Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = circulating biochar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1113 KB  
Article
In Vitro and In Vivo Comparisons of Activated Charcoal and Biochar as Dietary Treatments for Controlling Boar Taint
by Melissa Parent, Christine Bone, Lee-Anne Huber and E. James Squires
Biomolecules 2025, 15(9), 1257; https://doi.org/10.3390/biom15091257 - 30 Aug 2025
Viewed by 584
Abstract
Activated charcoal (AC) is an adsorbent that can prevent the accumulation of boar taint-causing compounds in the fat, but is not an approved dietary additive for livestock animals. Biochar (BC) is a similar feed-approved charcoal adsorbent that may be an alternative dietary additive [...] Read more.
Activated charcoal (AC) is an adsorbent that can prevent the accumulation of boar taint-causing compounds in the fat, but is not an approved dietary additive for livestock animals. Biochar (BC) is a similar feed-approved charcoal adsorbent that may be an alternative dietary additive to control boar taint. This study was conducted to evaluate AC and BC, both in vitro and in vivo, as dietary treatments for boar taint. This was done by first conducting an in vitro binding study to compare binding between AC, BC, and spent filter aid (SFA) for boar taint compounds. Results of the in vitro study showed that both AC and BC had significantly higher Bmax for androstenone (AC: 97.2 ± 0.4% and BC: 84.5 ± 0.8%) and skatole (AC: 106.1 ± 0.2%, BC: 113.2 ± 0.7%), compared to SFA with a Bmax of 50.5 ± 0.2% for androstenone and 97.1 ± 5.3% for skatole. AC and BC were then tested as feed additives in finisher diets fed to slaughter weight boars. Both adsorbents were successful at preventing boar taint in a subset of animals (83%), while having no effect on plasma levels of estrone sulfate or androstenone, and growth and performance parameters. These findings suggest that BC is a suitable alternative for AC as a dietary additive to prevent boar taint. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

20 pages, 4797 KB  
Article
Effects of Recycled Biochar Addition on Methane Production Performance in Anaerobic Fermentation of Pig and Cow Manure
by Jianling Xu, Xinyu Wang, Jitian Sun, Wenqiu Zhang, Ruixiang Huang and Yue Chen
Fermentation 2025, 11(7), 372; https://doi.org/10.3390/fermentation11070372 - 28 Jun 2025
Cited by 1 | Viewed by 687
Abstract
Anaerobic fermentation has been recognized as an effective approach to harness livestock manure resources. In the present study, cow dung and pig manure were employed as fermentation substrates. These were subjected to co-fermentation experiments with sodium hydroxide-pretreated corn straw. Additionally, biochar derived from [...] Read more.
Anaerobic fermentation has been recognized as an effective approach to harness livestock manure resources. In the present study, cow dung and pig manure were employed as fermentation substrates. These were subjected to co-fermentation experiments with sodium hydroxide-pretreated corn straw. Additionally, biochar derived from artificial wetland substrate was introduced as a conditioner to investigate the impact of varying addition quantities on the pretreated anaerobic co-fermentation process. Our findings indicate that for the anaerobic co-fermentation of cow dung, an optimal addition of 4% biochar reduced the gas production cycle by 35–45%, although the total methane yield remained relatively unchanged. Conversely, in the anaerobic co-fermentation of pig manure, a 6% biochar addition proved most effective. This adjustment, while not significantly altering the gas production cycle, led to a marked increase in the total methane content, ranging from 18.53% to 150.18%. The PCA analysis results of the cow manure experimental group showed a significant positive correlation between the addition of biochar and ammonia nitrogen. For the pig manure fermentation system, the addition of biochar can increase the final methane production potential, from 47.43 mL/g VS to 122.24 mL/g VS in the P2C experimental group. Biochar mainly regulates the activity of anaerobic bacteria through changes in pH and conductivity, thereby affecting methane production. Full article
(This article belongs to the Special Issue Biogas and Biochemical Production from Anaerobic Digestion)
Show Figures

Figure 1

18 pages, 4012 KB  
Article
Synthesis of Hydroxyapatite Mulberry Stem Biochar Composites for Efficient Pb(II) Adsorption from Aqueous Solutions
by Dunqiu Wang, Xinyu Zhou, Meina Liang and Zimeng Wu
Water 2025, 17(9), 1389; https://doi.org/10.3390/w17091389 - 5 May 2025
Viewed by 762
Abstract
In this study, two biochar composites, namely hydroxyapatite/mulberry stem biochar (HMp) and magnesium-doped HMp (Mg0.1-HMp), were prepared using mulberry stem as the major raw material using the sol–gel process. Characterization and batch experiments were carried out on HMp and Mg0.1-HMp to investigate the [...] Read more.
In this study, two biochar composites, namely hydroxyapatite/mulberry stem biochar (HMp) and magnesium-doped HMp (Mg0.1-HMp), were prepared using mulberry stem as the major raw material using the sol–gel process. Characterization and batch experiments were carried out on HMp and Mg0.1-HMp to investigate the Pb(II) adsorption mechanism and the factors affecting the adsorption, respectively. The results indicated that carboxylic compounds, phenols, and carbonyl functional groups were formed on the surfaces of HMp and Mg0.1-HMp. At an optimal pH of 5, an adsorption period of 6 h was achieved at an initial Pb(II) concentration of 100 mg/L and adsorbent quantity of 2 g/L. The maximum Pb(II) adsorption capacities of the HMp and Mg0.1-HMp were 303.03 and 312.50 mg/g, respectively, at 25 °C. The maximum Pb(II) adsorption capacity of Mg0.1-HMp was 2.55 times more than that of mulberry stem biochar (MBC). The adsorption of Pb(II) by HMp and Mg0.1-HMp is consistent with the Langmuir isotherm and pseudo-second-order kinetic models, demonstrating a spontaneous, endothermic, and irreversible process dominated by monolayer chemical adsorption. These results show that the mechanisms of Pb(II) by Mg0.1-HMp mainly involved electrostatic interaction, complexation, precipitation, and ion exchange. Full article
(This article belongs to the Special Issue Adsorption Technologies in Wastewater Treatment Processes)
Show Figures

Graphical abstract

18 pages, 5579 KB  
Article
Bio-Adsorbents Derived from Allium cepa var. aggregatum Waste for Effective Cd Removal and Immobilization in Black Soil
by Yaru Hou, Jilong Lu, Yawen Lai, Qiaoqiao Wei, Zhiyi Gou and Xiaoxiao Zou
Agriculture 2025, 15(4), 427; https://doi.org/10.3390/agriculture15040427 - 18 Feb 2025
Viewed by 544
Abstract
The black soil in northeast China plays an important role in coping with global climate change. However, long-term predatory production methods and the excessive application of pesticides and fertilizers to respond to the growing demand resulted in a severe contamination of the black [...] Read more.
The black soil in northeast China plays an important role in coping with global climate change. However, long-term predatory production methods and the excessive application of pesticides and fertilizers to respond to the growing demand resulted in a severe contamination of the black soil with Cd, leading to a decrease in the properties of black soil. In this study, we propose the preparation of bio-adsorbents including a natural bio-adsorbent (AW), a modified bio-adsorbent (AM), biochar cracking at 300, 500, and 700 °C (C300, C500, C700), modified biochar (CM), and a magnetic bio-adsorbent particle (MBP) using the waste of black soil autotrophic specialty crop multiplier onion (Allium cepa var. aggregatum) to investigate the adsorption and immobilization of Cd in contaminated soil. The results show that the application of bio-adsorbents resulted in a 17.29–35.67% and 18.24–30.76% decrease in effective and total Cd content in soil after dry–wet–freeze circulation. Exchangeable Cd in soil decreased and gradually transformed to more stable fractions, with a reduction in Cd bioavailability after remediation. Interestingly, an increase in plant uptake of Cd was observed in the biochar-treated group for a short period, causing a 93.72% increase in Cd concentration in plants after the application of C700, which can be applied concomitantly with hyperaccumulator plants harvested multiple times annually by encouraging higher Cd uptake by plants. Additionally, the rich content of humic acid (HA) in black soil was capable of promoting the immobilization of Cd in soil, enhancing the Cd resistance of black soil. Bio-adsorbents derived from Allium cepa var. aggregatum waste can be applied as a new type of green and effective material for the long-term remediation of Cd in the soil at a lower cost. Full article
Show Figures

Figure 1

43 pages, 2332 KB  
Review
The Importance of the Targeted Design of Biochar Physicochemical Properties in Microbial Inoculation for Improved Agricultural Productivity—A Review
by Angelika Gryta, Kamil Skic, Agnieszka Adamczuk, Anna Skic, Magdalena Marciniak, Grzegorz Józefaciuk and Patrycja Boguta
Agriculture 2024, 14(1), 37; https://doi.org/10.3390/agriculture14010037 - 24 Dec 2023
Cited by 22 | Viewed by 5952
Abstract
Biochar has great potential as a soil conditioner and as a carrier of beneficial microorganisms that support the removal of pollutants, influence the circulation of nutrients, and support plant growth. This review summarizes and discusses factors shaping the physicochemical properties of biochar, including [...] Read more.
Biochar has great potential as a soil conditioner and as a carrier of beneficial microorganisms that support the removal of pollutants, influence the circulation of nutrients, and support plant growth. This review summarizes and discusses factors shaping the physicochemical properties of biochar, including feedstock, pyrolysis conditions, and accompanying processes used as post-pyrolysis modification to improve the functionality of biochar. Key physical and chemical properties such as high porosity and specific surface area, nutrient content, pH, and biochar functional groups are discussed in detail to show biochar’s potential as a carrier for microorganisms. This review also discusses and summarizes biological indicators that allow for assessing the quality and efficiency of the microbiological modifiers. Finally, this paper presents the benefits and limitations of biochar application to agriculture and provides recommendations for future research to improve the quality and expand the applicability of biochar-based inoculants. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Graphical abstract

20 pages, 3852 KB  
Article
Development of a Dual-Chamber Pyrolizer for Biochar Production from Agricultural Waste in Sri Lanka
by W. A. M. A. N. Illankoon, Chiara Milanese, Anurudda Karunarathna Karunarathna, A. M. Y. W. Alahakoon, Puhulwella G. Rathnasiri, Maria Medina-Llamas, Maria Cristina Collivignarelli and Sabrina Sorlini
Energies 2023, 16(4), 1819; https://doi.org/10.3390/en16041819 - 11 Feb 2023
Cited by 10 | Viewed by 6131
Abstract
This study investigates the design and development of a pyrolysis reactor for batch-type biochar production from rice husks. The main objective is to develop an appropriate technology to regulate pyrolysis temperature and biomass residence time that can be easily operated under field and [...] Read more.
This study investigates the design and development of a pyrolysis reactor for batch-type biochar production from rice husks. The main objective is to develop an appropriate technology to regulate pyrolysis temperature and biomass residence time that can be easily operated under field and household conditions with minimal operational and technical requirements. The designed novel dual-chamber reactor comprises two concentrical metal cylinders and a syngas circulation system. The outer cylinder is for energy generation and the inner one is for pyrolysis. Temperature profiles, energy exchanges, syngas production, and the physicochemical characteristics of biochar were obtained to determine the performance of the reactor. Different trials were carried out to obtain different pyrolysis temperatures under constant amounts of feedstock and fuel. The temperature was monitored continuously at three predetermined reactor heights, the temperature profile varied from 380 °C to 1000 °C. The biochar yield was 49% with an average production rate of 1.8 ± 0.2 kg h−1. The reactor consumed 11 ± 0.1 kg of rice husk as feedstock and 6 ± 1 kg h−1 of wood as fuel. The gaseous products from the pyrolysis were CH4, CO2, H2, CO, and CnHm, which contributed 23.3 ± 2.3 MJ m−3 of energy as fuel for the pyrolysis process. The specific surface area of the biochar was 182 m2 g−1. The achieved operational capacity and thermal efficiency of the reactor show biochar production is a suitable option to convert discarded biomass into a value-added product that can potentially be used in several environmental applications. Full article
Show Figures

Graphical abstract

21 pages, 2976 KB  
Article
Environmental Sustainability of Waste Circulation Models for Sugarcane Biorefinery System in Thailand
by Thapat Silalertruksa, Chanipa Wirodcharuskul and Shabbir H. Gheewala
Energies 2022, 15(24), 9515; https://doi.org/10.3390/en15249515 - 15 Dec 2022
Cited by 23 | Viewed by 4675
Abstract
Sugarcane leaves and trash burning during harvesting, and vinasse management, are major challenges of the Thai sugarcane industry. Identification of the appropriate valorization pathways for both the biomass waste streams using the sugarcane biorefinery concept is necessary. This study aims to assess the [...] Read more.
Sugarcane leaves and trash burning during harvesting, and vinasse management, are major challenges of the Thai sugarcane industry. Identification of the appropriate valorization pathways for both the biomass waste streams using the sugarcane biorefinery concept is necessary. This study aims to assess the environmental sustainability of five CE models, including (1) sugarcane trash for electricity, (2) sugarcane trash to biochar, (3) sugarcane trash as a soil conditioner, (4) vinasse as a bio-fertilizer, and (5) vinasse for power generation. Life cycle assessment has been conducted using the ReCiPE midpoint impact assessment method. The results revealed that all waste utilization scenarios can help reduce the environmental impacts compared to the base case. The utilization of sugarcane leaves and trash for electricity generation brings about the lowest environmental impacts due to the environmental credits from the substitution of Thai grid electricity. The utilization of sugarcane leaves can reduce impacts on climate change, terrestrial acidification, and ozone formation by about 20–104%, 43–61%, and 12–54%. Recycling vinasse as bio-fertilizer and for biogas production for electricity generation can reduce climate change impact by about 28–29%. There is a significant improvement of the avoidance of pre-harvesting burning of sugarcane in the Thai sugar industry, which has led to the big potential of sugarcane leaves biomass utilization. Recommendations to enhance the efficiency of using sugarcane leaves and vinasse are discussed. The integrated waste circulation scenarios on cane leaves and vinasses in the sugar-electricity-ethanol biorefinery shows advancement in the bio-circular-green economy (BCG) aspects for enhancing the environmental sustainability of the Thai sugarcane industry. Full article
(This article belongs to the Special Issue Advanced Technologies for Sustainable Bio-Fuels Production)
Show Figures

Figure 1

19 pages, 1391 KB  
Review
Life Cycle Assessment (LCA) of Biochar Production from a Circular Economy Perspective
by Joana Carvalho, Lucas Nascimento, Margarida Soares, Nádia Valério, André Ribeiro, Luciana Faria, André Silva, Nuno Pacheco, Jorge Araújo and Cândida Vilarinho
Processes 2022, 10(12), 2684; https://doi.org/10.3390/pr10122684 - 13 Dec 2022
Cited by 48 | Viewed by 15226
Abstract
Climate change and environmental sustainability are among the most prominent issues of today. It is increasingly fundamental and urgent to develop a sustainable economy, capable of change the linear paradigm, actively promoting the efficient use of resources, highlighting product, component and material reuse. [...] Read more.
Climate change and environmental sustainability are among the most prominent issues of today. It is increasingly fundamental and urgent to develop a sustainable economy, capable of change the linear paradigm, actively promoting the efficient use of resources, highlighting product, component and material reuse. Among the many approaches to circular economy and zero-waste concepts, biochar is a great example and might be a way to push the economy to neutralize carbon balance. Biochar is a solid material produced during thermochemical decomposition of biomass in an oxygen-limited environment. Several authors have used life cycle assessment (LCA) method to evaluate the environmental impact of biochar production. Based on these studies, this work intends to critically analyze the LCA of biochar production from different sources using different technologies. Although these studies reveal differences in the contexts and characteristics of production, preventing direct comparison of results, a clear trend appears. It was proven, through combining life cycle assessment and circular economy modelling, that the application of biochar is a very promising way of contributing to carbon-efficient resource circulation, mitigation of climate change, and economic sustainability. Full article
(This article belongs to the Special Issue Extraction, Utilization and Conversion of Woody Biomass)
Show Figures

Figure 1

16 pages, 2143 KB  
Article
Insights into Circular Horticulture: Knowledge Diffusion, Resource Circulation, One Health Approach, and Greenhouse Technologies
by Diego Alejandro Salinas-Velandia, Felipe Romero-Perdomo, Stephanie Numa-Vergel, Edwin Villagrán, Pilar Donado-Godoy and Julio Ricardo Galindo-Pacheco
Int. J. Environ. Res. Public Health 2022, 19(19), 12053; https://doi.org/10.3390/ijerph191912053 - 23 Sep 2022
Cited by 19 | Viewed by 3843
Abstract
The integration of the circular economy in agriculture has promoted sustainable innovation in food production systems such as horticulture. The present paper illustrates how horticulture is transitioning to the circular economy. This research field’s performance approaches and trends were assessed through a bibliometric [...] Read more.
The integration of the circular economy in agriculture has promoted sustainable innovation in food production systems such as horticulture. The present paper illustrates how horticulture is transitioning to the circular economy. This research field’s performance approaches and trends were assessed through a bibliometric and text-mining analysis of the literature. Our findings revealed that circular horticulture is a recent research field that is constantly growing. Its approach has been neither systemic nor integrative but fragmented. Bioeconomy, urban agriculture, recycled nutrients, biochar, fertigation, and desalination have been positioned as research hotspots. Vegetables and fruits are the most studied crops. Resource circulation has focused primarily on biowaste recovery to provide benefits such as biofertilizers and linear-substrate substitutes, and on water reuse for the establishment of hydroponic systems. The One Health approach is scarcely explored and, therefore, weakly articulated, wherein the absence of assessment methodologies encompassing the health of ecosystems, animals, and people is a notable limitation. Science-policy interfaces between One Health and food systems need to be improved. Lastly, greenhouse technologies are aligned with bioenergy, sustainable materials, and sensing technologies. Challenges and directions for future research have been raised to promote the redesign of horticultural production systems, integrating long-term circularity. Full article
(This article belongs to the Special Issue Green Environment: Effluent Reuse and Waste Recycling)
Show Figures

Figure 1

42 pages, 8997 KB  
Review
Progress of the Pyrolyzer Reactors and Advanced Technologies for Biomass Pyrolysis Processing
by Mohsin Raza, Abrar Inayat, Ashfaq Ahmed, Farrukh Jamil, Chaouki Ghenai, Salman R. Naqvi, Abdallah Shanableh, Muhammad Ayoub, Ammara Waris and Young-Kwon Park
Sustainability 2021, 13(19), 11061; https://doi.org/10.3390/su131911061 - 7 Oct 2021
Cited by 118 | Viewed by 18874
Abstract
In the future, renewable energy technologies will have a significant role in catering to energy security concerns and a safe environment. Among the various renewable energy sources available, biomass has high accessibility and is considered a carbon-neutral source. Pyrolysis technology is a thermo-chemical [...] Read more.
In the future, renewable energy technologies will have a significant role in catering to energy security concerns and a safe environment. Among the various renewable energy sources available, biomass has high accessibility and is considered a carbon-neutral source. Pyrolysis technology is a thermo-chemical route for converting biomass to many useful products (biochar, bio-oil, and combustible pyrolysis gases). The composition and relative product yield depend on the pyrolysis technology adopted. The present review paper evaluates various types of biomass pyrolysis. Fast pyrolysis, slow pyrolysis, and advanced pyrolysis techniques concerning different pyrolyzer reactors have been reviewed from the literature and are presented to broaden the scope of its selection and application for future studies and research. Slow pyrolysis can deliver superior ecological welfare because it provides additional bio-char yield using auger and rotary kiln reactors. Fast pyrolysis can produce bio-oil, primarily via bubbling and circulating fluidized bed reactors. Advanced pyrolysis processes have good potential to provide high prosperity for specific applications. The success of pyrolysis depends strongly on the selection of a specific reactor as a pyrolyzer based on the desired product and feedstock specifications. Full article
Show Figures

Figure 1

14 pages, 3078 KB  
Article
Purification of Forest Clear-Cut Runoff Water Using Biochar: A Meso-Scale Laboratory Column Experiment
by Elham Kakaei Lafdani, Taija Saarela, Ari Laurén, Jukka Pumpanen and Marjo Palviainen
Water 2020, 12(2), 478; https://doi.org/10.3390/w12020478 - 11 Feb 2020
Cited by 17 | Viewed by 5117
Abstract
Biochar can be an effective sorbent material for removal of nutrients from water due to its high specific surface area, porous structure, and high cation and anion exchange capacity. The aim of this study was to test a biochar reactor and to evaluate [...] Read more.
Biochar can be an effective sorbent material for removal of nutrients from water due to its high specific surface area, porous structure, and high cation and anion exchange capacity. The aim of this study was to test a biochar reactor and to evaluate its efficiency in runoff water purification and consecutive nutrient recycling in clear-cut peatland forests. The goodness of the method was tested in a meso-scale (water volume thousands of liters) reactor experiment by circulating runoff water through wood biochar-filled columns and by determining water nutrient concentrations in the column inlet and outlet. The pseudo-first and second order kinetic models were fitted to the experimental data and the adsorption rate (Kad) and maximum adsorption capacity (Qmax) of the biochar reactor were quantified. The concentration of total nitrogen (TN) decreased by 58% during the 8-week experiment; the majority of TN adsorption occurred within the first 3 days. In addition, NO3-N and NH4-N concentrations decreased below the detection limit in 5 days after the beginning of the experiment. The maximum adsorption capacity of the biochar reactor varied between 0.03–0.04 mg g−1 biochar for NH4-N, and was equal to 0.02 mg g−1 biochar for TN. The results demonstrated that the biochar reactor was not able to adsorb TN when the water TN concentration was below 0.4 mg L−1. These results suggest that a biochar reactor can be a useful and effective method for runoff water purification in clear-cut forests and further development and testing is warranted. Unlike traditional water protection methods in peatland forestry, the biochar reactor can effectively remove NO3-N from water. This makes the biochar reactor a promising water protection tool to be tested in sites where there is the risk of a high rate of nutrient export after forest harvesting or drainage. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

Back to TopTop