
Show Figures

Figure 1

21 pages, 5582 KiB  
Article
Experimental Study on the Axial Compression Performance of Glued Wood Hollow Cylinders Reinforced with BFRP
by Ruiyue Liu, Zhenzhen Wu, Quan Peng, Yu Zhang and Jiejun Wang
Sustainability 2022, 14(24), 16827; https://doi.org/10.3390/su142416827 - 15 Dec 2022
Cited by 1 | Viewed by 1694
Abstract
The present paper investigates the impact of basalt fiber reinforced polymer (BFRP) on the axial compression performance of glued wood hollow cylinders. This study aims to facilitate the application of BFRP in the field of structural reinforcement of glued wood hollow columns. Ten [...] Read more.
The present paper investigates the impact of basalt fiber reinforced polymer (BFRP) on the axial compression performance of glued wood hollow cylinders. This study aims to facilitate the application of BFRP in the field of structural reinforcement of glued wood hollow columns. Ten glued laminated wood hollow columns of the same size were designed and placed into five groups (ZC1 and ZRC2 to ZRC5), of which one group (ZC1), with a total of two pure wooden columns, was not arranged with BFRP, and the remaining two wooden columns in each group were arranged with BFRP at different distances. The destruction mode, ultimate load capacity, load–displacement curve, load–strain curve, and ultimate load capacity–total area of the BFRP paste curve of each specimen were obtained by conducting axial compression tests on five groups of wood columns reinforced with different basalt fiber cloths, which revealed the damage mechanism, the relationship between the ultimate load capacity and total area of BFRP paste, and pointed out the most effective area ratio. The test results show that the destruction mode of axially pressed, glued, laminated wood hollow columns is typical compression buckling damage, mainly manifested as follows: the wood at the middle or end of the specimen under pressure first buckles; then, with the increase in load, the specimen is crushed; at this time, the maximum ultimate bearing capacity of each specimen is in the range of 296.77~375.85 kN, the maximum longitudinal displacement is in the range of 2.77~3.38 mm, and longitudinal cracks appear at the end. It is worth noting that the growth rate of the ultimate bearing capacity varies with the increase in the total area of the BFRP paste. When the total area of the BFRP paste is less than a 3.2 × 105 mm2 range value, the growth rate of the ultimate bearing capacity is faster, and then, the growth rate gradually becomes slower. The optimum BFRP paste area ratio can be taken as k = 0.59. The ultimate bearing capacity after reinforcement increases from 11.06% to 26.65% compared with the pure wood column. According to GB50005-2017, “wood structure design standards” improve the hollow wood column bearing capacity calculation method and fit the BFRP reinforced hollow wood column’s ultimate bearing capacity calculation formula; the errors are within ±10%, which can provide a reference for the practical application of BFRP in the field of reinforcing glued wood hollow cylindrical structures. Full article
Show Figures

Figure 1

Back to TopTop