Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = chromophore elements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6426 KiB  
Article
Manganese-Rich Chromite in Myanmar Jadeite Jade: A Critical Source of Chromium and Manganese and Its Role in Coloration
by Yu Zhang, Guanghai Shi and Jiabao Wen
Crystals 2025, 15(8), 704; https://doi.org/10.3390/cryst15080704 (registering DOI) - 31 Jul 2025
Abstract
Color is a primary determinant of the value of jadeite jade, but the petrological provenance of the chromogenic elements of jadeite jade remains uncertain. The characteristics of the associated chromite in Myanmar jadeite jade were systematically investigated through a series of tests, including [...] Read more.
Color is a primary determinant of the value of jadeite jade, but the petrological provenance of the chromogenic elements of jadeite jade remains uncertain. The characteristics of the associated chromite in Myanmar jadeite jade were systematically investigated through a series of tests, including polarized microscopy, microarea X-ray fluorescence spectroscopy (micro-XRF) mapping, electron probe microanalysis (EPMA), and backscattered electron (BSE) imaging. The results demonstrate that the chromite composition in Myanmar jadeite jade is characterized by a high concentration of Cr2O3 (46.18–67.11 wt.%), along with a notable abundance of MnO (1.68–9.13 wt.%) compared with the chromite from the adjacent Myitkyina peridotite. The diffusion of chromium (Cr) and manganese (Mn) in jadeite jade is accomplished by accompanying the metamorphic pathway of Mn-rich chromite → kosmochlor → chromian jadeite → jadeite. In the subsequent phase of jadeite jade formation, the chromium-rich omphacite veins generated by the fluid enriched in Ca and Mg along the fissures of kosmochlor and chromian jadeite play a role in the physical diffusion of Cr and Mn. The emergence of the lavender hue in jadeite is contingent upon the presence of a relatively high concentration of Mn (approximately 100–1000 ppmw) and the simultaneous absence of Cr, which would otherwise serve as a more effective chromophore (no Cr or up to a dozen ppmw). The distinctive Mn-rich chromite represents the primary origin of the chromogenic element Cr (green) and, perhaps more notably, an overlooked provider of Mn (lavender) in Myanmar jadeite jade. Full article
Show Figures

Figure 1

11 pages, 3073 KiB  
Article
Observation of Light-Driven CO2 Photoreduction by Fluorescent Protein mRuby
by Jianshu Dong, Jiachong Xie and Qian Cao
Catalysts 2025, 15(6), 535; https://doi.org/10.3390/catal15060535 - 27 May 2025
Viewed by 646
Abstract
As one of the key processes of photosynthesis, carbon fixation and reduction is one of the most important biochemical reactions on planet Earth. Yet, reducing oxidized carbon elements through directly harnessing solar energy by using water-soluble, simple enzymes continues to be challenging. Here, [...] Read more.
As one of the key processes of photosynthesis, carbon fixation and reduction is one of the most important biochemical reactions on planet Earth. Yet, reducing oxidized carbon elements through directly harnessing solar energy by using water-soluble, simple enzymes continues to be challenging. Here, CO2 and bicarbonate were found to be transformed into methanol by fluorescent protein mRuby by using light as the single energy input. The binding of substrates to mRuby chromophore was supported by crystallography and light spectrometry. Gas chromatography showed the generation of methanol in mRuby-bicarbonate aqueous solution upon sunlight illumination. Atomic-resolution serial structures of mRuby showed snapshots of the step-by-step reduction of bicarbonate and CO2. The amino, imino, or carboxylate group of residues near the chromophore was within hydrogen bonding distances of the substrates, respectively. A decrease in fluorescence was observed upon binding of bicarbonate, and the energy liberated from fluorescence was presumably utilized for methanol production. This research represents an exciting example of sunlight-driven photobiocatalysis by water-soluble small proteins. The new, green, and sustainable mechanisms uncovered here indicated great promises to harness solar energy straightforwardly, for, i.e., fuel production and green chemistry. Full article
(This article belongs to the Collection Catalytic Conversion and Utilization of Carbon-Based Energy)
Show Figures

Figure 1

19 pages, 10570 KiB  
Article
Gemological Characteristics and Trace Chemical Element Analysis of Emerald in Kafubu, Zambia
by Yiwei Jiang, Siyi Zhao, Zhiyi Zhang and Bo Xu
Crystals 2025, 15(5), 385; https://doi.org/10.3390/cryst15050385 - 22 Apr 2025
Viewed by 530
Abstract
This study systematically analyzed the color characteristics, microscopic inclusions (including fluid and mineral inclusions), spectral properties, and chemical composition of emerald samples from Kafubu, Zambia using infrared spectroscopy, UV–visible spectroscopy, Raman spectroscopy, and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The results [...] Read more.
This study systematically analyzed the color characteristics, microscopic inclusions (including fluid and mineral inclusions), spectral properties, and chemical composition of emerald samples from Kafubu, Zambia using infrared spectroscopy, UV–visible spectroscopy, Raman spectroscopy, and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The results were then compared with research data on emeralds from Afghanistan, Brazil, China, Colombia, Ethiopia, Madagascar, Russia, and the United States. The result establishes a global classification framework for emerald origins based on chromophores (Cr, V, Fe), categorizing deposits into two distinct groups: low-Fe regions and high-Fe regions. For high-Fe type IA emeralds, particularly those from Zambia and Madagascar exhibiting exceptionally similar Fe and Mg concentrations, a multi-element discrimination approach was developed. Using microscopic infrared testing to magnify and analyze the characteristic peaks related to OD in the range of 2550–2800 cm⁻1, it can be classified as HDO-dominant, and the high alkali metal element content in Zambian emeralds can be reflected by the absence of the HDO vOD absorption peak at 2685 cm⁻1. A further in-depth analysis of the trace elements in Zambian emeralds can provide a basis for inferring the possible rich ore geology for subsequent mining and provide more effective reference data for the identification of the origin of emeralds. Full article
(This article belongs to the Special Issue Laser–Material Interaction: Principles, Phenomena, and Applications)
Show Figures

Figure 1

11 pages, 2922 KiB  
Article
The Trace-Element Characteristics of Chrysoberyl: Insights from Compositional and Spectroscopic Analyses
by Linling Dong, Yimiao Liu, Xinxin Gao and Ren Lu
Minerals 2024, 14(12), 1280; https://doi.org/10.3390/min14121280 - 17 Dec 2024
Viewed by 815
Abstract
To characterize the trace-element characteristics of chrysoberyl, we studied twenty-six chrysoberyl samples from various localities by using laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS), photoluminescence (PL), and ultraviolet–visible–near-infrared (UV–Vis–NIR) spectroscopy. Chemical analysis has confirmed the existence of trace elements, including Fe, Ti, [...] Read more.
To characterize the trace-element characteristics of chrysoberyl, we studied twenty-six chrysoberyl samples from various localities by using laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS), photoluminescence (PL), and ultraviolet–visible–near-infrared (UV–Vis–NIR) spectroscopy. Chemical analysis has confirmed the existence of trace elements, including Fe, Ti, Ga, Sn, B, Cr, and V. The phenomenon of ionic isomorphic substitution frequently occurs at lattice sites within chrysoberyl. Notably, the isomorphic substitution of Al3+ in octahedral sites is significant, with the primary substituting elements being Fe, Ti, Cr, V, Ga, and Sn. The PL spectra of chrysoberyl samples exhibit sharp peaks at 678 and 680 nm, which are attributed to Cr3+, even in samples in which the Cr concentration is below the detection limit of LA-ICP-MS. This demonstrates the high-sensitivity feature of PL spectroscopy. The UV–Vis–NIR spectra of chrysoberyl samples consistently exhibit a band at 440 nm, and strong double narrow bands near 367 nm and 375 nm are observed. These spectral features are associated with Fe3+ chromophores—specifically, Fe3+-Fe3+ pairs or clusters and Fe3+ ions, respectively. By combining LA–ICP–MS analysis and PL mapping on a sample exhibiting color zoning, it has been found that the darker sections contain a higher concentration of Cr compared to the lighter sections, while the concentrations of other elements remain largely consistent. In other words, subtle variations in Cr concentration may be the underlying cause of color zoning in chrysoberyl. Full article
Show Figures

Figure 1

11 pages, 5167 KiB  
Article
Unveiling the Bluish Green Chalcedony Aquaprase™—The Study of Its Microstructure and Mineralogy
by Sara Monico, Ilaria Adamo, Valeria Diella, Yianni Melas, Loredana Prosperi and Nicoletta Marinoni
Crystals 2024, 14(11), 1003; https://doi.org/10.3390/cryst14111003 - 19 Nov 2024
Viewed by 1022
Abstract
A bluish green chalcedony (a micro to crypto polycrystalline form of silica) from Africa has been marketed with the trademark AQUAPRASETM. A multimethodological approach, combining gemological analyses, thin section examination, scanning electron microscopy, X-ray powder diffraction, Raman spectroscopy, and trace elements [...] Read more.
A bluish green chalcedony (a micro to crypto polycrystalline form of silica) from Africa has been marketed with the trademark AQUAPRASETM. A multimethodological approach, combining gemological analyses, thin section examination, scanning electron microscopy, X-ray powder diffraction, Raman spectroscopy, and trace elements chemical analyses by LA–ICP–MS, was carried out to characterize this material from a gemological and mineralogical point of view. The chalcedony samples consist of a mixture of quartz and moganite, as shown by the X-ray powder diffraction analysis and Raman spectroscopy. “Aquaprase” showed a strong microstructural zoning in terms of grain size, from macrocrystalline to micro and crypto, and morphology. Trace element variations correlated well with the different colored areas of the samples. In particular, the main chromophore ion present in the bluish green areas of the “aquaprase” chalcedony was chromium, followed by iron and nickel, so this chalcedony could be included in the group of chromium-bearing chalcedony. Rayleigh light scattering contributed to the blue hue of the gems. Full article
Show Figures

Figure 1

36 pages, 11038 KiB  
Article
Provenance Studies of a Set of Pick-Up Glass Fragments Found in Portugal and Dated to the 17th Century
by Francisca Pulido Valente, Inês Coutinho, Teresa Medici, Bernard Gratuze, Luís C. Alves, Ana Cadena and Márcia Vilarigues
Heritage 2024, 7(9), 5048-5083; https://doi.org/10.3390/heritage7090239 - 12 Sep 2024
Viewed by 3218
Abstract
One of the most recognized decorations of the pick-up technique is the millefiori glass, which has been commonly attributed to Venetian production. However, Portugal is the country where the largest known assemblage of this type of glass artefact has been studied and published. [...] Read more.
One of the most recognized decorations of the pick-up technique is the millefiori glass, which has been commonly attributed to Venetian production. However, Portugal is the country where the largest known assemblage of this type of glass artefact has been studied and published. In this work, two important archeological contexts were selected: (1) Santa Clara-a-Velha monastery (SCV) and (2) São João de Tarouca monastery (SJT). The fragments selection was made based on the diversity of decorative motifs, colors, and original forms that has been associated with Portuguese production. The compositional characterization was conducted by performing micro-particle-induced X-ray emission (µ-PIXE) mapping, which facilitated the visualization of the distribution of different oxides across the different glass layers and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to obtain the major, minor, and trace elements composition, including rare earth elements (REEs) to determine which kind of raw materials were used. Additionally, µ-Raman spectroscopy was employed to investigate the opacifiers, while UV–Visible spectroscopy was used to study which chromophores are presented in the glass samples. All the analyzed glass layers can be considered to be of a soda–lime–silica type, and four different geological patterns (from GP1 to GP4) were detected and reported. This result can indicate that these objects were made by using silica sources taken from four different geological settings. Interestingly, the GP3 represents about 41% of the analyzed glass fragments and is compatible with the pattern detected in some production wastes found in two different archeological contexts located in Lisbon, which reinforces the veracity of the theory that this GP can be attributed to a Portuguese production. On the other hand, GP1 was probably attributed Granada provenance. Full article
Show Figures

Figure 1

9 pages, 3376 KiB  
Article
Mononuclear Fe(III) Schiff Base Complex with Trans-FeO4N2 Chromophore of o-Aminophenol Origin: Synthesis, Characterisation, Crystal Structure, and Spin State Investigation
by Dawit Tesfaye, Jonas Braun, Mamo Gebrezgiabher, Juraj Kuchár, Juraj Černák, Taju Sani, Abbasher Gismelseed, Tim Hochdörffer, Volker Schünemann, Christopher E. Anson, Annie K. Powell and Madhu Thomas
Inorganics 2024, 12(6), 159; https://doi.org/10.3390/inorganics12060159 - 3 Jun 2024
Cited by 1 | Viewed by 1990
Abstract
A new iron(III) complex (Et3NH)2[Fe(L)2](ClO4)·MeOH (1) where H2L = 2-{(E)-[2-hydroxyphenyl)imino]methyl}phenol has been synthesised and characterised by single crystal XRD, elemental analysis and DC magnetic susceptibility measurements. The dianionic ligands L2− coordinate in [...] Read more.
A new iron(III) complex (Et3NH)2[Fe(L)2](ClO4)·MeOH (1) where H2L = 2-{(E)-[2-hydroxyphenyl)imino]methyl}phenol has been synthesised and characterised by single crystal XRD, elemental analysis and DC magnetic susceptibility measurements. The dianionic ligands L2− coordinate in a tridentate fashion with the Fe(III) through their deprotonated phenolic oxygens and azomethine nitrogen atoms, resulting in a trans-FeO4N2 chromophore. Variable-temperature magnetic measurements were performed between 300 and 5 K under an applied field of 0.1 T and show that 1 is in the high spin state (S = 5/2) over the whole measured temperature range. This is confirmed by Mössbauer spectroscopy at 77 and 300 K. Full article
(This article belongs to the Section Coordination Chemistry)
Show Figures

Figure 1

39 pages, 8508 KiB  
Review
Recent Advances in the Field of Amino Acid-Conjugated Aminoferrocenes—A Personal Perspective
by Mojca Čakić Semenčić, Monika Kovačević and Lidija Barišić
Int. J. Mol. Sci. 2024, 25(9), 4810; https://doi.org/10.3390/ijms25094810 - 28 Apr 2024
Cited by 1 | Viewed by 1280
Abstract
The development of turn-based inhibitors of protein–protein interactions has attracted considerable attention in medicinal chemistry. Our group has synthesized a series of peptides derived from an amino-functionalized ferrocene to investigate their potential to mimic protein turn structures. Detailed DFT and spectroscopic studies (IR, [...] Read more.
The development of turn-based inhibitors of protein–protein interactions has attracted considerable attention in medicinal chemistry. Our group has synthesized a series of peptides derived from an amino-functionalized ferrocene to investigate their potential to mimic protein turn structures. Detailed DFT and spectroscopic studies (IR, NMR, CD) have shown that, for peptides, the backbone chirality and bulkiness of the amino acid side chains determine the hydrogen-bond pattern, allowing tuning of the size of the preferred hydrogen-bonded ring in turn-folded structures. However, their biological potential is more dependent on their lipophilicity. In addition, our pioneering work on the chiroptical properties of aminoferrocene-containing peptides enables the correlation of their geometry with the sign of the CD signal in the absorption region of the ferrocene chromophore. These studies have opened up the possibility of using aminoferrocene and its derivatives as chirooptical probes for the determination of various chirality elements, such as the central chirality of amino acids and the helicity of peptide sequences. Full article
Show Figures

Figure 1

10 pages, 1947 KiB  
Article
Active Optical Tuning of Azopolymeric Whispering Gallery Mode Microresonators for Filter Applications
by Gabriel H. A. Jorge, Filipe A. Couto, Juliana M. P. Almeida, Victor A. S. Marques, Marcelo B. Andrade and Cleber R. Mendonça
Photonics 2024, 11(2), 167; https://doi.org/10.3390/photonics11020167 - 9 Feb 2024
Viewed by 1902
Abstract
Light confinement provided by whispering gallery mode (WGM) microresonators is especially useful for integrated photonic circuits. In particular, the tunability of such devices has gained increased attention for active filtering and lasering applications. Traditional lithographic approaches for fabricating such devices, especially Si-based ones, [...] Read more.
Light confinement provided by whispering gallery mode (WGM) microresonators is especially useful for integrated photonic circuits. In particular, the tunability of such devices has gained increased attention for active filtering and lasering applications. Traditional lithographic approaches for fabricating such devices, especially Si-based ones, often restrict the device’s tuning due to the material’s inherent properties. Two-photon polymerization (2PP) has emerged as an alternative fabrication technique of sub-diffraction resolution 3D structures, in which compounds can be incorporated to further expand their applications, such as enabling active devices. Here, we exploited the advantageous characteristics of polymer-based devices and produced, via 2PP, acrylic-based WGM hollow microcylinders incorporated with the azoaromatic chromophore Disperse Red 13 (DR13). Within telecommunication range, we demonstrated the tuning of the microresonator’s modes by external irradiation within the dye’s absorption peak (at 514 nm), actively inducing a blueshift at a rate of 1.2 nm/(Wcm−2). Its thermo-optical properties were also investigated through direct heating, and the compatibility of both natural phenomena was also confirmed by finite element simulations. Such results further expand the applicability of polymeric microresonators in optical and photonic devices since optically active filtering was exhibited. Full article
(This article belongs to the Special Issue Advances in Optical Microresonators)
Show Figures

Figure 1

17 pages, 1808 KiB  
Review
Dyes Are the Rainbow of Our Health
by Mohammad-Jamal A. Shammout, Majd M. Alsaleh, Iyad Y. Natsheh, Duaa K. Albadawi and Ahmad K. Alkhawaldeh
Chemistry 2023, 5(4), 2229-2245; https://doi.org/10.3390/chemistry5040149 - 18 Oct 2023
Viewed by 2686
Abstract
Natural dyes, obtained without the use of chemical treatment, are derived from naturally occurring sources, such as plants, animals, insects, and minerals. The usage of natural substances and their medicinal properties dates back to the origins of human civilization. The purpose of this [...] Read more.
Natural dyes, obtained without the use of chemical treatment, are derived from naturally occurring sources, such as plants, animals, insects, and minerals. The usage of natural substances and their medicinal properties dates back to the origins of human civilization. The purpose of this review is to highlight the medicinal importance of selected natural colors, which sheds light on the critical role played by these dyes in the pharmaceutical industry. The objective is to showcase the health benefits of each color that can be obtained from nature for medicinal purposes based on their chemical structure. The review presents the reasons for utilizing natural resources in addressing various health issues, with a focus on three specific problems: microbial infections, cancer, and oxidative stress. Our review highlights the potential of natural resource structures, particularly anthocyanins, genipin, carotenoids, phycocyanin, and chlorophylls, in combating these ailments, emphasizing the need to explore their resources further for medicinal purposes. While most reviews provide a survey about colorful crude plant extracts in relation to one or a few categories of human health, our review focuses on the specific chromophore extracted not only from plants but also from any natural resource to provide a specific chromophore effect in a whole resource. The review highlights the significant role performed by organic pigments in the medicinal domain, with organic colorants acting as an essential element of the pharmaceutical sector’s weaponry. Hence, it is of paramount significance to actively promote and stress the adoptions of naturally existing chromophores in diverse everyday commodities, while simultaneously acknowledging and valuing their substantial importance and worth in the vast realm of the pharmaceutical industry. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

13 pages, 4753 KiB  
Article
Color Origin of Greyish-Purple Tremolite Jade from Sanchahe in Qinghai Province, NW China
by Nina Gong, Chaowen Wang and Shuai Xu
Minerals 2023, 13(8), 1049; https://doi.org/10.3390/min13081049 - 7 Aug 2023
Cited by 7 | Viewed by 1807
Abstract
Greyish-purple tremolite jade has become well known in the past few years, and the origin of its color has attracted the attention of gemologists. In this study, FT-IR spectra, EPMA, EPR spectra, micro-XRF, UV–Vis–NIR spectra, and LA-ICP-MS in situ mapping were analyzed to [...] Read more.
Greyish-purple tremolite jade has become well known in the past few years, and the origin of its color has attracted the attention of gemologists. In this study, FT-IR spectra, EPMA, EPR spectra, micro-XRF, UV–Vis–NIR spectra, and LA-ICP-MS in situ mapping were analyzed to investigate the chromophore elements. The study sample was chosen from the Sanchahe mine, Qinghai Province, NW China, which has the typical characteristics of a gradual color change. The FT-IR and EPMA results revealed that the mineral composition of the dark and light greyish-purple regions of the sample are primarily composed of tremolite. UV–Vis–NIR spectra demonstrated that the greyish-purple color is mainly due to strong absorptions at 560 nm and 700 nm and weak absorption at 745 nm in the visible range. The EPR spectra presented ~3400 G six hyperfine lines resulting from the hyperfine interactions of the unpaired electron with the Mn2+ nucleus in the octahedral site. The UV–Vis–NIR and EPR spectra analyses demonstrated that Mn2+ is the origin of the purple color. A comparison of the major elements in the light and dark regions indicated that the chromogenic elements have strong positive correlations with Mn, Cu, and Fe. LA-ICP-MS mapping used to analyze the first transition metals indicated possible positive correlations between the greyish-purple color and the trace chromogenic elements. This suggested that the Mn, Cu, and Fe contents are significantly high in the dark band region. Combining in situ LA-ICP-MS mapping of trace elements, UV–Vis spectra, and EPR analysis results, it was suggested that Mn, Cu, and Fe are the major contributors to the greyish-purple color. This study provides a reference for the specific experimental methods to determine chromophores and the origin of color in tremolite jades. Full article
(This article belongs to the Special Issue Gem Deposits: Mineralogical and Gemological Aspects)
Show Figures

Figure 1

12 pages, 2514 KiB  
Article
Effect of Trace Metal Ions on the Conformational Stability of the Visual Photoreceptor Rhodopsin
by Feifei Wang, Pol Fernandez-Gonzalez, Eva Ramon, Patricia Gomez-Gutierrez, Margarita Morillo and Pere Garriga
Int. J. Mol. Sci. 2023, 24(13), 11231; https://doi.org/10.3390/ijms241311231 - 7 Jul 2023
Cited by 1 | Viewed by 1783
Abstract
Trace metals are essential elements that play key roles in a number of biochemical processes governing human visual physiology in health and disease. Several trace metals, such as zinc, have been shown to play important roles in the visual phototransduction process. In spite [...] Read more.
Trace metals are essential elements that play key roles in a number of biochemical processes governing human visual physiology in health and disease. Several trace metals, such as zinc, have been shown to play important roles in the visual phototransduction process. In spite of this, there has been little research conducted on the direct effect of trace metal elements on the visual photoreceptor rhodopsin. In the current study, we have determined the effect of several metal ions, such as iron, copper, chromium, manganese, and nickel, on the conformational stability of rhodopsin. To this aim, we analyzed, by means of UV-visible and fluorescence spectroscopic methods, the effects of these trace elements on the thermal stability of dark rhodopsin, the stability of its active Metarhodopsin II conformation, and its chromophore regeneration. Our results show that copper prevented rhodopsin regeneration and slowed down the retinal release process after illumination. In turn, Fe3+, but not Fe2+, increased the thermal stability of the dark inactive conformation of rhodopsin, whereas copper ions markedly decreased it. These findings stress the important role of trace metals in retinal physiology at the photoreceptor level and may be useful for the development of novel therapeutic strategies to treat retinal disease. Full article
(This article belongs to the Special Issue Molecular Basis of Sensory Transduction in Health and Disease 2.0)
Show Figures

Figure 1

13 pages, 2814 KiB  
Article
Impact of UV Irradiation on the Chitosan Bioactivity for Biopesticide Applications
by Solène Meynaud, Gaël Huet, Daphnée Brulé, Christian Gardrat, Benoit Poinssot and Véronique Coma
Molecules 2023, 28(13), 4954; https://doi.org/10.3390/molecules28134954 - 23 Jun 2023
Cited by 8 | Viewed by 2196
Abstract
Chitosan is known for its antimicrobial and antifungal properties that make it a promising candidate for plant protection. However, when sprayed in open fields, the bioactivity of chitosan significantly diminishes, suggesting a possible influence of sunlight on chitosan structure. This study aimed to [...] Read more.
Chitosan is known for its antimicrobial and antifungal properties that make it a promising candidate for plant protection. However, when sprayed in open fields, the bioactivity of chitosan significantly diminishes, suggesting a possible influence of sunlight on chitosan structure. This study aimed to investigate the effects of UV radiation, by using artificial UV sources simulating sunlight, on the stability of chitosan. A powdered chitosan with a low polymerization degree was selected and analyzed using various physicochemical methods, both before and after irradiation. Some minor differences appeared. UV spectra analysis revealed the disappearance of initially present chromophores and the emergence of a new band around 340 nm, potentially indicating the formation of carbonyl compounds. However, elemental analysis, MALDI-TOF spectra, polymerization degree, and infrared spectra did not exhibit any clear structural modifications of chitosan. Interestingly, irradiated powdered chitosan samples maintained their bioactivity, including their eliciting and antifungal properties. In the case of grapevine, irradiated chitosan demonstrated effectiveness in controlling grapevine diseases such as downy mildew, contradicting the assumption that sunlight is responsible for the decreased effectiveness of chitosan in open field conditions. Full article
(This article belongs to the Special Issue Chitosan, Chitosan Derivatives and Their Applications)
Show Figures

Figure 1

11 pages, 3365 KiB  
Article
Study on the Discoloration Mechanism of Eucalyptus Wood during Thermal Treatment in Different Media
by Peng Zhang, Jianmin Gao, Fu Liu, Yao Chen and Yao Peng
Polymers 2023, 15(7), 1599; https://doi.org/10.3390/polym15071599 - 23 Mar 2023
Cited by 5 | Viewed by 1999
Abstract
Chromophore structures in wood are the core elements for regulating wood color. Thermal treatment can regulate the color of wood, thus increasing its added value. In this study, conventional thermal treatment was used to regulate the color of Eucalyptus, in order to make [...] Read more.
Chromophore structures in wood are the core elements for regulating wood color. Thermal treatment can regulate the color of wood, thus increasing its added value. In this study, conventional thermal treatment was used to regulate the color of Eucalyptus, in order to make its color close to the precious wood species Burma padauk. The color change in Eucalyptus wood was analyzed using the chromaticity index and UV–Vis. The chromophore structures in the treated wood and their discoloration mechanisms were characterized via FTIR, XPS, NMR, etc. The results showed that the color of eucalyptus could be regulated via thermal treatment to become more similar to the color of Burma padauk under both saturated steam and hot air. The treated wood showed a color difference in the 400~500 nm region in spectral absorption. The changes in the chromophore structures of wood were accompanied by the degradation of hemicelluloses. Meanwhile, demethoxylation occurred in the syringyl structure G of lignin, which led to the polymerization of lignin and decreased the lightness value of wood. Moreover, the number of conjugated structures in the chromophore groups increased, which caused the color of the wood to tend toward red. This study provides a reference for the color regulation of wood, and the mechanisms are also discussed. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

10 pages, 2068 KiB  
Article
Short-End Injection Capillary Electrophoresis and Multivariate Analysis for Simultaneous Determination of Heavy Metals in Passiflora incarnata Tea
by Aline Klassen, Rafael Ferreira Fernandes, Débora Cristina de Oliveira, Maria Patrícia do Nascimento, Marcella Matos Cordeiro Borges, Marcone Augusto Leal de Oliveira, Leandro Augusto Calixto and Keyller Bastos Borges
Int. J. Environ. Res. Public Health 2022, 19(23), 15994; https://doi.org/10.3390/ijerph192315994 - 30 Nov 2022
Cited by 3 | Viewed by 1821
Abstract
An ultra-fast method for the simultaneous determination of heavy metals in Passiflora incarnata tea by capillary electrophoresis (CE) using a short-end injection combined with multivariate analysis was proposed. Separation was conducted by hydrodynamic injection (5 s at 0.5 psi) using the short-end injection [...] Read more.
An ultra-fast method for the simultaneous determination of heavy metals in Passiflora incarnata tea by capillary electrophoresis (CE) using a short-end injection combined with multivariate analysis was proposed. Separation was conducted by hydrodynamic injection (5 s at 0.5 psi) using the short-end injection procedure in a fused uncoated silica capillary (50 cm total length, 10.2 cm effective length, 50 µm i.d.) with separation time less than 2 min. An indirect UV detection at 214 nm was employed by using imidazole as a chromophore. The buffer used was 6 mmol/L hydroxybutyric acid (HIBA). The optimum conditions by full factorial with a central point were achieved by 18-crown-6 concentration (23.3 mmol L−1), voltage (+11.4 kV), methanol concentration (3.8%), and temperature (20 °C). The method showed good linearity (R2 > 0.998) for both Cd and Pb, inter-day precision of less than 14.49%, and an adequate limit of quantification only for Cd (LOQ < 0.5 µg mL−1 for Cd) based on the US Pharmacopeial Convention limit requirements for elemental impurities. After method validation, the method was applied to Passiflora incarnata tea samples from a local market. Furthermore, the developed method showed great potential for the determination of metals in other samples with proper sample preparation procedures. Full article
Show Figures

Figure 1

Back to TopTop