Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = cinchona-based catalysts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1619 KiB  
Article
Asymmetric Phase Transfer Catalysed Michael Addition of γ-Butenolide and N-Boc-Pyrrolidone to 4-Nitro-5-styrylisoxazoles
by Diana Salazar Illera, Roberta Pacifico and Mauro F. A. Adamo
Catalysts 2022, 12(6), 634; https://doi.org/10.3390/catal12060634 - 10 Jun 2022
Cited by 3 | Viewed by 2818
Abstract
Herein we report the addition of acidic γ-butenolide and N-Boc-pyrrolidone to 4-nitro-5-styrylisoxazoles, a popular class of cinnamic ester synthetic equivalent. The reactions proceeded under the catalysis of Cinchona-based phase-transfer catalysts. Functionalised γ-butenolides were obtained in good isolated yields and moderate enantioselectivity [...] Read more.
Herein we report the addition of acidic γ-butenolide and N-Boc-pyrrolidone to 4-nitro-5-styrylisoxazoles, a popular class of cinnamic ester synthetic equivalent. The reactions proceeded under the catalysis of Cinchona-based phase-transfer catalysts. Functionalised γ-butenolides were obtained in good isolated yields and moderate enantioselectivity (up to 74% ee). Full article
(This article belongs to the Special Issue Design and Applications of Phase Transfer Catalysis)
Show Figures

Figure 1

13 pages, 3878 KiB  
Perspective
Horizons in Asymmetric Organocatalysis: En Route to the Sustainability and New Applications
by Sandra Ardevines, Eugenia Marqués-López and Raquel P. Herrera
Catalysts 2022, 12(1), 101; https://doi.org/10.3390/catal12010101 - 16 Jan 2022
Cited by 16 | Viewed by 5069
Abstract
Nowadays, the development of new enantioselective processes is highly relevant in chemistry due to the relevance of chiral compounds in biomedicine (mainly drugs) and in other fields, such as agrochemistry, animal feed, and flavorings. Among them, organocatalytic methods have become an efficient and [...] Read more.
Nowadays, the development of new enantioselective processes is highly relevant in chemistry due to the relevance of chiral compounds in biomedicine (mainly drugs) and in other fields, such as agrochemistry, animal feed, and flavorings. Among them, organocatalytic methods have become an efficient and sustainable alternative since List and MacMillan pioneering contributions were published in 2000. These works established the term asymmetric organocatalysis to label this area of research, which has grown exponentially over the last two decades. Since then, the scientific community has attended to the discovery of a plethora of organic reactions and transformations carried out with excellent results in terms of both reactivity and enantioselectivity. Looking back to earlier times, we can find in the literature a few examples where small organic molecules and some natural products could act as effective catalysts. However, with the birth of this type of catalysis, new chemical architectures based on amines, thioureas, squaramides, cinchona alkaloids, quaternary ammonium salts, carbenes, guanidines and phosphoric acids, among many others, have been developed. These organocatalysts have provided a broad range of activation modes that allow privileged interactions between catalysts and substrates for the preparation of compounds with high added value in an enantioselective way. Here, we briefly cover the history of this chemistry, from our point of view, including our beginnings, how the field has evolved during these years of research, and the road ahead. Full article
(This article belongs to the Special Issue Organocatalysis: Advances, Opportunity, and Challenges)
Show Figures

Figure 1

13 pages, 985 KiB  
Article
Efficacy of Selenourea Organocatalysts in Asymmetric Michael Reactions under Standard and Solvent-Free Conditions
by Mariola Zielińska-Błajet, Żaneta A. Mała and Rafał Kowalczyk
Molecules 2021, 26(23), 7303; https://doi.org/10.3390/molecules26237303 - 1 Dec 2021
Cited by 4 | Viewed by 2547
Abstract
By varying the steric and electronic surroundings of the hydrogen-bonding motif, the novel chiral Cinchona-alkaloid based selenoureas were developed. Acting as bifunctional catalysts, they were applied in the Michael reactions of dithiomalonate and nitrostyrene providing chiral adducts with up to 96% ee. [...] Read more.
By varying the steric and electronic surroundings of the hydrogen-bonding motif, the novel chiral Cinchona-alkaloid based selenoureas were developed. Acting as bifunctional catalysts, they were applied in the Michael reactions of dithiomalonate and nitrostyrene providing chiral adducts with up to 96% ee. The asymmetric Michael–-hemiacetalization reaction of benzylidene pyruvate and dimedone, performed with the assistance of 5 mol% of selenoureas, furnished the product with up to 93% ee and excellent yields. The effectiveness of the new hydrogen-bond donors was also proved in solvent-free reactions under ball mill conditions, supporting the sustainability of the devised catalytic protocol. Full article
(This article belongs to the Special Issue In Honor of the 80th Birthday of Professor Janusz Jurczak)
Show Figures

Graphical abstract

47 pages, 19049 KiB  
Review
Regiodivergent Organocatalytic Reactions
by Mayavan Viji, Srinu Lanka, Jaeuk Sim, Chanhyun Jung, Heesoon Lee, Manjunatha Vishwanath and Jae-Kyung Jung
Catalysts 2021, 11(8), 1013; https://doi.org/10.3390/catal11081013 - 22 Aug 2021
Cited by 42 | Viewed by 6090
Abstract
Organocatalysts are abundantly used for various transformations, particularly to obtain highly enantio- and diastereomeric pure products by controlling the stereochemistry. These applications of organocatalysts have been the topic of several reviews. Organocatalysts have emerged as one of the very essential areas of research [...] Read more.
Organocatalysts are abundantly used for various transformations, particularly to obtain highly enantio- and diastereomeric pure products by controlling the stereochemistry. These applications of organocatalysts have been the topic of several reviews. Organocatalysts have emerged as one of the very essential areas of research due to their mild reaction conditions, cost-effective nature, non-toxicity, and environmentally benign approach that obviates the need for transition metal catalysts and other toxic reagents. Various types of organocatalysts including amine catalysts, Brønsted acids, and Lewis bases such as N-heterocyclic carbene (NHC) catalysts, cinchona alkaloids, 4-dimethylaminopyridine (DMAP), and hydrogen bond-donating catalysts, have gained renewed interest because of their regioselectivity. In this review, we present recent advances in regiodivergent reactions that are governed by organocatalysts. Additionally, we briefly discuss the reaction pathways of achieving regiodivergent products by changes in conditions such as solvents, additives, or the temperature. Full article
(This article belongs to the Special Issue Catalytic Organic Transformations/Organic Synthesis)
Show Figures

Graphical abstract

53 pages, 11647 KiB  
Review
Non-Covalent Interactions in Enantioselective Organocatalysis: Theoretical and Mechanistic Studies of Reactions Mediated by Dual H-Bond Donors, Bifunctional Squaramides, Thioureas and Related Catalysts
by Ana Maria Faisca Phillips, Martin H. G. Prechtl and Armando J. L. Pombeiro
Catalysts 2021, 11(5), 569; https://doi.org/10.3390/catal11050569 - 29 Apr 2021
Cited by 43 | Viewed by 8008
Abstract
Chiral bifunctional dual H-bond donor catalysts have become one of the pillars of organocatalysis. They include squaramide, thiosquaramide, thiourea, urea, and even selenourea-based catalysts combined with chiral amines, cinchona alkaloids, sulfides, phosphines and more. They can promote several types of reactions affording products [...] Read more.
Chiral bifunctional dual H-bond donor catalysts have become one of the pillars of organocatalysis. They include squaramide, thiosquaramide, thiourea, urea, and even selenourea-based catalysts combined with chiral amines, cinchona alkaloids, sulfides, phosphines and more. They can promote several types of reactions affording products in very high yields and excellent stereoselectivities in many cases: conjugate additions, cycloadditions, the aldol and Henry reactions, the Morita–Baylis–Hilman reaction, even cascade reactions, among others. The desire to understand mechanisms and the quest for the origins of stereoselectivity, in attempts to find guidelines for developing more efficient catalysts for new transformations, has promoted many mechanistic and theoretical studies. In this review, we survey the literature published in this area since 2015. Full article
(This article belongs to the Special Issue Organocatalysis: Mechanistic Investigations, Design, and Applications)
Show Figures

Graphical abstract

11 pages, 1113 KiB  
Article
ADMET Polymerization of Dimeric Cinchona Squaramides for the Preparation of a Highly Enantioselective Polymeric Organocatalyst
by Mohammad Shahid Ullah, Sadia Afrin Chhanda and Shinichi Itsuno
Catalysts 2020, 10(5), 591; https://doi.org/10.3390/catal10050591 - 25 May 2020
Cited by 4 | Viewed by 3253
Abstract
Under the acyclic diene metathesis (ADMET) reaction condition, the C3-vinyl groups of cinchona alkaloids readily react with each other to form a C-C bond. A novel type of cinchona alkaloid polymers was synthesized from dimeric cinchona squaramides using the Hoveyda-Grubbs’ second-generation catalysts ( [...] Read more.
Under the acyclic diene metathesis (ADMET) reaction condition, the C3-vinyl groups of cinchona alkaloids readily react with each other to form a C-C bond. A novel type of cinchona alkaloid polymers was synthesized from dimeric cinchona squaramides using the Hoveyda-Grubbs’ second-generation catalysts (HG2) by means of ADMET reaction. The chiral polymers, containing cinchona squaramide moieties in their main chains, were subsequently employed as catalysts for the enantioselective Michael reaction to give the corresponding chiral adducts in high yields with excellent enantioselectivity and diastereoselectivity. Both enantiomers from the asymmetric Michael reaction were distinctively prepared while using the polymeric catalysts, possessing pseudoenantiomeric structures. The catalysts were readily recovered from the reaction mixture and recycled several times due to the insolubility of the cinchona-based squaramide polymers. Full article
(This article belongs to the Special Issue Organocatalysis: Advances, Opportunity, and Challenges)
Show Figures

Graphical abstract

15 pages, 2654 KiB  
Article
Comparison of Cinchona Catalysts Containing Ethyl or Vinyl or Ethynyl Group at Their Quinuclidine Ring
by Sándor Nagy, Zsuzsanna Fehér, Gergő Dargó, Júlia Barabás, Zsófia Garádi, Béla Mátravölgyi, Péter Kisszékelyi, Gyula Dargó, Péter Huszthy, Tibor Höltzl, György Tibor Balogh and József Kupai
Materials 2019, 12(18), 3034; https://doi.org/10.3390/ma12183034 - 18 Sep 2019
Cited by 7 | Viewed by 4959
Abstract
Numerous cinchona organocatalysts with different substituents at their quinuclidine unit have been described and tested, but the effect of those saturation has not been examined before. This work presents the synthesis of four widely used cinchona-based organocatalyst classes (hydroxy, amino, squaramide, and thiourea) [...] Read more.
Numerous cinchona organocatalysts with different substituents at their quinuclidine unit have been described and tested, but the effect of those saturation has not been examined before. This work presents the synthesis of four widely used cinchona-based organocatalyst classes (hydroxy, amino, squaramide, and thiourea) with different saturation on the quinuclidine unit (ethyl, vinyl, ethynyl) started from quinine, the most easily available cinchona derivative. Big differences were found in basicity of the quinuclidine unit by measuring the pKa values of twelve catalysts in six solvents. The effect of differences was examined by testing the catalysts in Michael addition reaction of pentane-2,4-dione to trans-β-nitrostyrene. The 1.6–1.7 pKa deviation in basicity of the quinuclidine unit did not result in significant differences in yields and enantiomeric excesses. Quantum chemical calculations confirmed that the ethyl, ethynyl, and vinyl substituents affect the acid-base properties of the cinchona-thiourea catalysts only slightly, and the most active neutral thione forms are the most stable tautomers in all cases. Due to the fact that cinchonas with differently saturated quinuclidine substituents have similar catalytic activity in asymmetric Michael addition application of quinine-based catalysts is recommended. Its vinyl group allows further modifications, for instance, recycling the catalyst by immobilization. Full article
(This article belongs to the Special Issue Advances in Organocatalysts: Synthesis and Applications)
Show Figures

Graphical abstract

14 pages, 2207 KiB  
Article
Enantioselective Benzylation and Allylation of α-Trifluoromethoxy Indanones under Phase-Transfer Catalysis
by Yumeng Liang, Mayaka Maeno, Zhengyu Zhao and Norio Shibata
Molecules 2019, 24(15), 2774; https://doi.org/10.3390/molecules24152774 - 30 Jul 2019
Cited by 8 | Viewed by 4210
Abstract
The organo-catalyzed enantioselective benzylation reaction of α-trifluoromethoxy indanones afforded α-benzyl-α-trifluoromethoxy indanones with a tetrasubstituted stereogenic carbon center in excellent yield with moderate enantioselectivity (up to 57% ee). Cinchona alkaloid-based chiral phase transfer catalysts were found to be effective for this transformation, and both [...] Read more.
The organo-catalyzed enantioselective benzylation reaction of α-trifluoromethoxy indanones afforded α-benzyl-α-trifluoromethoxy indanones with a tetrasubstituted stereogenic carbon center in excellent yield with moderate enantioselectivity (up to 57% ee). Cinchona alkaloid-based chiral phase transfer catalysts were found to be effective for this transformation, and both enantiomers of α-benzyl-α-trifluoromethoxy indanones were accessed, depended on the use of cinchonidine and cinchonine-derived catalyst. The method was extended to the enantioselective allylation reaction of α-trifluoromethoxy indanones to give the allylation products in moderate yield with good enantioselectivity (up to 76% ee). Full article
(This article belongs to the Special Issue Fabulous Fluorine in Organic and Medicinal Chemistry)
Show Figures

Graphical abstract

9 pages, 2422 KiB  
Article
Towards an Asymmetric Organocatalytic α-Azidation of β-Ketoesters
by Maximilian Tiffner, Lotte Stockhammer, Johannes Schörgenhumer, Katharina Röser and Mario Waser
Molecules 2018, 23(5), 1142; https://doi.org/10.3390/molecules23051142 - 11 May 2018
Cited by 27 | Viewed by 5967
Abstract
Detailed investigations concerning the organocatalytic (asymmetric) α-azidation of prochiral β-ketoesters were carried out. It was shown that the racemic version of such a reaction can either be carried out under oxidative conditions using TMSN3 as the azide-source with quaternary ammonium iodides as [...] Read more.
Detailed investigations concerning the organocatalytic (asymmetric) α-azidation of prochiral β-ketoesters were carried out. It was shown that the racemic version of such a reaction can either be carried out under oxidative conditions using TMSN3 as the azide-source with quaternary ammonium iodides as the catalysts, or by using hypervalent iodine-based electrophilic azide-transfer reagents with different organocatalysts. In addition, the latter strategy could also be carried out with modest enantioselectivities when using simple cinchona alkaloid catalysts, albeit with relatively low yields. Full article
(This article belongs to the Special Issue Enantioselective Catalysis)
Show Figures

Graphical abstract

13 pages, 1434 KiB  
Article
Organocatalytic Access to Enantioenriched Spirooxindole-Based 4-Methyleneazetidines
by Giulia Rainoldi, Matteo Faltracco, Claudia Spatti, Alessandra Silvani and Giordano Lesma
Molecules 2017, 22(11), 2016; https://doi.org/10.3390/molecules22112016 - 21 Nov 2017
Cited by 16 | Viewed by 4746
Abstract
This work describes the synthesis of enantioenriched spiro compounds, incorporating the azetidine and the oxindole motifs. The preparation relies on a formal [2 + 2] annulation reaction of isatin-derived N-tert-butylsulfonyl ketimines with allenoates. The asymmetric induction is secured by an [...] Read more.
This work describes the synthesis of enantioenriched spiro compounds, incorporating the azetidine and the oxindole motifs. The preparation relies on a formal [2 + 2] annulation reaction of isatin-derived N-tert-butylsulfonyl ketimines with allenoates. The asymmetric induction is secured by an organocatalytic strategy, exploiting a bifunctional cinchona-type β-isocupridine-based catalyst. Some post-transformation products, including unexpected spiropyrroline and 3,3-disubstituted oxindole derivatives, are also presented. Full article
(This article belongs to the Special Issue Advances in Spiro Compounds)
Show Figures

Graphical abstract

9 pages, 1375 KiB  
Article
Stereoselective Reduction of Imines with Trichlorosilane Using Solid-Supported Chiral Picolinamides
by Sílvia D. Fernandes, Riccardo Porta, Pedro C. Barrulas, Alessandra Puglisi, Anthony J. Burke and Maurizio Benaglia
Molecules 2016, 21(9), 1182; https://doi.org/10.3390/molecules21091182 - 6 Sep 2016
Cited by 19 | Viewed by 6889
Abstract
The stereoselective reduction of imines with trichlorosilane catalyzed by chiral Lewis bases is a well-established procedure for the synthesis of enantio-enriched amines. Five supported cinchona-based picolinamides have been prepared and their activity tested in a model reaction. The comparison of different supporting materials [...] Read more.
The stereoselective reduction of imines with trichlorosilane catalyzed by chiral Lewis bases is a well-established procedure for the synthesis of enantio-enriched amines. Five supported cinchona-based picolinamides have been prepared and their activity tested in a model reaction. The comparison of different supporting materials revealed that polystyrene gave better results than silica in terms of stereoselectivity. The applicability of the solid-supported catalyst of choice to the reduction of different imines was also demonstrated. Additionally, for the first time, a catalytic reactor containing a polymer-immobilized chiral picolinamide has been employed for the stereoselective reduction of imines with trichlorosilane under continuous flow conditions. Full article
(This article belongs to the Special Issue Recent Advancements in Polymer-Supported Catalysis)
Show Figures

Figure 1

65 pages, 21118 KiB  
Letter
Organocatalysis: Fundamentals and Comparisons to Metal and Enzyme Catalysis
by Pierre Vogel, Yu-hong Lam, Adam Simon and Kendall N. Houk
Catalysts 2016, 6(9), 128; https://doi.org/10.3390/catal6090128 - 26 Aug 2016
Cited by 40 | Viewed by 20873
Abstract
Catalysis fulfills the promise that high-yielding chemical transformations will require little energy and produce no toxic waste. This message is carried by the study of the evolution of molecular catalysis of some of the most important reactions in organic chemistry. After reviewing the [...] Read more.
Catalysis fulfills the promise that high-yielding chemical transformations will require little energy and produce no toxic waste. This message is carried by the study of the evolution of molecular catalysis of some of the most important reactions in organic chemistry. After reviewing the conceptual underpinnings of catalysis, we discuss the applications of different catalysts according to the mechanism of the reactions that they catalyze, including acyl group transfers, nucleophilic additions and substitutions, and C–C bond forming reactions that employ umpolung by nucleophilic additions to C=O and C=C double bonds. We highlight the utility of a broad range of organocatalysts other than compounds based on proline, the cinchona alkaloids and binaphthyls, which have been abundantly reviewed elsewhere. The focus is on organocatalysts, although a few examples employing metal complexes and enzymes are also included due to their significance. Classical Brønsted acids have evolved into electrophilic hands, the fingers of which are hydrogen donors (like enzymes) or other electrophilic moieties. Classical Lewis base catalysts have evolved into tridimensional, chiral nucleophiles that are N- (e.g., tertiary amines), P- (e.g., tertiary phosphines) and C-nucleophiles (e.g., N-heterocyclic carbenes). Many efficient organocatalysts bear electrophilic and nucleophilic moieties that interact simultaneously or not with both the electrophilic and nucleophilic reactants. A detailed understanding of the reaction mechanisms permits the design of better catalysts. Their construction represents a molecular science in itself, suggesting that sooner or later chemists will not only imitate Nature but be able to catalyze a much wider range of reactions with high chemo-, regio-, stereo- and enantioselectivity. Man-made organocatalysts are much smaller, cheaper and more stable than enzymes. Full article
(This article belongs to the Special Issue Metal-free Organocatalysis)
Show Figures

Figure 1

17 pages, 922 KiB  
Review
Enantioselective Organocatalyzed Synthesis of 2-Amino-3-cyano-4H-chromene Derivatives
by Isaac G. Sonsona, Eugenia Marqués-López and Raquel P. Herrera
Symmetry 2015, 7(3), 1519-1535; https://doi.org/10.3390/sym7031519 - 26 Aug 2015
Cited by 36 | Viewed by 9769
Abstract
The structural motif that results from the fusion of a benzene ring to a heterocyclic pyran ring, known as chromene, is broadly found in nature and it has been reported to be associated with a wide range of biological activity. Moreover, asymmetric organocatalysis [...] Read more.
The structural motif that results from the fusion of a benzene ring to a heterocyclic pyran ring, known as chromene, is broadly found in nature and it has been reported to be associated with a wide range of biological activity. Moreover, asymmetric organocatalysis is a discipline in expansion that is already recognized as a well-established tool for obtaining enantiomerically enriched compounds. This review covers the particular case of the asymmetric synthesis of 2-amino-3-cyano-4H-chromenes using organocatalysis. Herein, we show the most illustrative examples of the methods developed by diverse research groups, following a classification based on these five different approaches: (1) addition of naphthol compounds to substituted α,α-dicyanoolefins; (2) addition of malononitrile to substituted o-vinylphenols; (3) addition of malononitrile to N-protected o-iminophenols; (4) Michael addition of nucleophiles to 2-iminochromene derivatives; and (5) organocatalyzed formal [4+2] cycloaddition reaction. In most cases, chiral thioureas have been found to be effective catalysts to promote the synthetic processes, and generally a bifunctional mode of action has been envisioned for them. In addition, squaramides and cinchona derivatives have been occasionally used as suitable catalysts for the substrates activation. Full article
(This article belongs to the Special Issue Asymmetric Catalysis)
Show Figures

Graphical abstract

Back to TopTop